首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T V Dam  R Quirion 《Peptides》1986,7(5):855-864
[3H]Substance P ([3H]SP) was used to characterize substance P (SP) receptor binding sites in guinea pig brain using membrane preparations and in vitro receptor autoradiography. Curvilinear Scatchard analysis shows that [3H]SP binds to a high affinity site (Kd = 0.5 nM) with a Bmax of 16.4 fmol/mg protein and a low affinity site (Kd = 29.6 nM) with a Bmax of 189.1 fmol/mg protein. Monovalent cations generally inhibit [3H]SP binding while divalent cations substantially increased it. The ligand selectivity pattern is generally similar to the one observed in rat brain membrane preparation with SP being more potent than SP fragments and other tachykinins. However, the potency of various nucleotides is different with GMP-PNP greater than GDP greater than GTP. The autoradiographic distribution of [3H]SP binding sites shows that high amounts of sites are present in the hippocampus, striatum, olfactory bulb, central nucleus of the amygdala, certain thalamic nuclei and superior colliculus. The cortex is moderately enriched in [3H]SP binding sites while the substantia nigra contains only very low amounts of sites. Thus, the autoradiographic distribution of SP binding sites is fairly similar in both rat and guinea pig brain.  相似文献   

2.
[3H]Kainic acid binding sites with a slow dissociation rate in the rat limbic system were investigated in detail. Extensively washed membranes prepared from the hippocampal formation and from the region comprising the amygdala and the piriform cortex yielded non-linear Scatchard plots. Microdissection showed that the high-affinity component (affinity constant around 1 nM) was present in the hippocampal CA3 region (4.2 fmol/mg wet tissue) and the amygdaloid complex (4.6 fmol/mg wet tissue), whereas the remaining part of the hippocampal formation and the piriform lobe contained the low-affinity component (affinity constant 5-20 nM; 11.6 and 11.3 fmol/mg wet tissue, respectively). In the lateral + medial septum we detected only the low-affinity component. Severe limbic seizures, induced by unilateral injection of 0.7 or 0.8 microgram kainic acid in 0.3 microliter of phosphate-buffered saline into the amygdala, reduced kainic acid binding sites in the ipsilateral amygdala and CA3 region. The decline of kainic acid binding sites in the injected amygdala was followed by a similar effect in the contralateral amygdala ("mirror focus") and later by a moderate loss also in the contralateral CA3 region. Kainic acid receptor autoradiography demonstrated that binding sites were lost from the stratum lucidum in hippocampus. Septal lesion had no effect on kainic acid binding sites in the hippocampus. Comparison with previous results on the histopathological changes after this lesion shows that high-affinity kainic acid binding sites are preferentially located on neurons that undergo selective degenerations after severe kainic acid-induced seizures.  相似文献   

3.
Parameters affecting the binding of [3H]glycine to membrane fractions isolated from the cerebral cortex, midbrain, cerebellum, medulla oblongata, and spinal cord of the rat were investigated in a Na+-free medium. A [3H]glycine binding assay was established in which the binding was specific, saturable, pH-sensitive, and reversible. Conditions were chosen in an effort to minimize binding to glycine uptake sites. From data on specific [3H]glycine binding Scatchard plots were prepared and the KD and Bmax values were calculated. Two glycine binding sites (high and low affinity) were identified only in the medulla (KD: 44, 211 nM; Bmax: 361, 1076 fmol/mg protein) and spinal cord (KD: 19, 104 nM; Bmax: 105, 486 fmol/mg protein). The ranges of the KD and Bmax values for the other three areas studied were 59 to 144 nM and 882 to 3401 fmol/mg protein, respectively. When the glycine content of each area, expressed as fmol/neuron, was plotted against the respective KD (high affinity), a negative correlation was found (r = --0.90; p less than 0.05). A similar negative correlation was found between the glycine content and Bmax (r = --0.88; p less than 0.05). Hill plots indicated a slope of essentially 1.0 for all areas. GABA, taurine, strychnine, diazepam, bicuculline, and imipramine had little or no effect on [3H]glycine binding.  相似文献   

4.
C R Parker  A Capdevila 《Peptides》1984,5(4):701-706
In the current study, we found evidence for the existence of binding sites for TRH in synaptic membrane preparations of several regions of the postmortem adult human brain. High levels of specific binding (fmol [3H]Me-TRH/mg protein/2 hr) were found in limbic structures: amygdala (7.1 +/- 0.6, Mean +/- SE), hippocampus (2.8 +/- 0.3), and temporal cortex (2.4 +/- 0.8). Intermediate levels of binding were found in the hypothalamus and nucleus accumbens whereas binding was low to undetectable in frontal and occipital cortex, cerebellum, pons, medulla and corpus striatum. Binding of the radioligand was linear over protein concentrations of 0.05-1.5 mg, and greater than 6 hr of incubation was required to achieve maximal binding. In the amygdala, binding was inhibited in the presence of TRH and Me-TRH but not in the presence of up to 1 microM concentrations of cyclo (His-Pro), TRH-OH, pGlu-His or peptides unrelated to TRH. Pretreatment of amygdala synaptic membranes with detergents, proteases or phospholipases disrupted [3H]Me-TRH binding; pretreatment with DNase or collagenase had no effect on binding. Saturation and association/dissociation analyses of the binding of [3H]Me-TRH to purified amygdala synaptic membranes revealed the presence of a high affinity (KD = 2.0 nM), low capacity (Bmax = 180 +/- 16 fmoles/mg protein) binding site. These results demonstrate that a highly specific membrane associated receptor for TRH is present in the adult human brain. The specific role that this receptor plays in brain function remains to be elucidated.  相似文献   

5.
Scatchard analysis of saturation curves was performed to compared newborn and adult rat neurotensin receptor using [3H] neurotensin as a tracer. The membrane fraction of newborn rat cerebral cortex has a single population of neurotensin receptor (Kd = 0.13 nM, Bmax = 710 fmol/mg protein), whereas adults have two distinct neurotensin binding sites (high affinity site, Kd1 = 0.13 nM; low affinity site, Kd2 = 20 nM). High affinity neurotensin receptor, solubilized with digitonin, was purified from newborn rat cortex by affinity chromatography. An overall purification of 14,000-fold was achieved. The binding of [3H] neurotensin to the purified receptor is saturable and specific, with a Kd of 0.45 nM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the presence of 2-mercaptoethanol revealed purified material of a single major band of Mr = 55,000.  相似文献   

6.
The pharmacological specificity and the regional distribution of the N-methyl-D-aspartate receptor-associated 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) binding sites in human postmortem brain tissue were determined by binding studies using (+)-[3H]MK-801. Scatchard analysis revealed a high-affinity (KD = 0.9 +/- 0.2 nM, Bmax = 499 +/- 33 fmol/mg of protein) and a low-affinity (KD = 3.6 +/- 0.9 nM, Bmax = 194 +/- 44 fmol/mg of protein) binding site. The high-affinity site showed a different regional distribution of receptor density (cortex greater than hippocampus greater than striatum) compared to the low-affinity binding site (cerebellum greater than brainstem). The rank order pharmacological specificity and stereoselectivity of the high-(cortex) and low-(cerebellar) affinity binding sites were identical. However, all compounds tested showed greater potency at the high-affinity site in cortex. The results indicate that (+)-[3H]MK-801 binding in human postmortem brain tissue shows pharmacological and regional specificity.  相似文献   

7.
Neurotensin (NT) is now classified as a brain-gut peptide in the central nervous system and gastrointestinal tract. In the present study, we characterized the NT receptors on the rat liver plasma membranes. The specific binding of [3H]NT was time dependent, reversible, and saturable. Scatchard analysis of the specific binding data yielded two classes of binding sites, a high affinity site and a low affinity site. The average maximum number of binding sites (Bmax) amounted to 13.3 +/- 1.1 fmol/mg protein at high affinity site and 122.3 +/- 21.5 fmol/mg protein at low affinity site, respectively. The dissociation constant (Kd) had values of 0.39 +/- 0.01 nM at high affinity site and 8.1 +/- 1.1 nM at low affinity site, respectively. The amount of specifically bound [3H]NT was significantly reduced in the presence of mono and divalent cations, EDTA, EGTA and a peptidase inhibitor bacitracin, NT1-13 competed with [3H]NT for its binding site with an IC50 of 0.19 nM at high affinity site (0.2 nM concentration of [3H]NT) and 0.7 nM at low affinity site (4.0 nM concentration of [3H]NT). Xenopsin, a NT analogue separated from the skin of Xenopus laevis, was equipotent (IC50 0.75 nM) with NT1-13 at 4.0 nM concentration of [3H]NT. C-terminal sequence of NT contains the structure necessary for interaction with NT binding sites whereas N-terminal sequence had no binding activity. Since NT has a hyperglysemic and a hypercholesterolemic effects in rats, these NT receptors on the rat liver plasma membranes may be involved in the hyperglycemia and/or hypercholesteroremia induced by NT.  相似文献   

8.
A receptor for aldosterone was studied in the cytosol of rectal mucosa of two sisters (M.A., M.B.) with the clinical manifestations of pseudohypoaldosteronism (PHA). Compared to age matched controls the patients showed a decreased affinity for aldosterone (M.A. Kd1: 0.18 nM, Kd2: 4.55 nM; Nmax1: 0.185 fmol/mg cytosol protein (CP), Nmax2: 3.12 fmol/mg CP, respectively). In an attempt to find an explanation for the phenomenon of stress-induced electrolyte imbalance in PHA patients an experimental set up was designed, using aldosterone antibody material as artificial aldosterone receptor. Specific binding was evaluated in addition with and without a 25-100-fold molar excess of dexamethasone (DEX) in order to overcome the glucocorticoid affinity of the aldosterone receptor, a phenomenon proposed to be the cause for the severe consequences of stress in some patients with PHA. The aldosterone antiserum showed two binding sites, similar to the natural receptor (Kd1: 0.15 nM, Kd2: 1.30 nM; Nmax: 30 fmol/mg CP and 130 fmol/mg CP, respectively). Under the influence of DEX the high affinity binding site (Kd1) was occupied by the glucocorticoidanalogon (Kd: 1.30 nM; Nmax: 125 fmol/mg CP). In conclusion, in stress situations, with increased quantities of glucocorticoid circulating, the high affinity binding site of the aldosterone receptor might be occupied by the glucocorticoids, while the low affinity binding site in PHA patients might not have sufficient binding capacity to maintain the electrolyte balance.  相似文献   

9.
The full agonist [3H]UK 14304 [5-bromo-6-(2-imidazolin-2-yl-amino)-quinoxaline] was used to characterize alpha 2-adrenoceptors in postmortem human brain. The binding at 25 degrees C was rapid (t1/2, 4.6 min) and reversible (t1/2, 14.1 min), and the KD determined from the kinetic studies was 0.48 nM. In frontal cortex, the rank order of potency of adrenergic drugs competing with [3H]UK 14304 or [3H]clonidine showed the specificity for an alpha 2A-adrenoceptor: UK 14304 approximately equal to yohimbine approximately equal to oxymetazoline approximately equal to clonidine greater than phentolamine approximately equal to (-)-adrenaline greater than idazoxan approximately equal to (-)-noradrenaline greater than phenylephrine greater than (+/-)-adrenaline much greater than corynanthine greater than prazosin much greater than (+/-)-propranolol. GTP induced a threefold decrease in the affinity of [3H]UK 14304, with no alteration in the maximum number of binding sites, suggesting that the radioligand labelled the high-affinity state of the alpha 2-adrenoceptor. In the frontal cortex, analyses of saturation curves indicated the existence of a single population of noninteracting sites for [3H]UK 14304 (KD = 0.35 +/- 0.13 nM; Bmax = 74 +/- 9 fmol/mg of protein). In other brain regions (hypothalamus, hippocampus, cerebellum, brainstem, caudate nucleus, and amygdala) the Bmax ranged from 68 +/- 7 to 28 +/- 4 fmol/mg of protein. No significant changes in the KD values were found in the different regions examined. The binding of [3H]UK 14304 was not affected by age, sex or postmortem delay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
H N Bhargava  A Gulati 《Peptides》1988,9(4):771-775
The effect of naturally occurring cannabinoids, delta 9-tetrahydrocannabinol (THC), cannabinol (CBN) and cannabidiol (CBD), on the brain receptors for thyrotropin releasing hormone (TRH) was investigated. TRH receptors were labeled with 3H-(3-MeHis2)TRH (3H-MeTRH). 3H-MeTRH bound specifically to rat brain membranes at a single high affinity site with a Bmax value of 49.2 +/- 0.96 fmol per mg protein and a Kd value of 3.83 +/- 0.12 nM. The binding of 3H-MeTRH to whole brain membranes was inhibited when rats were injected intraperitoneally with 3 to 30 mg/kg of THC. The extent of inhibition in the binding at 10 and 30 mg/kg was similar. THC (10 mg/kg) significantly inhibited the binding of 3H-MeTRH to amygdala membranes but did not affect the binding to membranes prepared from hippocampus, septum, cortex, striatum and the rest of the brain. THC, CBN and CBD in doses of 3 to 30 mg/kg did not affect the binding of 3H-MeTRH to hypothalamic membranes. All the three cannabinoids at 30 mg/kg inhibited the binding of 3H-MeTRH to amygdala membranes. The inhibition in the binding of 3H-MeTRH by the cannabinoids was due to changes in the Kd values but the Bmax values remained unchanged. It is concluded that both psychotomimetic and nonpsychotomimetic cannabinoids inhibit the binding of 3H-MeTR to amygdala membranes selectively, which is accomplished by decreases in the affinity of the ligand to receptors, and the amygdala may be an important brain area in some of the actions of cannabinoids.  相似文献   

11.
Abstract

The binding characteristics of the dopaminergic ligand, 3H- spiperone, were compared in renal cortical and striatal membrane homogenates of the rat. This ligand labelled a single class of high affinity binding sites in striatum with an apparent dissociation constant (Kd) of 0.13 nM and a maximal number of binding sites (Bmax) of 890 fmol/mg protein representing D-2 receptors. In the renal cortex, 3H-spiperone identified a population of binding sites with a Bmax and a Kd of 310 fmol/mg protein and 5.1 nM, respectively. The antagonist displacing profile suggests the dopaminergic nature of the renal binding site. The affinities of dopamine antagonists for the peripheral 3H-spiperone binding site were in general in the micromolar range while the affinities of D-2 or D-2/D-1 dopamine antagonists in striatum were in the nanomolar range. Moreover, these sites showed differential stereoselectivity for (+)- and (-)-isomers of sulpiride. In conclusion, the presence of a D-2/DA-2 dopamine receptor population in renal cortex could not be confirmed. The pharmacological properties of the peripheral 3H-spiperone binding site are also different from the DA-1 receptor but seem to resemble those previously reported for dopamine receptors in sympathetic ganglia and adrenal medulla.  相似文献   

12.
Subhash MN  Srinivas BN  Vinod KY 《Life sciences》2002,71(13):1559-1567
The in vivo effect of trazodone on the density of [(3)H]5-HT binding sites and 5-HT(1A) receptors and adenylyl cyclase (AC) response was studied in regions of rat brain. The chronic administration of trazodone (10 mg/Kg body wt, 40 days) resulted in a significant downregulation of [(3)H]5-HT binding sites and 5-HT(1A) receptors in cortex and hippocampus. Trazodone significantly (p < 0.0001) decreased the density of [(3)H]5-HT binding sites in cortex (42.6 +/- 3.6 fmol/mg protein, 65%) and hippocampus (12.6 +/- 1.6 fmol/mg protein, 87%) when compared to control values of 121.9 +/- 5.4 and 99.3 +/- 7.5 fmol/mg protein in these regions, respectively. Similarly there was a significant (p < 0.0001) decrease in the density of 5-HT(1A) receptors in both cortex (7.2 +/- 0.5 fmol/mg protein, 70%) and hippocampus (6.3 +/- 1.2 fmol/mg protein, 79%) when compared to control values of 24.2 +/- 2.1 and 30.6 +/- 3.7 fmol/mg protein, in these regions respectively. However, the affinity of [(3)H]5-HT to 5-HT binding sites (1.83 +/- 0.26 nM, p < 0.0001) and [(3)H]8-OH-DPAT to 5-HT(1A) receptors (0.60 +/- 0.06 nM, p < 0.05) was significantly decreased only in cortex when compared to the control K(d) values of 0.88 +/- 0.04 nM and 0.47 +/- 0.02 nM in these regions, respectively.The basal AC activity did not alter in treated rats, where as, the inhibition of forskolin-stimulated AC activity by 5-HT (10 microM) was significantly (p < 0.0001) decreased both in cortex (43%) and hippocampus (40%) when compared to control levels. In conclusion, chronic treatment with trazodone results in downregulation of 5-HT(1A) receptors in cortex and hippocampus along with concomitant increased AC response, suggesting the involvement of 5-HT(1A) receptor-mediated AC response in the mechanism of action of trazodone.  相似文献   

13.
The present study shows that N-[3H]methylcarbamylcholine ([3H]MCC) binds to a single population of high-affinity/low-density (KD = 5.0 nM; Bmax = 8.2 fmol/mg of protein) nicotinic binding sites in the rat cerebellum. Also, there exists a single class of high-affinity binding sites (KD = 4.8 nM; Bmax = 24.2 fmol/mg of protein) in the cerebellum for the M1 specific muscarinic ligand [3H]pirenzepine. In contrast, the M2 ligand, [3H]AF-DX 116, appears to bind to two classes of binding sites, i.e., a high-affinity (KD = 3 nM)/low-capacity (Bmax = 11.7 fmol/mg of protein) class, and a second class of lower affinity (KD = 28.4 nM) and higher capacity (Bmax = 36.3 fmol/mg of protein) sites. The putative M3 selective ligand [3H]4-diphenylacetoxy-N-methylpiperidine also binds to two distinct classes of binding sites in cerebellar homogenates, one of high affinity (KD = 0.5 nM)/low capacity (Bmax = 19.5 fmol/mg of protein) and one of low affinity (KD = 57.5 nM)/high capacity (Bmax = 140.6 fmol/mg of protein). In experiments which tested the effects of cholinergic drugs on acetylcholine release from cerebellar brain slices, the nicotinic agonist MCC enhanced spontaneous acetylcholine release in a concentration-dependent manner, and the maximal increase in acetylcholine release (59.0-68.0%) occurred at 10(-7) M. The effect of MCC to increase acetylcholine release was Ca2+-dependent and tetrodotoxin-insensitive, suggesting an action on cholinergic terminals. Also, the MCC-induced increase in acetylcholine release was effectively antagonized by dihydro-beta-erythroidine, d-tubocurarine, and kappa-bungarotoxin, but was insensitive to either atropine or alpha-bungarotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The binding of 125I-angiotensin III (125I-ANG III) to rat brain membranes was examined and compared with that of 125I-angiotensin II (125I-ANG II). Degradation of each ligand, as monitored by HPLC, was effectively inhibited using fragments of ANG III and ANG II known to have little affinity for angiotensin binding sites. Three classes of 125I-ANG III-binding sites were observed based on affinity (KD = 0.13, 1.83, and 10.16 nM) and capacity (Bmax = 1.30, 18.41, and 67.2 fmol/mg protein, respectively). Two classes of 125I-ANG II-binding sites of high affinity (KD = 0.11 and 1.76 nM) and low capacity (Bmax = 1.03 and 18.86 fmol/mg protein, respectively) were also identified. Cross-displacement studies confirmed that the two highest-affinity 125I-ANG III-binding sites and the 125I-ANG II-binding sites were the same. On the other hand, the binding of 125I-ANG III to the low-affinity 125I-ANG III-binding site could not be inhibited with ANG II. These data imply that previously measured differences in the biological potency of cerebroventricularly applied ANG III and ANG II probably do not result from differential binding of these peptides to central angiotensin receptors.  相似文献   

15.
Abstract

[3H]Phenytoin binding to rat cortical membrane was significantly enhanced in the presence of diazepam. This binding is saturable, reversible and displacable by unlabelled phenytoin. Analyses of the binding data either by the Scatchard plot or by the displacement curve revealed a high and a low affinity sites with Kd values of 32 ± 5 nM and 8.5 ± 1.1 μM, respectively. Similar enhancement of [3H]phenytoin binding was observed when diazepam was replaced by Ro 5–4864 (4″-chlorodiazepam) which is selective for the ‘peripheral’ type benzodiazepine binding sites. In contrast, neither the ‘central’ type receptor selective agonist clonazepam nor the antagonist Ro 15–1788 enhanced [3H]phenytoin binding. Therefore, it seems that these phenytoin binding sites in rat cerebral cortex are associated with a benzodiazepine site similar to the ‘peripheral’ type binding site for its selective affinity for Ro 5–4864. However, judging from the micromolar concentrations required for the enhancement of [3H]phenytoin binding, they appear unlikely to be the same ‘peripheral’ type binding sites as measured by [3H]Ro 5–4864 binding (Kd approx. 1 nM). The micromolar affinity benzodiazepine recognition sites are a possibility, if they indeed exist.  相似文献   

16.
We investigated the pharmacological properties of the sulpiride-displaceable binding sites labeled by 3H-YM-09151-2 in rat frontal cortex, compared to those in striatum. The IC50 value of ketanserin was 486 nM, which was apparently different from its affinity for the 5HT-2 receptor. Various dopamine antagonists showed almost the same inhibitory effects for binding site in frontal cortex and striatum. Sulpiride-displaceable 3H-YM-09151-2 binding sites were considered to be D-2 dopamine receptors. After subchronic treatment with haloperidol, the D-2 receptor density of frontal cortex (0.55 fmol/mg tissue) increased to the same extent (about 25%) as striatum without significant change in apparent affinity.  相似文献   

17.
Many cells (including angiotensin II target cells) respond to external stimuli with accelerated hydrolysis of phosphatidylinositol 4,5-bisphosphate, generating 1,2-diacylglycerol and inositol 1,4,5-trisphosphate, a rapidly diffusible and potent Ca2+-mobilizing factor. Following its production at the plasma membrane level, inositol 1,4,5-trisphosphate is believed to interact with specific sites in the endoplasmic reticulum and triggers the release of stored Ca2+. Specific receptor sites for inositol 1,4,5-trisphosphate were recently identified in the bovine adrenal cortex (Baukal, A. J., Guillemette, G., Rubin, R., Sp?t, A., and Catt, K. J. (1985) Biochem. Biophys. Res. Commun. 133, 532-538) and have been further characterized in the adrenal cortex and other target tissues. The inositol 1,4,5-trisphosphate-binding sites are saturable and present in low concentration (104 +/- 48 fmol/mg protein) and exhibit high affinity for inositol 1,4,5-trisphosphate (Kd 1.7 +/- 0.6 nM). Their ligand specificity is illustrated by their low affinity for inositol 1,4-bisphosphate (Kd approximately 10(-7) M), inositol 1-phosphate and phytic acid (Kd approximately 10(-4) M), fructose 1,6-bisphosphate and 2,3-bisphosphoglycerate (Kd approximately 10(-3) M), with no detectable affinity for inositol 1-phosphate and myo-inositol. These binding sites are distinct from the degradative enzyme, inositol trisphosphate phosphatase, which has a much lower affinity for inositol trisphosphate (Km = 17 microM). Furthermore, submicromolar concentrations of inositol 1,4,5-trisphosphate evoked a rapid release of Ca2+ from nonmitochondrial ATP-dependent storage sites in the adrenal cortex. Specific and saturable binding sites for inositol 1,4,5-trisphosphate were also observed in the anterior pituitary (Kd = 0.87 +/- 0.31 nM, Bmax = 14.8 +/- 9.0 fmol/mg protein) and in the liver (Kd = 1.66 +/- 0.7 nM, Bmax = 147 +/- 24 fmol/mg protein). These data suggest that the binding sites described in this study are specific receptors through which inositol 1,4,5-trisphosphate mobilizes Ca2+ in target tissues for angiotensin II and other calcium-dependent hormones.  相似文献   

18.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein).  相似文献   

19.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

20.
Characterization of angiotensin II receptor subtypes in rat liver   总被引:4,自引:0,他引:4  
Radioligand binding studies identified two classes of 125I-angiotensin II-binding sites in rat liver membranes. High affinity binding sites (Kd = 0.35 +/- 0.13 nM, N = 372 +/- 69 fmol/mg of protein) were inactivated by dithiothreitol (0.1-10 mM) without any apparent change in low affinity binding sites (Kd = 3.1 +/- 0.8 nM, N = 658 +/- 112 fmol/mg of protein). Dithiothreitol inactivation was readily reversible but could be made permanent by alkylation of membrane proteins with iodoacetamide. Angiotensin II stimulation of glycogen phosphorylase in isolated rat hepatocytes (maximal stimulation 780%, EC50 = 0.4 nM) was completely inhibited by 10 mM dithiothreitol, a concentration which also abolished high affinity site binding; phosphorylase stimulation by glucagon and norepinephrine under these conditions was unaltered. Angiotensin II inhibition of glucagon-stimulated adenylate cyclase activity in hepatocytes required higher angiotensin II concentrations (EC50 = 3 nM) than phosphorylase stimulation and was not affected by dithiothreitol. Fractional occupancy of high affinity binding sites by 125I-angiotensin II correlated closely with angiotensin II-mediated phosphorylase stimulation, whereas occupancy of low affinity sites paralleled inhibition of adenylate cyclase activity. These data indicate that the physiologic effects of angiotensin II in rat liver are mediated by two distinct receptors, apparently not interconvertible, and provide the first evidence for angiotensin II receptor subtypes with differing biochemical features and mechanisms of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号