首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of the physical state of membrane on L-alanine uptake has been investigated in Saccharomyces cerevisiae KD115, an unsaturated fatty acid auxotrophic mutant. By monitoring the unsaturation index and steady state fluorescence polarization of 1,6 diphenyl hexatriene (DPH), it was observed that at mid log phase the membrane fluidity increased with an increase in the number of double bonds of supplemented fatty acid. Arrhenius plots of the velocities for L-alanine transport in cells grown on palmitoleate, oleate, linoleate and linolenate were biphasic and dependent on supplemented unsaturated fatty acid. Results illustrate a correlation between membrane fluidity and shift in transition points. Further, results confirm the role of fatty acyl milieu in regulation of transport activity of S. cerevisiae.  相似文献   

2.
3.
4.
Nitrogen-starved yeast derepress a general amino acid permease which transports basic and hydrophobic amino acids. Although both groups of amino acids are metabolized, the derivatives of the basic amino acids are retained by the cells, whereas those of the hydrophobic amino acids are released as acidic and neutral deaminated derivatives. The release of the deaminated derivatives of the hydrophobic amino acids only occurs in the presence of glucose, which presumably produces amino acceptors. The accumulation of intracellular amino acids results in trans-inhibition of the uptake of exogenous amino acids whether the intracellular amino acid is a basic amino acid or the product of intracellular transamination from a hydrophobic amino acid. Variation of permease and transaminase activity was measured during growth under repressed (ammonia-grown) and derepressed (proline-grown) conditions. Maximum levels for both activities occurs at the mid-exponential phase.  相似文献   

5.
The rate of transport of L-amino acids by Saccharomyces cerevisiae epsilon 1278b increased with time in response to nitrogen starvation. This increase could be prevented by the addition of ammonium sulfate or cycloheximide. A slow time-dependent loss of transport activity was observed when ammonium sulfate (or ammonium sulfate plus cycloheximide) was added to cells after 3 h of nitrogen starvation. This loss of activity was not observed in the presence of cycloheximide alone. In a mutant yeast strain which lacks the nicotinamide adenine dinucleotide phosphate-dependent (anabolic) glutamate dehydrogenase, no significant decrease in amino acid transport was observed when ammonium sulfate was added to nitrogen-starved cells. A double mutant, which lacks the nicotinamide adenine dinucleotide phosphate-dependent enzyme and in addition has a depressed level of the nicotinamide adenine dinucleotide-dependent (catabolic) glutamate dehydrogenase, shows the same sensitivity to ammonium ion as the wild-type strain. These data suggest that the inhibition of amino acid transport by ammonium ion results from the uptake of this metabolite into the cell and its subsequent incorporation into the alpha-amino groups of glutamate and other amino acids.  相似文献   

6.
Temperature-sensitive revertants were isolated from Saccharomyces cerevisiae D-glucosamine auxotrophs previously obtained in this laboratory (W. L. Whelan and C. E. Ballou, J. Bacteriol. 124:1545-1557, 1975). The auxotrophs lack the enzyme 2-amino-2-deoxy-D-glucose-6-phosphate ketol-isomerase (EC 5.3.1.19), and the revertants appear to be temperature sensitive in the formation of enzyme activity. The enzyme they produce under permissive conditions decays in activity at a rate comparable to that of the wild-type enzyme, and it has similar kinetic properties. The homozygous diploid mutant fails to sporulate at the nonpermissive temperature. Temperature shift experiments were carried out in an effort to determine what effect glucosamine deficiency had on mannoprotein secretion as reflected in the formation of external asparaginase. Although the results were complicated by the slow decay of the residual ketol-isomerase activity, they did show that mannoprotein synthesis or secretion was altered when the internal pool of D-glucosamine was depleted.  相似文献   

7.
The biosynthesis of asparaginase II in Saccharomyces cerevisiae is subject to nitrogen catabolite repression. In the present study we examined the physiological effects of glutamate auxotrophy on cellular metabolism and on the nitrogen catabolite repression of asparaginase II. Glutamate auxotrophic cells, incubated without a glutamate supplement, had a diminished internal pool of alpha-ketoglutarate and a concomitant inability to equilibrate ammonium ion with alpha-amino nitrogen. In the glutamate auxotroph, asparaginase II biosynthesis exhibited a decreased sensitivity to nitrogen catabolite repression by ammonium ion but normal sensitivity to nitrogen catabolite repression by all amino acids tested.  相似文献   

8.
Prototrophic Saccharomyces cerevisiae X2180, when grown on unsupplemented minimal medium, displayed little sensitivity to ethionine- and m-fluorophenylalanine-containing toxic dipeptides. We examined the influence of the 20 naturally occurring amino acids on sensitivity to toxic dipeptides. A number of these amino acids, at concentrations as low as 1 microM (leucine and tryptophan), produced large increases in sensitivity to leucyl-ethionine, alanyl-ethionine, and leucyl-m-fluorophenylalanine. Sensitivity to ethionine and m-fluorophenylalanine remained high under either set of conditions. The addition of 0.15 mM tryptophan to a growing culture resulted in the induction of dipeptide transport, as indicated by a 25-fold increase in the initial rate of L-leucyl-L-[3H]leucine accumulation. This increase, which was prevented by the addition of cycloheximide, began within 30 min and peaked approximately 240 min after a shift to medium containing tryptophan. Comparable increases in peptidase activity were not apparent in crude cell extracts from tryptophan-induced cultures. We concluded that S. cerevisiae possesses a specific mechanism for the induction of dipeptide transport that can respond to very low concentrations of amino acids.  相似文献   

9.
The unsaturated fatty acid-requiring mutant KD 115 of Saccharomyces cerevisiae secretes a lectin when grown in presence of oleic acid. This lectin is homogeneous on PAGE at pH 8.3, has an approximate molecular weight of 320,000, pI of 4.2 and contains about 60% sugar. It agglutinates chicken and different mammalian erythrocytes, but lyses rabbit red cells only. It is D-galactose-specific. To our knowledge, this is the first report of a hemagglutinin from yeast.  相似文献   

10.
11.
The fatty acid composition of yeast lipid was manipulated by using auxotrophic strain of S.cerevisiae, KD115, which requires unsaturated fatty acid (UFA) for its growth. It was possible to specifically enrich the yeast with different fatty acyl residues. As compared to wild type strain (S288C), the uptake of amino acids viz., L-alanine, glycine, L-glutamic acid, L-valine in KD115 was drastically reduced, however, the uptake of L-leucine and L-lysine was not affected by the change in lipid unsaturation. Kinetic studies revealed that KT and Jmax values for L-alanine were altered whereas for L-lysine they remained unaffected by UFA modification. Furthermore, unsaturation index for wild type cells was found to be fairly constant while it was variable in KD115 supplemented with different UFAs. It is observed that the variation in amino acid permeases activity which was affected by fluctuations in fatty acyl composition corresponds more to degree of unsaturation rather than growth stage of KD115.  相似文献   

12.
13.
Cells of the wild-type yeast (Saccharomyces cerevisiae) strain Y185, grown under conditions that de-repress the formation of a general amino acid permease ('Gap') system, bind delta-N-chloroacetyl[1-(14)C]ornithine; L- and D-amino acid substrates of the general amino acid permease system protect against this binding. The protein responsible is released from the cells by homogenization or by preparation of protoplasts; it is not released by osmotic shock. This protein is virtually absent from the wild-type strain when it is grown under conditions that repress the general amino acid permease system, and is also absent from a Gap- mutant Y185-His3, selected by its resistance to D-amino acids. This mutant and repressed wild-type cells also fail to form a number of membrane proteins elaborated by de-repressed wild-type cells. It is possible that all these proteins are components of the general amino acid permease system.  相似文献   

14.
A new class of Saccharomyces cerevisiae mutants (aat1 - amino acid transport) has been identified. These mutants are unable to grow on rich medium or on minimal medium supplemented with certain amino acids (isoleucine, methionine, phenylalanine, tyrosine or valine). This phenotype is directly linked to the presence of the leu2 allele in these strains: aat1 LEU2 organisms grow normally on all media tested. Leucine uptake through the leucine-specific permease is inhibited to less than 35% of wild-type levels in aat1 cells preincubated in nonpermissive media, and the activity of the general amino acid permease is also low in these conditions. aat1 cells are therefore unable to grow on rich media because they cannot take up enough leucine to supplement their auxotrophic requirement.  相似文献   

15.
The general amino acid transport system of Saccharomyces cerevisiae functions in the uptake of neutral, basic, and acidic amino acids. The amino acid analogue N-delta-chloroacetyl-L-ornithine (NCAO) has been tested as potential site specific reagent for this system. L-Tryptophan, which is transported exclusively by the general transport system, was used as a substrate. In the presence of glucose as an energy source, NCAO inhibited tryptophan transport competitively (Ki = 80 micrometer) during short time intervals (1-2 min), but adding 100 micrometer NCAO to a yeast cell suspension resulted in a time-dependent activation of tryptophan transport during the first 15 min of treatment. Following the activation a time-dependent decay of tryptophan transport activity occurred. Approximately 80% inactivation of the system was observed after 90 min. When a yeast cell suspension was treated with NCAO in the absence of an energy source, an 80% inactivation of tryptophan transport occurred in 90 min. The inactivation was noncompetitive (Ki congruent to 60 micrometer) and could not be reversed by the removal of the NCAO. Addition of a five-fold excess of L-lysine during NCAO treatment or prevented inactivation of tryptophan transport. Under parallel conditions of incubation, other closely related transport systems were not inhibited by NCAO.  相似文献   

16.
The transport of methylamine (methylammonium ion) and ammonia (ammonium ion) is accomplished in Saccharomyces cerevisiae by means of a specific active transport system. L-Amino acids are noncompetitive inhibitors of methylamine transport. This inhibition is relieved or eliminated in mutant strains that have a reduced ability to transport amino acids. The inhibition of methylamine transport occurs immediately upon the addition of amino acids to the assay system and persists until the external amino acid pool is depleted. The degree of inhibition observed is a direct function of the rate of amino acid transport. Both methylamine and ammonia are capable of inhibiting amino acid transport. The inhibition of amino acid transport is eliminated in mutant strains that cannot transport methylamine and ammonia.  相似文献   

17.
Amino acid sequences of a-factor mating peptides from Saccharomyces cerevisiae   总被引:15,自引:0,他引:15  
The molecular structure of a-factor, the mating hormone produced by mating type a cells of Saccharomyces cerevisiae, has been investigated. In culture filtrates of a cells four oligopeptides (a1 to a4) exhibiting a-factor activity have been found. These peptides have been isolated and their amino acid sequences have been determined. The a-factor peptides comprise two (apparently identical) pairs, a1/a2 and a3/a4, which differ in an interchange at position 6 of a valine in a1/a2 for a leucine in a3/a4. a1 and a4, which can be obtained by oxidation with H2O2 of purified a2 and a3, respectively, obviously represent oxidation artifacts formed under the conditions of culture. The amino acid sequences determined for the a-factor peptides are Tyr-Ile-Ile-Lys-Gly-Val Leu-Phe-Trp-Asp-Pro-Ala-Cys. Several lines of evidence suggest that the carboxyl-terminal cysteine residue is S-alkylated by a hydrophobic moiety.  相似文献   

18.
The activities of the proline-specific permease (PUT4) and the general amino acid permease (GAP1) of Saccharomyces cerevisiae vary 70- to 140-fold in response to the nitrogen source of the growth medium. The PUT4 and GAP1 permease activities are regulated by control of synthesis and control of activity. These permeases are irreversibly inactivated by addition of ammonia or glutamine, lowering the activity to that found during steady-state growth on these nitrogen sources. Mutants altered in the regulation of the PUT4 permease (Per-) have been isolated. The mutations in these strains are pleiotropic and affect many other permeases, but have no direct effect on various cytoplasmic enzymes involved in nitrogen assimilation. In strains having one class of mutations (per1), ammonia inactivation of the PUT4 and GAP1 permeases did not occur, whereas glutamate and glutamine inactivation did. Thus, there appear to be two independent inactivation systems, one responding to ammonia and one responding to glutamate (or a metabolite of glutamate). The mutations were found to be nuclear and recessive. The inactivation systems are constitutive and do not require transport of the effector molecules per se, apparently operating on the inside of the cytoplasmic membrane. The ammonia inactivation was found not to require a functional glutamate dehydrogenase (NADP). These mutants were used to show that ammonia exerts control of arginase synthesis largely by inducer exclusion. This may be the primary mode of nitrogen regulation for most nitrogen-regulated enzymes of S. cerevisiae.  相似文献   

19.
In a Ni-resistant strain of S. cerevisiae , the histidine content of the amino acid pool was increased by culture in a Ni-supplemented medium, while the content of other amino acids was decreased. The toxicity of nickel to yeast was reduced by addition of histidine to the medium. It is concluded that histidine content plays an important role in Ni-resistance in yeast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号