首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of pH, ionic strength of the solution, and [Fe(CN)6]4- concentration on the rate of oxidation of sperm whale, horse, and pig oxymyoglobins, which is catalyzed by ferrocyanide ions, was studied. These myoglobins have homologous spatial structures and identical redox potentials but differ by the amount of His residues located on the protein surface. The effect of the MbO2 complexing with redox-inactive Zn2+ ion on the reaction rate was also examined. At the equimolar Zn2+ concentration, zinc ions form a stable complex with His119(GH1). It was found that the kinetic behavior of horse MbO2, which lacks His12(A10) substituted for by Gln, is fully analogous to one of sperm whale MbO2, while the oxidation of pig MbO2, three histidines of which, His12, His113(G14), and His116(G17), are replaced by Gln, is strongly inhibited. The mechanism of the catalysis was shown to involve specific binding of [Fe(CN)6]4- to the protein at the His119(GH1) site, which is in accord with the large positive electrostatic potential of this site and the presence here of a cavity large enough to accommodate [Fe(CN)6]4-. The nearby His113 and His116 residiues, which are absent in pig Mb, also play a very important role in the catalysis, because their protonation (especially of the last residue) is most likely responsible for the week oxidation of bound [Fe(CN)6]4- by dissolved oxygen.  相似文献   

2.
A comparative study of the rates of ferrocyanide-catalyzed oxidation of several oxymyoglobins by molecular oxygen is reported. Oxidation of the native oxymyoglobins from sperm whale, horse and pig, as well as the chemically modified (MbO(2)) sperm whale oxymyoglobin, with all accessible His residues alkylated by sodium bromoacetate (CM-MbO(2)), and the mutant sperm whale oxymyoglobin [MbO(2)(His119-->Asp)], was studied. The effect of pH, ionic strength and the concentration of anionic catalyst ferrocyanide, [Fe(CN)(6)](4-), on the oxidation rate is investigated, as well as the effect of MbO(2) complexing with redox-inactive Zn(2+), which forms the stable chelate complex with functional groups of His119, Lys16 and Asp122, all located nearby. The catalytic mechanism was demonstrated to involve specific [Fe(CN)(6)](4-) binding to the protein in the His119 region, which agrees with a high local positive electrostatic potential and the presence of a cavity large enough to accommodate [Fe(CN)(6)](4-) in that region. The protonation of the nearby His113 and especially His116 plays a very important role in the catalysis, accelerating the oxidation rate of bound [Fe(CN)(6)](4-) by dissolved oxygen. The simultaneous occurrence of both these factors (i.e. specific binding of [Fe(CN)(6)](4-) to the protein and its fast reoxidation by oxygen) is necessary for the efficient ferrocyanide-catalyzed oxidation of oxymyoglobin.  相似文献   

3.
Specific catalytic oxidation of sperm whale oxymyoglobin by small amounts of potassium ferri- and ferrocyanide, from 1 to 20% in relation to the protein concentration, was studied. The mechanism of catalysis was shown to involve specific binding of the ferrocyanide anion to the protein. The influence of pH and ionic strength of the medium, the [Fe(CN)6]4- concentration and of chemical modification of Mb histidines by bromoacetate, as well as the effect of the Mb complexing with redox-inactive zinc ion on the rate of reaction was examined. The zinc ion forms a stable complex with His 119(GH1) on the Mb surface at the equimolar Zn2+ concentration. The kinetic scheme of the reaction was analyzed, and the equilibrium and kinetic parameters were obtained. It was first shown that the strong oxidant such as potassium ferricyanide is able to react with the same protein by two distinct mechanisms: (i) a simple outer sphere electron transfer over the heme edge and (ii) electron transfer after the specific binding of [Fe(CN)6]4- to oxyMb in the His 119(GH1) region, thus catalyzing the protein oxidation.  相似文献   

4.
The influence of small amounts of low-molecular electron acceptor, potassium ferricyanide, 1 to 20% relative to the cytohrome c concentration, on the rate of electron transfer in the sperm whale oxymyoglobin--horse heart cytochrome c and deoxymyoglobin--cytochrome c systems (under aerobic and anaerobic conditions, respectively) was studied. At low ionic strength, the redox reaction rate was found to increase proportionally to the concentration of ferricyanide in both redox systems. The effect depends on pH in the pH range 5-8, increasing sharply at pH < 6. It was shown that the enhancing of electron transfer is caused by the complexing of [Fe(CN)6]3- with cytohrome c in the Lys72 region, where one of the two strong binding sites for this anion is determined by NMR. Both the high ionic strength and the chemical modification of Lys72 residue inhibit this effect at low ionic strength, markedly decreasing the rate of reaction with myoglobin. Under the same conditions, the effect of ferricyanide in the reaction of oxy-Mb with yeast cytohrome c, which is isopotential to animal cytochromes c but possesses trimethylated Lys72, was several times smaller. In turn, the chemical modification of His residues in myoglobin and the complexing of zinc ion to His119(GH1) almost completely inhibit electron transfer in the systems. Thus, electron transfer between the proteins must proceed through the formation of the Mb.[Fe(CN)6]3-.Cyt c ternary complex, the contacting sites being localized in the His119(GH1) region of myoglobin and near Lys72 of cytohrome c. The increased electron transfer rate in the presence of [Fe(CN)6]3- can be explained by that its binding near Lys72, firstly, provides better electrostatic interactions in the electron transfer complex and, besides, decreases significantly (about 2-fold) the tunneling distance between the two hemes (two lengths of 1.7 and 1.2 nm instead of one of 2.9 nm).  相似文献   

5.
The rate of the redox reaction between porcine MbO2 and ferri-Cyt c at different ionic strengths in the pH range 5-8 has been studied. At low ionic strength (I = 0-0.1) the pH dependence curve was found to have a sigmoid shape with pKeff approximately 5.7, implying the effect of ionization of His-119(GH1) at the "active site" of myoglobin on the kinetics of the process. In this range of ionic strengths the rate of the reaction decreases sharply. The slope of the curve in the coordinates of IgKexp versus square root of I/1 + square root of I varies depending on pH. It is greater at pH less than or equal to 6 and smaller at pH 7.5, which is due to deprotonation of His(GH1). At high ionic strength (I greater than 0.1) the rate of electron transfer is negligible, independent of pH and does not practically change as I increases from 0.1 to 1. It is shown that the local electrostatic interactions play a decisive role in the formation of an efficient electron-transfer complex between Mb and Cyt c. The binding of the zinc ion to His(GH1) was found to inhibit the electron transfer at I = 0.01, similarly to what occurs at a high ionic strength, though the "reactive" charges of the proteins are not screened and the positive charge at His(GH1) is retained. This suggests that His(GH1) is directly involved in the mechanism of electron transfer from Mb to Cyt c. The data obtained are compared with earlier data on the effect of pH, ionic strength and zinc ions on the reaction between MbO2 from sperm whale and Cyt c. To explain the higher efficiency of pig MbO2 as electron donor, the electrostatic and steric properties of both myoglobins have been analyzed.  相似文献   

6.
The kinetics of whale MbO2 deoxygenation was studied spectrophotometrically in the presence of breathing rat mitochondria under conditions when mitochondria were separated from the protein solution by a semipermeable film capable to transfer only low-molecular-weight compounds and directly in the solution of MbO2 with mitochondria (incubation medium: 15-35 mM succinate, 150 mM sucrose, 100 mM KCl, 0.5 mM EGTA, 5 mM KH2PO4, 10 mM MOPS, pH 7.4). It was shown that the splitting of O2 from MbO2 at physiological pO2 is possible only if it directly contacts mitohondria. The deoxygenation rate does not depend on the protein concentration (zero order on [MbO2] as opposite to the first order reaction in the absence of mitochondria) and completely coincides with the rate of oxygen consumption by mitochondria under the same conditions, as indicated by the polarographic data. The dependence of the MbO2 deoxygenation rate on the concentration of mitochondria and the protein, and on the total charge of the MbO2 molecule was studied using horse MbO2 (pI 7.1), sperm whale MbO2 (pI 8.3), its zinc complex, Zn-MbO2 (pI > 8.3), and the sperm whale MbO2 derivative carboxymethylated at His residues, CM-MbO2 (pI 5.2). The mechanism of MbO2 deoxygenation in the cell obviously actuates its interplay with the mitochondrial membrane. As a result, the affinity of Mb to oxygen decreases several times, which corresponds to a shift of the Mb dissociation curve to higher pO2 values.  相似文献   

7.
Specific catalytic oxidation of oxymyoglobin (MbO(2)) and luminol by ferricyanide was studied in a flow-injection system. MbO(2) in different redox states (ferric and ferrous) was oxidized to Mb(Fe(III)) by ferricyanide, and then specific binding of the ferrocyanide anion to Mb(Fe(III)) to the His 119 (GH1) region accelerated the electron transfer between Mb(Fe(III)) and luminol, which produced a chemiluminescence (CL) signal at 425 nm. The increased CL emission was correlated with the myoglobin concentration in the range 0.16-7.5 microg/mL. Thermogravimetry and differential scanning calorimetry were used to investigate the temperature effects on this reaction. The results showed that the CL intensity in the presence of myoglobin changed considerably with heating in the range 15-50 degrees C, and the maximal CL intensity was observed at 40 degrees C, corresponding to the glass transition temperature of myoglobin. The effect of different ligands and interferences were also studied.  相似文献   

8.
The influence of Cu2+ concentration, pH, and ionic strength of the solution as well as redox-inactive zinc ions on the rate of oxidation of sperm whale, horse, and pig oxymyoglobins (oxy-Mb) by copper ions has been studied. These myoglobins have homologous spatial structures and equal redox potentials but differ in the number of histidines located on the surface of the proteins. It was shown that oxy-Mb can be oxidized in the presence of Cu2+ through two distinct pathways depending on which histidine binds the reagent and how stable the complex is. A slow pH-dependent catalytic process is observed in the presence of equimolar Cu2+ concentration for sperm whale and horse oxymyoglobins. The curves of pH dependence in both cases are sigmoid with pK eff corresponding to the ionization. The process is caused by the strong binding of Cu2+ to His113 and His116, an analogous His residue being absent in pig Mb. In contrast, rapid oxidation of 10-15% of pig oxy-Mb is observed under the same conditions (fast phase), which is not accompanied by catalysis because the reduced copper is apparently not reoxidized. The complexing of Cu2+ with His97 situated near the heme is probably responsible for the fast phase of the reaction. The affinity of His97 for Cu2+ must be significantly lower than those of the catalytic His residues since the fast phase does not contribute markedly to the rate of sperm whale and horse oxy-Mb oxidation. Increasing copper concentration does not produce a proportional growth in the oxidation rate of sperm whale and horse oxy-Mbs. Which Cu2+ binding sites of Mb make main contributions to the His reaction rate at different Cu2+/Mb ratios from 0.25 to 10 is discussed.  相似文献   

9.
The kinetics of the redox reaction of sperm whale and pig oxymyoglobins (MbO2) with ferricytochrome C (CytC) from pig heart has been studied in the pH range 5–8. Also, the effects of histidine (His) modification and of the complexing of both myoglobins with Zn2+, on the electron transfer rate, has been investigated. It has been shown that pig MbO2 reduces Cyt C much more effectively than sperm whale MbO2. The pH dependence of the reaction rate is shown to result from the influence of two histidines, His 12(A10) and His 119(GH1), in the case of sperm whale myoglobin and only of His GH1 in the case of pig MbO2. The protonation of His A10 at pH<7.5 decreases the rate of the reaction with Cyt C whereas the ionization of His GH1, on the contrary, increases the electron transfer rate 10–30 times (atI=0.03). The His residues of Cyt C are shown to have no effect on the reaction. Complexing of His GH1 with a zinc ion strongly inhibits the reaction of both sperm whale and pig MbO2 with Cyt C. The reaction of the zinc-MbO2 complexes, as distinct from the intact oxymyoglobins, becomes independent of pH and ionic strength. Unlike His A10, His GH1 plays a very important role in the formation of the electron transfer complexes, and is probably directly involved in the charge transfer step. Based on the data obtained, the reactive site of the Mb surface has been identified in the A-GH region. The spatial arrangement of the charged groups in the reactive sites of the two myoglobins has been obtained. The solvent accessibilities of all amino acid residues situated there have been calculated, according to Lee and Richards. In order to explain the different reactivities of sperm whale and pig myoglobins, their electrostatic properties and the steric features of the contact sites have been compared.  相似文献   

10.
The ability of myoglobin (Mb) to reversibly bind O2 and other ligands has been well characterized. Mb also participates with a variety of redox metals to form metmyoglobin (metMb). By using an anaerobic stopped-flow device we have measured outer-sphere oxidation by [Fe(CN)6]3 of native sperm whale myoglobin, recombinant wild-type Mb, and a series of mutant Mb proteins in which the distal His-64 was changed to Gly, Phe, Leu or Val. Second-order rate constants for oxidation of mutant proteins are 10-15 times greater than for recombinant or native (kox approximately 10(6) M-1 s-1). We attribute the reduced rate of oxidation of wild-type protein to a higher reorganization energy imposed by the presence of the unique water/His-64/heme interaction, which is absent in the mutant proteins.  相似文献   

11.
The effect of zink ions, which according to the X-ray data are bound to the His GH1 residue of myoglobin, has been investigated. It is shown that the electron transfer in the system is almost completely inhibited at the equimolar Zn2+ concentration in the pH range 5 to 8. Unlike the reaction between the intact MbO2 and Cyt c, the electron transfer rate in this case does not depend on pH and ionic strength of the solution. Further increase of Zn2+ concentration up to the 20-fold molar excess has no significant effect on the rate of the process. Since the thermodynamic characteristics of the redox reaction between MbO2 and Cyt c are not altered in the presence of Zn2+, the findings obtained can be interpreted as indicating the important role of His GH1 in the formation of productive electron transfer complex.  相似文献   

12.
The destructive oxidation of aerobically isolated 7Fe Azotobacter vinelandii ferredoxin I [(7Fe)FdI] by Fe(CN)3-6 is examined using low-temperature magnetic circular dichroism (MCD) and EPR. The results demonstrate that oxidation of the [3Fe-3S] cluster occurs only after essentially complete destruction of the [4Fe-4S] cluster. It is therefore feasible by controlled Fe(CN)3-6 oxidation to obtain a partially metallated form of FdI, (3Fe)FdI, containing only a [3Fe-3S] cluster. The MCD and EPR data demonstrate that the [3Fe-3S] cluster in (3Fe)FdI is essentially identical in structure to that in the native protein.  相似文献   

13.
Native oxymyoglobin (MbO2) was isolated directly from the skeletal muscle of bigeye tuna (Thunnus obesus) with complete separation from metmyoglobin (metMb) on a CM-cellulose column. It was examined for its stability properties over a wide range of pH values (pH 5-12) in 0.1 M buffer at 25 degrees C. When compared with sperm whale MbO2 as a reference, the tuna MbO2 was found to be much more susceptible to autoxidation. Kinetic analysis has revealed that the rate constant for a nucleophilic displacement of O2- from MbO2 by an entering water molecule is 10-times higher than the corresponding value for sperm whale MbO2. The magnitude of the circular dichroism of bigeye tuna myoglobin at 222 nm was comparable to that of sperm whale myoglobin, but its hydropathy profile revealed the region corresponding to the distal side of the heme iron to be apparently less hydrophobic. The kinetic simulation also demonstrated that accessibility of the solvent water molecule to the heme pocket is clearly a key factor in the stability properties of the bound dioxygen.  相似文献   

14.
A recently described direct reading assay for beta-oxidation and for succinate oxidation in intact mitochondria using [Fe(CN)6]3- as final electron acceptor [Osmundsen & Bremer (1977) Biochem. J. 164. 621--633] has been improved by using instead tetracyano-2,2-bipyridineiron(III) [Fe(CN)4(bpy)]-, which gives a 2.6 times greater absorbance change on reduction. Some physical and kinetic properties of [Fe(CN)4(bpy)]- are described. The use of exogenous cytochrome c(III) as electron acceptor was also tested; this gives the largest absorbance change, although the absolute rate of reaction is only approx. one-third of that using [Fe(CN)6]3- or [Fe(CN)4(bpy)]-.  相似文献   

15.
Plastocyanin (PCu) from spinach leaves has been singly NO2-modified, purified by FPLC, and the position of modification at Tyr83 confirmed by trypsin digestion and amino-acid sequencing. Electron-transfer reactions of native and NO2-modified PCu with the inorganic redox partners [Fe(CN)6]3- and [Co(phen)3]3+, as oxidants for PCu(I), and [Fe(CN)6]4- and [Co(phen)3]2+ as reductants for PCu(II), have been studied as a function of pH. The acid dissociation constant for the phenolic group on NO2-Tyr83 PCu is 8.78 (average) for reduced, and 8.10 for oxidised protein, as compared to values greater than 10 for native protein. At I = 0.10 M (NaCl) NO2-modification brings about a 20 mV increase in reduction potential at pH less than 7 and deprotonation of the phenolic group a 20-25 mV decrease, both transmitted to and effective at the active site. Deprotonation brings about a 48% increase in rate for [Fe(CN)6]3- and a 47% decrease for [Fe(CN)6]4- in accordance with these changes. In the case of [Co(phen)3]3+, which reacts substantially at the remote site in the vicinity of Tyr83, the influence of deprotonation on the active site is supplemented by the negative charge of the phenolate, and a total increase of 131% is observed. These results can be understood on the basis of the electron-transfer theory, and add support to the belief that electron transfer kinetics of negatively and positively charged reactants are dominated by different sites on PCu for electron transfer, namely adjacent (close to His87) and remote (close to Tyr83), respectively.  相似文献   

16.
Effects of pH on second-order rate constants, k (25 degrees C), have been determined for the [Fe(CN)6]3- and [Co(phen)3]3+ oxidations of ferrocytochrome c-551 from Pseudomonas aeruginosa, Pseudomonas stutzeri, and Azotobacter vinelandii. For each oxidant similar directional trends are observed. With [Fe(CN)6]3-, rate constants over the pH 4-9.5 range first decrease, and then increase to plateau pH approximately equal to 9 k values of 0.96.10(5), 4.4.10(5) and 1.05.10(5) M-1.s-1, respectively. With [Co(phen)3]3+, rate constants increase in two separate well-defined stages from pH 2.5-9.5 to plateau pH approximately equal to 9 k values of 1.35.10(5), 3.6.10(5) and 1.37.10(5) M-1.s-1, respectively. From these trends, and consistent with previous NMR studies, protein pKa values of 7.16, 8.00 and 6.67, respectively, for the three reduced cytochromes c-551 are assigned to the buried propionic acid at position 7 on the haem ring. Since at pH greater than 6 the trends with pH for both [Fe(CN)6]3- and [Co(phen)3]3+ are in the same direction, it is concluded that this deprotonation results in a decrease in protein reduction potential. At pH less than 6, the trends with [Co(phen)3]3+ and [Fe(CN)6]3- are in opposite directions. Well defined pKa values of 3.6, 3.80 and 3.80 for P. aeruginosa, P. stutzeri and A. vinelandii, respectively, are observed with [Co(phen)3]3+ as oxidant. Upper limits only of pKa values less than 5.0, less than 4.1 and less than 4.5, respectively, are observed with [Fe(CN)6]3- as oxidant, which may or may not be the same as those observed for [Co(phen)3]3+. These latter pKa values are assigned to carboxylate residues at or near to the binding site(s). It is noted that charged residues are invariant on the front face (incorporating the exposed haem edge) of all three cytochromes c-551, and that there are only two carboxylates. One possibility is that the locality including both carboxylates defined by residues Asp-19, Lys-21, Lys-28 and Asp/Glu-29, serves as a binding site for both 3+ and 3- oxidants.  相似文献   

17.
The oxidation of sperm whale oxymyoglobin (MbO2) and its chemically modified derivatives alkylated at solvent-accessible histidines by sodium bromoacetate (CM-MbO2) and iodoacetamide (CA-MbO2) in the presence of ions and glycine complexes of copper, Cu2+, Cu(Gly)+, and Cu(Gly)2, has been studied. The influence of the reagent concentration, pH, and ionic strenth of medium, and also of competitive redox-inactive zinc ions on the reaction was investigated. The localization of Cu(Gly)2 in native sperm whale met-Mb and CM-met-Mb was examined by the high-resolution NMR method. The data obtained confirm that the linkage of copper compounds to surface histidines (all of them are away from the heme, at a distance of 1.8-2.7 nm) has only a minor (no more than 35%) contribution to the overall reaction rate, in particular under conditions of a large, more than 8-10-fold, data, excess of the reagent. The noticeable contribution of His116(113), His48, and His81, which according to NMR are localized on the protein surface and have the greatest affinity to copper, is revealed only at small concentrations of copper, a less than 5-fold excess relative to the protein. This is supported by the sigmoidal pH-dependence curve with the transition pK 6.5 at the equimolar copper concentration. The main contribution to the rate of the reaction studied should involve a linkage of copper to internal histidines, His97(FG4), which is 0.66 nm apart from the heme, and to distal His64(E7). Both are hydrogen bonded, the first with carboxyl group of one of the heme propionates, and the second with liganded O2, have a much lower affinity to copper than surface histidines, and are inaccessible to the modification.  相似文献   

18.
Wang TY  Chen YC  Kao LW  Chang CY  Wang YK  Liu YH  Feng JM  Wu TK 《The FEBS journal》2008,275(20):5007-5020
The biofilm-related and carnosine-hydrolyzing aminoacylhistidine dipeptidase (pepD) gene from Vibrio alginolyticus was cloned and sequenced. The recombinant PepD protein was produced and biochemically characterized and the putative active-site residues responsible for metal binding and catalysis were identified. The recombinant enzyme, which was identified as a homodimeric dipeptidase in solution, exhibited broad substrate specificity for Xaa-His and His-Xaa dipeptides, with the highest activity for the His-His dipeptide. Sequence and structural homologies suggest that the enzyme is a member of the metal-dependent metallopeptidase family. Indeed, the purified enzyme contains two zinc ions per monomer. Reconstitution of His.Tag-cleaved native apo-PepD with various metal ions indicated that enzymatic activity could be optimally restored when Zn2+ was replaced with other divalent metal ions, including Mn2+, Co2+, Ni2+, Cu2+ and Cd2+, and partially restored when Zn2+ was replaced with Mg2+. Structural homology modeling of PepD also revealed a 'catalytic domain' and a 'lid domain' similar to those of the Lactobacillus delbrueckii PepV protein. Mutational analysis of the putative active-site residues supported the involvement of His80, Asp119, Glu150, Asp173 and His461 in metal binding and Asp82 and Glu149 in catalysis. In addition, individual substitution of Glu149 and Glu150 with aspartic acid resulted in the partial retention of enzymatic activity, indicating a functional role for these residues on the catalysis and zinc ions, respectively. These effects may be necessary either for the activation of the catalytic water molecule or for the stabilization of the substrate-enzyme tetrahedral intermediate. Taken together, these results may facilitate the design of PepD inhibitors for application in antimicrobial treatment and antibody-directed enzyme prodrug therapy.  相似文献   

19.
Cyanide binding to bovine heart cytochrome c oxidase at five redox levels has been investigated by use of infrared and visible-Soret spectra. A C-N stretch band permits identification of the metal ion to which the CN- is bound and the oxidation state of the metal. Non-intrinsic Cu, if present, is detected as a cyanide complex. Bands can be assigned to Cu+CN at 2093 cm-1, Cu2+CN at 2151 or 2165 cm-1, Fe3+CN at 2131 cm-1, and Fe2+CN at 2058 cm-1. Fe2+CN is found only when the enzyme is fully reduced whereas the reduced Cu+CN occurs in 2-, 3-, and 4-electron reduced species. A band for Fe3+CN is not found for the complex of fully oxidized enzyme but is for all partially reduced species. Cu2+CN occurs in both fully oxidized and 1-electron-reduced oxidase. CO displaces the CN- at Fe2+ to give a C-O band at 1963.5 cm-1 but does not displace the CN- at Cu+. Another metal site, noted by a band at 2042 cm-1, is accessible only in fully reduced enzyme and may represent Zn2+ or another Cu+. Binding of either CN- or CO may induce electron redistribution among metal centers. The extraordinary narrowness of ligand infrared bands indicates very little mobility of the components that line the O2 reduction site, a property of potential advantage for enzyme catalysis. The infrared evidence that CN- can bind to both Fe and Cu supports the possibility of an O2 reduction mechanism in which an intermediate with a mu-peroxo bridge between Fe and Cu is formed. On the other hand, the apparent independence of Fe and Cu ligand-binding sites makes a heme hydroperoxide (Fe-O-O-H) intermediate an attractive alternative to the formation an Fe-O-O-Cu linkage.  相似文献   

20.
Native oxymyoglobin (MbO2) was isolated from red muscle of G. japonicus by chromatographic separation from metmyoglobin (metMb) on DEAE-cellulose and the amino acid sequence of the major chain was determined with the aid of sequence homology with that of G. australis. It was shown to differ in amino acid sequence from that of G. australis by 10 replacements, to be acetylated at the amino terminus and to contain glutamine at the distal (E7) residue. It was also shown to have a spectrum very similar to that of mammalian MbO2. However, the pH-dependence for the autoxidation of MbO2 was seen to be quite different from that of sperm whale (Physeter catodon) MbO2. Although the sequence homology between sperm whale and G. japonicus myoglobins is about 40%, their hydropathy profiles were very similar, indicating that they have a similar geometry in their globin folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号