首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas sp. strain M285 immobilized on diatomaceous earth beads was used to remove 3,5,6-trichloro-2-pyridinol (TCP) from industrial wastewater. Batch studies showed that immobilized Pseudomonas sp. strain M285 mineralized [2,6-14C]TCP rapidly; about 75% of the initial radioactivity was recovered as 14CO2. Transformation of TCP was inhibited by high concentrations of salt, and addition of osmoprotectants (proline and betaine at 1 mM) did not reduce the adverse effect of salt. TCP-containing wastewater (60–140 mg/l) was passed through columns containing immobilized Pseudomonas sp. strain M285 at increasing flow rates and increasing TCP concentrations; TCP removal of 80%–100% was achieved. Addition of nutrients, such as glucose and yeast extract, retarded TCP degradation. Growing cell cultures were found to be better inocula for immobilization than resting cells. Received: 5 February 1996 / Received last revision: 12 August 1996 / Accepted: 24 August 1996  相似文献   

2.
The degradation of low concentrations of 1,3-dichloro-2-propanol (1,3-DCP) and related halohydrins by whole cells and cell-free extracts of soil bacteria has been investigated. Three bacteria (strains A1, A2, A4), isolated from the same soil sample, were distinguished on the basis of cell morphology, growth kinetics and haloalcohol dehalogenase profiles. Strain A1, probably an Agrobacterium sp., dehalogenated 1,3-DCP with the highest specific activity (0.33 U mg protein−1) and also had the highest affinity for 1,3-DCP (K m, 0.1 mM). Non-growing cells of this bacterium dehalogenated low concentrations of 1,3-DCP with a first-order rate constant (k 1) of 1.13 h−1 . The presence of a non-dehalogenating bacterium, strain G1 (tentatively identified as Pseudomonas mesophilius), did not enhance the dehalogenation rate of low 1,3-DCP concentrations. However, the mixed-species consortium of strains A1 and G1 had greater stability than the mono-species culture at DCP concentrations above 1.0 gl−1. Received: 30 April 1996 / Received revision: 30 July 1996 / Accepted: 5 August 1996  相似文献   

3.
To test the feasibility of CO2 remediation by microalgal photosynthesis, a modified type of flat-plate photobioreactor [Hu et al. (1996) Biotechnol Bioeng 51:51–60] has been designed for cultivation of a high-CO2-tolerant unicellular green alga Chlorococcum littorale. The modified reactor has a narrow light path in which intensive turbulent flow is provided by streaming compressed air through perforated tubing into the culture suspension. The length of the reactor light path was optimized for the productivity of biomass. The interrelationship between cell density and productivity, as affected by incident light intensity, was quantitatively assessed. Cellular ultrastructural and biochemical changes in response to ultrahigh cell density were investigated. The potential of biomass production under extremely high CO2 concentrations was also evaluated. By growing C. littorale cells in this reactor, a CO2 fixation rate of 16.7 g CO2 l−1 24 h−1 (or 200.4 g CO2 m−2 24 h−1) could readily be sustained at a light intensity of 2000 μmol m−2 s−1 at 25 °C, and an ultrahigh cell density of well over 80 g l−1 could be maintained by daily replacing the culture medium. Received: 20 October 1997 / Received revision: 19 December 1997 / Accepted: 24 January 1998  相似文献   

4.
Toluene vapour removal in a laboratory-scale biofilter   总被引:4,自引:0,他引:4  
A bench-scale biofilter with a 0.5-m high filter bed, inoculated with a toluene-degrading strain of Acinetobacter sp. NCIMB 9689, was used to study toluene removal from a synthetic waste air stream. Different sets of continuous tests were conducted at influent toluene concentrations ranging over 0.1–4.0 g m−3 and at superficial gas velocities ranging over 17.8–255 m h−1. The maximum volumetric toluene removal rate for the biofilter (242 g m−3 h−1) was obtained at a superficial gas velocity of 127.5 m h−1 (corresponding to a residence time of 28 s) and a toluene inlet concentration of 4.0 g m−3. Under these operating conditions, toluene removal efficiency was only 0.238, which suggested that effective operation required higher residence times. Removal efficiencies higher than 0.9 were achieved at organic loads less than 113.7 g m−3 h−1. A macro-kinetic study, performed using concentration profiles along the bioreactor, revealed this process was limited by diffusion at organic loads less than 100 g m−3 h−1 and by biological reaction beyond this threshold. Received: 10 October 1999 / Received revision: 15 February 2000 / Accepted: 18 February 2000  相似文献   

5.
A wild type of Aspergillus sp. ATHUM-3482 produced extracellular polygalacturonase when grown in liquid medium containing citrus pectin as sole carbon source. A number of factors affecting enzyme activity were investigated. Polygalacturonase activities as high as␣4.3 U␣ml−1(reducing-group-releasing activity) and 17␣U␣ml−1 (viscosity-diminishing activity) were obtained under optimum growth conditions. With sugar-beet as sole carbon source the respective activities were 6.5 U␣ml−1 and 40 U ml−1, the highest achieved in this work. Under these conditions no pectin lyase or pectinesterase activity was detected. The above yields of polygalacturonase activity compare favourably with those reported for fungi grown under similar growth conditions. Received: 5 March 1996 / Received last revision: 29 October 1996 / Accepted: 2 November 1996  相似文献   

6.
Removal of nitrate and phosphate ions from water, by using the thermophilic cyanobacterium Phormidium laminosum, immobilized on cellulose hollow fibres in the tubular photobioreactor at 43 °C, was studied by continuously supplying dilute growth medium for 7 days and then secondarily treated sewage (STS) for 12 days. The concentrations of NO 3 and PO3− 4 in the effluent from the dilute growth medium decreased from 5.0 mg N/l to 3.1 mg N/l, and from 0.75 mg P/l to 0.05 mg P/l respectively, after a residence time of 12 h. The concentrations of NO 3 and PO3− 4 in the effluent from STS decreased from 11.7 mg N/l to 2.0 mg N/l, and from 6.62 mg P/l to 0.02 mg P/l respectively, after a residence time of 48 h. The removal rates of nitrogenous␣and phosphate ions from STS were 0.24 and 0.11 mmol day−1 l reactor−1 respectively, under the same conditions. Although, among nitrogenous ions, nitrate and ammonium ions were efficiently removed by P.␣laminosum, the nitrite ion was released into the effluent when STS was used as influent. Treatment of water with thermophilic P. laminosum immobilized on hollow fibres thus appears to be an appropriate means for the removal of inorganic nitrogen and phosphorus from treated wastewater. Received: 15 August 1997 / Received last revision: 18 November 1997 / Accepted: 29 November 1997  相似文献   

7.
Mechanisms of inorganic carbon assimilation were investigated in the deep-water alga Phyllariopsis purpurascens (C. Agardh) Henry et South (Laminariales, Phaeophyta). The gross photosynthetic rate as a function of external pH, at a constant concentration of 2 mM dissolved inorganic carbon (DIC), decreased sharply from pH 7.0 to 9.0, and was not substantially different from 0 above pH 9.0. These data indicate that P. purpurascens is inefficient in the use of external HCO3 as a carbon source in photosynthesis. Moreover, the photosynthetic rate as a function of external DIC and the highest pH (9.01 ± 0.07) that this species can achieve in a closed system were consistent with a low capacity to use HCO3 , in comparison to many other species of seaweeds. The role of external carbonic anhydrase (CA; EC 4.2.1.1) on carbon uptake was investigated by measuring both the HCO3 -dependent O2 evolution and the CO2 uptake, at pH 5.5 and 8.0, and the rate of pH change in the external medium, in the presence of selected inhibitors of extra- and intracellular CA. Photosynthetic DIC-dependent O2 evolution was higher at pH 5.5 (where CO2 is the predominant form of DIC) than at pH 8.0 (where the predominant chemical species is HCO3 ). Both intra- and extracellular CA activity was detected. Dextran-bound sulfonamide (DBS; a specific inhibitor of extracellular CA) reduced the photosynthetic O2 evolution and CO2 uptake at pH 8.0, but there was no effect at pH 5.5. The pH-change rate of the medium, under saturating irradiance, was reduced by DBS. Phyllariopsis purpurascens has a low efficiency in the use of HCO3 as carbon source in photosynthesis; nevertheless, the ion can be used after dehydration, in the external medium, catalyzed by extracellular CA. This mechanism could explain why the photosynthetic rate in situ was higher than that supported solely by the diffusion of CO2 from seawater. Received: 6 March 1998 / Accepted: 22 June 1998  相似文献   

8.
  Elimination of n-butanol from the gas phase was examined with a mixed culture in a compact bioscrubber. The extent of the cell concentration was limited by the supply of n-butanol, phosphate or potassium, and the growth rate was determined by the dilution rate. With n-butanol as the limiting substrate the cellular yield was 0.53 g dry cell weight/g n-butanol. Phosphate limitation decreased this yield to 0.34 g and potassium limitation to 0.31 g dry cell weight/g n-butanol at a dilution rate of 0.1/h. Under these conditions n-butanol was eliminated from the gas phase by 84%–100%. In the same order of limitations the specific degradation rate ranged from 0.19 g to 0.32 g n-butanol g dry cell weight−1 h−1. The fraction of n-butanol required to satisfy the needs for maintenance energy increased significantly depending on the limiting nutrient. Limitation by n-butanol, phosphate or potassium caused a maintenance requirement of 0.07, 0.16 and 0.34 g n-butanol g dry cell weight−1 h−1, thus showing a fivefold increase. This high demand for the carbon source demonstrated the feasibility of operating a bioscrubber under mineral limitation to reduce biomass formation significantly, and to maintain a high degree of substrate elimination from the gas phase. Received: 22 May 1996 / Received revision: 23 July 1996 / Accepted: 5 August 1996  相似文献   

9.
The magnesium content of Saccharomyces cerevisiae was found to vary by up to fivefold at differing␣ stages of batch growth and during growth in the presence of differing magnesium concentrations. Excess Mg was primarily sequestered in vacuoles. Mn2+-uptake experiments revealed that Mg-enriched cells had a markedly reduced capacity for Mn2+ accumulation. For example, after 6 h incubation in the presence of 50 μM Mn2+, Mn levels were approximately twofold higher in cells previously grown in unsupplemented medium than in those from Mg-supplemented medium. These differences were further accentuated at higher Mn2+ concentrations and were not attributable to altered cell-surface charge or altered cell-surface Mn2+ binding. Cellular Mg status also influenced Mn toxicity towards S. cerevisiae. During exposure to 5 mM Mn2+, 50% reductions in the viability of cells with initial Mg contents of approximately 1400 and 2700 nmol (109 cells)−1 occurred after approximately 1.6 h and 3.6 h respectively. In cells containing 3300 nmol Mg (109 cells)−1, more than 75% viability was still maintained after 7 h incubation with 5 mM Mn2+. It is concluded that Mn2+ uptake and toxicity in S. cerevisiae are strongly influenced by intracellular Mg, possibly through Mg-dependent regulation of divalent-cation transport activity. Received: 15 May 1996 / Received revision: 13 September 1996 / Accepted: 22 September 1996  相似文献   

10.
Studies on the feasibility of using delignified oil palm empty-fruit-bunch (OPEFB) fibres as a substrate for cellulase production by Chaetomium globosum strain 414 were carried out in shake-flask cultures containing different types and concentrations of nitrogen source. Peptone, as nitrogen source, gave maximum production of all the three main components of the cellulase complex (endoglucanase or carboxymethylcellulase, cellobiohydrolase or filter-paper-hydrolysing enzyme and β-glucosidase), followed by yeast extract, urea, KNO3 and (NH4)2SO4. The maximum specific growth rate (μmax) of C. globosum strain 414 grown in medium containing OPEFB and peptone was 0.038 h−1. In all the fermentations, the fungus was able to produce all the three cellulases with significant amounts of β-glucosidase, except when using (NH4)2SO4 as nitrogen source, where β-glucosidase was not produced. With 6 g/l peptone and 10 g/l delignified OPEFB fibres, the fungus produced maximum concentrations of FPase, carboxymethylcellulase and β-glucosidase: 1.4, 30.8 and 9.8 U/ml, giving productivities of 10, 214 and 24 U l−1h−1, respectively. The cellulase mixture, partially purified by ammonium sulphate precipitation, was able to hydrolyse delignified OPEFB fibres, converting about 68 % of the cellulosics to reducing sugars after 5 days. Received: 17 June 1996 / Received revision: 18 November 1996 / Accepted: 23 November 1996  相似文献   

11.
Nitrate removal from drinking water using a membrane-fixed biofilm reactor   总被引:4,自引:0,他引:4  
Biological treatment of drinking water is a cost-effective alternative to conventional physico/chemical processes. A new concept was tested to overcome the main disadvantage of biological denitrification, the intensive post-treatment process to remove microorganisms and remnant carbon source. The biological reaction zone and carbon supply were separated from the raw water stream by a nitrate-permeable membrane. Denitrification takes place in a biofilm, which is immobilized at the membrane. In a series of bench-scale runs, different types of membranes and reactor configurations were investigated. The best denitrification rates achieved were 1230 mg NO3 -N m−2 day−1. In one run, raw water containing 100 mg NO3 l−1 was completely freed from nitrate. The membrane and the attached biofilm also represent a barrier against the passage of the C source and nutrients into the raw water. At concentrations of 20 mg l−1 ethanol and 15 mg l−1 phosphate in the bioreactor no diffusion through the membrane into the treated water was observed. Without any post-treatment, the effluent met nearly all the relevant criteria for drinking water; only the colony count was slightly increased. Received: 18 December 1996 / Received last revision: 14 April 1997 / Accepted: 19 April 1997  相似文献   

12.
The effects of adding cellobiose on the transformation of vanillic acid to vanillin by two strains of Pycnoporus cinnabarinus MUCL39532 and MUCL38467 were studied. When maltose was used as the carbon source in the culture medium, very high levels of methoxyhydroquinone were formed from vanillic acid. When cellobiose was used as the carbon source and/or added to the culture medium of P. cinnabarinus strains on day 3 just before vanillic acid was added, it channelled the vanillic acid metabolism via the reductive route leading to vanillin. Adding 3.5 g l−1 cellobiose to 3-day-old maltose cultures of P. cinnabarinus MUCL39532 and 2.5 g l−1 cellobiose to 3-day-old cellobiose cultures of P. cinnabarinus MUCL38467, yielded 510 mg l−1 and 560 mg l−1 vanillin with a molar yield of 50.2 % and 51.7 % respectively. Cellobiose may either have acted as an easily metabolizable carbon source, required for the reductive pathway to occur, or as an inducer of cellobiose:quinone oxidoreductase, which is known to inhibit vanillic acid decarboxylation. Received: 24 July 1996 / Received revision: 29 November 1996 / Accepted: 29 November 1996  相似文献   

13.
A novel method for the determination of microbial growth kinetics on hydrophobic volatile organic compounds (VOC) has been developed. A stirred tank reactor was operated as a fed-batch system to which the VOC was continuously fed via the gas phase, assuring a constant VOC concentration in the mineral medium. A flow of air was saturated with the VOC, and then mixed with a further flow of air, to obtain a predetermined VOC concentration. Thus, different VOC concentrations in the mineral medium could be obtained by altering the VOC concentration in the feed gas. The growth kinetics of Xanthobacter autotrophicus GJ10 on 1,2-dichloroethane (DCE) and of Pseudomonas sp. strain JS150 on MonoChloroBenzene (MCB) were assessed using this method. The growth of strain JS150 was strongly inhibited at MCB concentrations higher than 160 mg l−1, and the results were fitted using a piecewise function. The growth kinetics of strain GJ10 were described by the Luong model where maximum growth rate μmax = 0.12 h−1, substrate saturation constant K S = 7.8 mg l−1, and maximum substrate concentration S m (above which growth is completely inhibited) = 1080 mg l−1. Varying nitrogen and oxygen flows enabled the effect of oxygen concentration on the growth kinetics of Pseudomonas JS150 to be determined. Received: 30 November 1998 / Received revision: 19 March 1999 / Accepted: 20 March 1999  相似文献   

14.
2-Hydroxybenzothiazole (OBT) is present in wastewaters from the industrial production of the rubber vulcanization accelerator 2-mercaptobenzothiazole (MBT). We have achieved the first isolation of axenic bacterial cultures capable of the degradation of OBT and growth on this substrate as the sole source of carbon, nitrogen and energy. All isolates had similar characteristics corresponding to one particular isolate, which was studied in more detail and identified as Rhodococcus rhodochrous. The strains were also capable of degrading benzothiazole (BT) but not MBT or benzothiazole-2-sulphonate (BTSO3). OBT was degraded at a concentration of up to 600 mg · l−1. BT was toxic above 300 mg · l−1. MBT inhibited OBT degradation. Growth on OBT was not significantly different at pH values of between 6.3 and 7.9 or salt concentrations between 1 % and 3 %. In shake flasks the cells clumped together, which resulted in a lower rate of oxygen transfer and slower degradation as compared to cells grown on OBT in a stirred reactor. Received: 22 August 1996 / Received revision: 29 November 1996 / Accepted: 29 November 1996  相似文献   

15.
The phosphate-uptake behaviour of a sphX mutant of the cyanobacterium Synechococcus leopoliensis (Raciborski) Komarek, strain PCC 7942 has been studied. This mutant lacks the high-affinity phosphate-binding protein that is abundantly expressed under phosphate-deficient growth conditions. The following observations have been made: (i) The mutant is still capable of utilizing phosphate at nanomolar external concentrations. (ii) Elimination of the sphX gene leads to an increase in the Michaelis constant and the maximum velocity of the initial influx of 32P-phosphate. (iii) The capacity of the wild type to adapt within a few minutes to a transitory increase in the external phosphate concentration in an energetically efficient way (G. Falkner et al. 1994, C R Acad Sci Paris, Life sciences 317: 535–541) is lost in the mutant. As a result, the mutant can no longer attain pulse-adapted states that reflect in a characteristic way preceding exposures to higher phosphate concentrations. Received: 6 February 1998 / Accepted: 8 May 1998  相似文献   

16.
The freshwater microalga Haematococcus pluvialis is one of the best microbial sources of the carotenoid astaxanthin, but this microalga shows low growth rates and low final cell densities when cultured with traditional media. A single-variable optimization strategy was applied to 18 components of the culture media in order to maximize the productivity of vegetative cells of H. pluvialis in semicontinuous culture. The steady-state cell density obtained with the optimized culture medium at a daily volume exchange of 20% was 3.77 · 105 cells ml−1, three times higher than the cell density obtained with Bold basal medium and with the initial formulation. The formulation of the optimal Haematococcus medium (OHM) is (in g l−1) KNO3 0.41, Na2HPO4 0.03, MgSO4 · 7H2O 0.246, CaCl2 · 2H2O 0.11, (in mg l−1) Fe(III)citrate · H2O 2.62, CoCl2 · 6H2O 0.011, CuSO4 · 5H2O 0.012, Cr2O3 0.075, MnCl2 · 4H2O 0.98, Na2MoO4 · 2H2O 0.12, SeO2 0.005 and (in μg l−1]) biotin 25, thiamine 17.5 and B12 15. Vanadium, iodine, boron and zinc were demonstrated to be non-essential for the growth of H. pluvialis. Higher steady-state cell densities were obtained by a three-fold increase of all nutrient concentrations but a high nitrate concentration remained in the culture medium under such conditions. The high cell productivities obtained with the new optimized medium can serve as a basis for the development of a two-stage technology for the production of astaxanthin from H. pluvialis. Received: 10 September 1999 / Received revision: 2 December 1999 / Accepted: 3 December 1999  相似文献   

17.
Ethanol-precipitated substances after fermentation of various agro-industrial wastes by Aureobasidium pullulans were examined for their pullulan content. Grape skin pulp extract, starch waste, olive oil waste effluents and molasses served as substrates for the fermentation. A glucose-based defined medium was used for comparison purposes. Samples were analysed by an enzyme-coupled assay method and by high-performance anion-exchange chromatography with pulsed amperometric detection after enzymic hydrolysis with pullulanase. Fermentation of grape skin pulp extract gave 22.3 g l−1 ethanol precipitate, which was relatively pure pullulan (97.4% w/w) as assessed by the coupled-enzyme assay. Hydrolysed starch gave only 12.9 g l−1 ethanol precipitate, which increased to 30.8 g l−1 when the medium was supplemented with NH4NO3 and K2HPO4; this again was relatively pure pullulan (88.6% w/w). Molasses and olive oil wastes produced heterogeneous ethanol-precipitated substances containing small amounts of pullulan, even when supplemented with nitrogen and phosphate. Overall, grape skin pulp should be considered as the best substrate for pullulan production. Starch waste requires several hydrolyis steps to provide a usable carbon source, which reduces its economic attraction as an industrial process. Received: 24 October 1997 / Received revision: 10 February 1998 / Accepted: 15 February 1998  相似文献   

18.
Recombinant Escherichia coli strain GCSC 6576, harboring a high-copy-number plasmid containing the Ralstonia eutropha genes for polyhydroxyalkanoate (PHA) synthesis and the E. coli ftsZ gene, was employed to produce poly-(3-hydroxybutyrate) (PHB) from whey. pH-stat fed-batch fermentation, using whey powder as the nutrient feed, produced cellular dry weight and PHB concentrations of 109 g l−1 and 50 g l−1 respectively in 47 h. When concentrated whey solution containing 210 g l−1 lactose was used as the nutrient feed, cellular dry weight and PHB concentrations of 87 g l−1 and 69 g l−1 respectively could be obtained in 49 h by pH-stat fed-batch culture. The PHB content was as high as 80% of the cellular dry weight. These results suggest that cost-effective production of PHB is possible by fed-batch culture of recombinant E. coli using concentrated whey solution as a substrate. Received: 19 December 1997 / Received revision: 17 March 1998 / Accepted: 20 March 1998  相似文献   

19.
Poly(hydroxybutyric acid) (PHB) was produced by a selectant of Azotobacter beijerinckii in media containing only organic nitrogen sources such as N substrates. The chosen compounds were casein peptone, yeast extract, casamino acids and urea, each combined with carbon substrates glucose or sucrose. The PHB was synthesized under growth-associated conditions. The concentrations amounted to more than 50% of cell dry mass on casein peptone/glucose as well as urea/glucose medium within 45 h fermentation time. Corresponding to these yields, productivities of about 0.8 g PHB l−1 h−1 were discovered. The highest values increased to 1.06 g PHB l−1 h−1 on casein peptone/glucose medium and 1.1 g PHB l−1 h−1 on yeast extract/glucose medium after a period of 20 h. It was found that oxygen limitation was essential for successful product formation, as demonstrated earlier. These data from basic research may support further investigations into the use of technical proteins from renewable sources as substrates for PHB production by a strain of A. beijerinckii. Received: 3 June 1997 / Received revision: 29 August 1997 / Accepted: 15 September 1997  相似文献   

20.
The evaluation of pesticide-mineralising microorganisms to clean-up contaminated soils was studied with the widely applied and easily detectable compound atrazine, which is rapidly mineralised by several microorganisms including the Pseudomonas sp. strain Yaya 6. The rate of atrazine removal was proportional to the water content of the soil and the amount of bacteria added to the soil. In soil slurry, 6 mg atrazine kg soil−1 was eliminated within 1 day after application of 0.3 g dry weight inoculant biomass kg soil−1 and within 5 days when 0.003 g kg soil−1 was used. In partially saturated soil (60% of the maximal water-holding capacity) 15 mg atrazine kg soil−1 was eliminated within 2 days by 1 g biomass kg soil−1 and within 25 days when 0.01 g biomass kg soil−1 was used. In unsaturated soil, about 60% [U-ring-14C]atrazine was converted to 14CO2 within 14 days. Atrazine was very efficiently removed by the inoculant biomass, not only in soil that was freshly contaminated but also in soil aged with atrazine for up to 260 days. The bacteria exposed to atrazine in unsaturated sterile soil were still active after a starvation period of 240 days: 15 mg newly added atrazine kg soil−1 was eliminated within 5 days. Received: 31 October 1997 / Received revision: 16 January 1998 / Accepted: 18 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号