首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
d(A-G)10 forms two helical structures at neutrality, at low ionic strength a single-hairpin duplex, and at higher ionic strength a double-hairpin tetraplex. An ionic strength-dependent equilibrium between these forms is indicated by native PAGE, which also reveals additional single-stranded species below 0.3 M Na+, probably corresponding to partially denatured states. The equilibrium also depends upon oligomer concentration: at very low concentrations, d(A-G)10 migrates faster than the random coil d(C-T)10, probably because it is a more compact single hairpin; at high concentrations, it co-migrates with the linear duplex d(A-G)10 x d(C-T)10, probably because it is a two-hairpin tetraplex. Molecular weights measured by equilibrium sedimentation in 0.1 M Na+, pH 7, reveal a mixture of monomer and dimer species at 1 degree C, but only a monomer at 40 degrees C; in 0.6 M Na+, pH 7, only a dimer species is observed at 4 degrees C. That the single- and double-stranded species are hairpin helices, is indicated by preferential S1 nuclease cleavage at the center of the oligomer(s), i.e., the loop of the hairpin(s). The UV melting transition below 0.3 M Na+ or K+, exhibits a dTm/dlog[Na+/K+] of 33 or 36 degrees C, respectively, consistent with conversion of a two-hairpin tetraplex to a single-hairpin duplex with extrahelical residues. When [Na+/K+] > or = 0.3 M, dTm/dlog [Na+/K+] is 19 or 17 degrees C, respectively, consistent with conversion of a two-hairpin tetraplex directly to single strands. A two-hairpin structure stabilized by G-tetrads is indicated by differential scanning calorimetry in 0.15 M Na+/5 mM Mg2+, with deltaH of formation per mole of the two-hairpin tetraplex of -116.9 kcal or -29.2 kcal/mol of G-tetrad.  相似文献   

2.
The observed equilibrium constants (Kobs) of the P-choline hydrolysis reaction have been determined under physiological conditions of temperature (38 degrees) and ionic strength (0.25 M) and physiological ranges of pH and free [Mg2+]. Using sigma and square brackets to indicate total concentrations: (see article.) The value of Kobs has been found to be relatively insensitive to variations in pH and free [Mg2+]. At pH 7.0 and taking the standard state of liquid water to have unit activity ([H2O] = 1), Kobs = 26.6 M at free [Mg2+] = 0 [epsilon G0obs = -2.03 kcal/mol(-8.48 kJ/mol)], 26.8 M at free [Mg2+] = 10(-3) M, and 28.4 M at free [Mg2+] = 10(-2) M. At pH 8.0, Kobs = 18.8 M at free [Mg2+] = 0, 19.2 M at free [Mg2+] = 10(-3), and 22.2 M at free [Mg2+] = 10(-2) M. These values apply only to situations where choline and Pi concentrations are both relatively low (such as the conditions found in most tissues). At higher concentrations of phosphate and choline, the value of Kobs becomes significantly increased since HPO42- complexes choline weakly (association constant = 3.3 M-1). The value of K at 38 degrees and I = 0.25 M is calculated to be 16.4 +/- 0.3 M [epsilonG0 = 1.73 kcal/mol (-7.23 kJ/mol)]. The K for the P-choline hydrolysis reaction has been combined with the K for the ATP hydrolysis reaction determined previously under physiological conditions to calculate a value of 4.95 X 10(-3 M [deltaG0 j.28 kcal/mol (13.7 kJ/mol] for the K of the choline kinase reaction (EC 2.7.1.32), an important step in phospholipid metabolism: (see article.) Likewise, values for Kobs for the choline kinase reaction at 38 degrees, pH 7.0, and I = 0.25 M have been calculated to be 5.76 X 10(4) [deltaG0OBS = -6.77 KCAL/MOL (-28.3 KJ/mol)] at [Mg2+] = 0; 1.24 X 10(4) [deltaG0obs = -5.82 kcal/mol (-24.4 kJ/mol)] at [Mg2+] = 10(-3) M and 8.05 X 10(3) [delta G0obs = -5.56 kcal/mol (-23.3 kJ/mol)] at [Mg2+ = 10(-2) M. Attempts to determine the Kobs of the choline kinase reaction directly were unsuccessful because of the high value of the constant. The results indicate that in contrast to the high deltaG0obs for the hydrolysis of the ester bond of acetylcholine, the deltaG0obs for the hydrolysis of the ester bond of P-choline is quite low, among the lowest known for phosphate ester bonds of biological interest.  相似文献   

3.
J R Wiener  R Pal  Y Barenholz  R R Wagner 《Biochemistry》1985,24(26):7651-7658
In order to investigate the mode of interaction of peripheral membrane proteins with the lipid bilayer, the basic (pI approximately 9.1) matrix (M) protein of vesicular stomatitis virus was reconstituted with small unilamellar vesicles (SUV) containing phospholipids with acidic head groups. The lateral organization of lipids in such reconstituted membranes was probed by fluorescent phospholipid analogues labeled with pyrene fatty acids. The excimer/monomer (E/M) fluorescence intensity ratios of the intrinsic pyrene phospholipid probes were measured at various temperatures in M protein reconstituted SUV composed of 50 mol % each of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG). The M protein showed relatively small effects on the E/M ratio either in the gel or in the liquid-crystalline phase. However, during the gel to liquid-crystalline phase transition, the M protein induced a large increase in the E/M ratio due to phase separation of lipids into a neutral DPPC-rich phase and DPPG domains presumably bound to M protein. Similar phase separation of bilayer lipids was also observed in the M protein reconstituted with mixed lipid vesicles containing one low-melting lipid component (1-palmitoyl-2-oleoylphosphatidylcholine or 1-palmitoyl-2-oleoylphosphatidylglycerol) or a low mole percent of cholesterol. The self-quenching of 4-nitro-2,1,3-benzoxadiazole (NBD) fluorescence, as a measure of lipid clustering in the bilayer, was also studied in M protein reconstituted DPPC-DPPG vesicles containing 5 mol % NBD-phosphatidylethanolamine (NBD-PE). The quenching of NBD-PE was enhanced at least 2-fold in M protein reconstituted vesicles at temperatures within or below the phase transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of binding reduced tuna mitochondrial cytochrome c to negatively charged lipid bilayer vesicles at low ionic strength on the kinetics of electron transfer to various oxidants was studied by stopped-flow spectrophotometry. Binding strongly stimulated (up to 100-fold) the rate of reaction with the positively charged cobalt phenanthroline ion, whereas the rate of reaction with the negatively charged ferricyanide ion was greatly inhibited (up to 60-fold), as compared with the same systems either at high ionic strength or at low ionic strength either in the presence of electrically neutral vesicles or in the absence of vesicles. Reactions of tuna cytochrome c with uncharged or electrically neutral oxidants such as benzoquinone and Rhodospirillum rubrum cytochrome c2 were unaffected by binding to vesicles, suggesting little or no effect of membrane association on cytochrome structure or accessibility of the heme center. The kinetic effects were largest at lower cytochrome c to vesicle ratios, where there was a greater degree of exposure of negatively charged regions on the membrane. The reduction of cobalt phenanthroline and ferricyanide by bound cytochrome c proceeded by nonexponential kinetics, as compared with the monophasic kinetics observed in the absence of vesicles. This was probably due to the heterogeneous distribution of vesicle sizes which exists at a given lipid to protein ratio. Nonlinear oxidant concentration dependencies were observed for cobalt phenanthroline oxidation of membrane-bound cytochrome c, consistent with a (minimal) two-step kinetic mechanism involving association of the oxidant with the membrane followed by electron transfer. Based on a comparison of second-order rate constants as a function of lipid to protein mole ratio, binding of cytochrome c to the bilayer increased the efficiency of the cobalt phenanthroline reaction by a factor of approximately 500 at the highest lipid:protein ratio used. The results suggest a mechanism involving attractive and repulsive electrostatic interactions between the negatively charged bilayer and the electrically charged oxidants, which increase or decrease their effective concentrations at the membrane surface.  相似文献   

5.
Interstitial K+ ([K+]i) was measured in human skeletal muscle by microdialysis during exhaustive leg exercise, with (AL) and without (L) previous intense arm exercise. In addition, the reproducibility of the [K+]i determinations was examined. Possible microdialysis-induced rupture of the sarcolemma was assessed by measurement of carnosine in the dialysate, because carnosine is only expected to be found intracellularly. Changes in [K+]i could be reproduced, when exhaustive leg exercise was performed on two different days, with a between-day difference of approximately 0.5 mM at rest and 1.5 mM at exhaustion. The time to exhaustion was shorter in AL than in L (2.7 +/- 0.3 vs. 4.0 +/- 0.3 min; P < 0.05). Furthermore, [K+]i was higher from 0 to 1.5 min of the intense leg exercise period in AL compared with L (9.2 +/- 0.7 vs. 6.4 +/- 0.9 mM; P < 0.001) and at exhaustion (11.9 +/- 0.5 vs. 10.3 +/- 0.6 mM; P < 0.05). The dialysate content of carnosine was elevated by exercise, but low-intensity exercise resulted in higher dialysate carnosine concentrations than subsequent intense exercise. Furthermore, no relationship was found between carnosine concentrations and [K+]i. Thus the present data suggest that microdialysis can be used to determine muscle [K+]i kinetics during intense exercise, when low-intensity exercise is performed before the intense exercise. The high [K+]i levels reached at exhaustion can be expected to cause fatigue, which is supported by the finding that a faster accumulation of interstitial K+, induced by prior arm exercise, was associated with a reduced time to fatigue.  相似文献   

6.
The photoreactive fluorescent probe, 3-azidonaphthalene-2,7-disulfonic acid (ANDS) was encapsulated in the inner aqueous compartment of small unilamellar liposomes, prepared from egg phosphatidylcholine (PC) +/- 20 mol% dihexadecylphosphate (DHP). After adding cytochrome c externally to a suspension of these vesicles, the probe was activated by ultraviolet irradiation, and the protein was separated from the lipids. When negatively charged (egg PC/DHP) vesicles at low ionic strength were used, which form an electrostatic complex with cytochrome c, the protein was labeled by ANDS. This process depended on irradiation time, and was inhibited by increasing the ionic strength of the medium. Labeling was not observed with isoelectric (egg PC) vesicles. These observations suggest that electrostatic binding of cytochrome c to the bilayer is accompanied by intramembrane penetration to such a depth that the protein can communicate with the inner membrane-water interface.  相似文献   

7.
R M Epand  R Bottega 《Biochemistry》1987,26(7):1820-1825
Cholesterol lowers the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines up to a mole fraction of about 0.1. At cholesterol mole fractions above about 0.3, the effect of this sterol is to stabilize the bilayer phase. The relatively weak effects of cholesterol in altering the bilayer to hexagonal phase transition temperature can be explained on the basis of lateral phase separation. This is indicated by the horizontal liquidus line for the gel to liquid-crystalline transition in the phase diagram for mixtures of cholesterol with dielaidoylphosphatidylethanolamine (DEPE) as well as the fact that cholesterol does not greatly decrease the cooperativity of the bilayer to hexagonal phase transition. The enthalpy of this latter transition increased with increasing mole fractions of cholesterol. Two oxidation products of cholesterol are 5-cholesten-3 beta,7 alpha-diol and cholestan-3 beta,5 alpha,6 beta-triol. Compared with cholesterol, 5-cholesten-3 beta,7 alpha-diol had a greater effect in decreasing the bilayer to hexagonal phase transition temperature and broadening this transition. It is suggested that its effectiveness is due to its greater solubility in the DEPE. In contrast, cholestan-3 beta,5 alpha,6 beta-triol raises the bilayer to hexagonal phase transition temperature of DEPE. This is due to its larger and more hydrophilic head group. In addition, its length, being shorter than that of DEPE, would not allow it to pack efficiently in a hexagonal phase arrangement.We suggest that this same effect is responsible for cholesterol raising the bilayer to hexagonal phase transition temperature at higher mole fractions.  相似文献   

8.
Chen X  Wolfgang DE  Sampson NS 《Biochemistry》2000,39(44):13383-13389
To elucidate the cholesterol oxidase-membrane bilayer interaction, a cysteine was introduced into the active site lid at position-81 using the Brevibacterium enzyme. To eliminate the possibility of labeling native cysteine, the single cysteine in the wild-type enzyme was mutated to a serine without any change in activity. The loop-cysteine mutant was then labeled with acrylodan, an environment-sensitive fluorescence probe. The fluorescence increased and blue-shifted upon binding to lipid vesicles, consistent with a change into a more hydrophobic, i.e., lipid, environment. This acrylodan-labeled cholesterol oxidase was used to explore the pH, ionic strength, and headgroup dependence of binding. Between pH 6 and 10, there was no significant change in binding affinity. Incorporation of anionic lipids (phosphatidylserine) into the vesicles did not increase the binding affinity nor did altering the ionic strength. These experiments suggested that the interactions are primarily driven by hydrophobic effects not ionic effects. Using vesicles doped with either 5-doxyl phosphatidylcholine, 10-doxyl phosphatidylcholine, or phosphatidyl-tempocholine, quenching of acrylodan fluorescence was observed upon binding. Using the parallax method of London [Chattopadhyay, A., and London, E. (1987) Biochemistry 26, 39-45], the acrylodan ring is calculated to be 8.1 +/- 2.5 A from the center of the lipid bilayer. Modeling the acrylodan-cysteine residue as an extended chain suggests that the backbone of the loop does not penetrate into the lipid bilayer but interacts with the headgroups, i.e., the choline. These results demonstrate that cholesterol oxidase interacts directly with the lipid bilayer and sits on the surface of the membrane.  相似文献   

9.
The structure of N-t-butyl-N'-tetradecyl-3-tetradecylaminopropionamidine (diC(14)-amidine) cationic vesicles, used for transfection, was investigated at different pH values and ionic strengths, through the analysis of the electron spin resonance (ESR) spectra of spin labels. Phospholipid derivatives, spin labeled at the 5th and 16th C-atoms along the hydrocarbon chain, incorporated in diC(14)-amidine bilayers, show that the bilayer structure is highly sensitive to the pH value of the medium, due to the two titratable groups present in the amphiphile. Compared with samples at higher pH values, the double charged diC(14)-amidine at pH 3 presents a rather non-organized bilayer gel phase, and a much lower gel-fluid temperature transition, in accord with a strong headgroup electrostatic repulsion. In addition, the structure was found to be highly dependent on the ionic strength of the medium. However, pH 3 diC(14)-amidine bilayer, in the fluid phase, was found to be slightly more closely packed than those at pH 7.4 or 9.0, which are less charged. Parallel to that, the larger isotropic hyperfine splitting measured for nitroxides in the center of the pH 3 diC(14)-amidine bilayer suggests a higher membrane polarity for the highly charged low pH sample.  相似文献   

10.
A possibility of restoration and stimulation of the rat isolated heart contractions in deep hypothermia by means of norepinephrine (6 microM) was studied. Following a complete arrest of the heart at a retrograde perfusion with the Krebs-Henseleit buffer ([K+] 5.9 mM), norepinephrine was found to restore the heart beats and to lower the heart arrest temperature from 8.2 +/- 0.5 degrees to 6.6 +/- 0.3 degrees. At the perfusion with the Krebs-Henseleit buffer, the heart rate dropped to below 10 min(-1) at 13.0 +/- 0.9 degrees. Reduction of [K+] to 2.95 mM intensified the heart rate. At a progressing cooling, the heart rate lower than 10 min(-1) occurred at 10.9 +/- 0.6 degrees. When adding norepinephrine (6 microM) to the perfusion fluid with [K+] 2.95 mM, the heart rate increased once again (on the average to 23.1 +/- 5.3 min(-1)) despite the fact that the heart temperature continued to be lowered. The heart rate lower than 10 min(-1) was reached at the progressing cooling to, on the average, 9.6 +/- 0.7 degrees. The findings show norepinephrine to exert a stimulating effect on the heart activity even at such low heart temperatures as 7-10 degrees with no preliminary warming of the heart.  相似文献   

11.
Pseudomonas exotoxin A. Membrane binding, insertion, and traversal   总被引:4,自引:0,他引:4  
Using vesicle targets composed of phosphatidylcholine and cholesterol (1:1 molar ratio), we found that Pseudomonas aeruginosa exotoxin A (PTx) binding and insertion are not only dependent on pH (Zalman, L.S., and Wisnieski, B.J. (1985) Infect. Immun. 50, 630-635) but also on ionic strength, reaching a maximum in pH 4 buffer that contains 150-200 mM NaCl. Insertion was monitored by photolabeling with an intramembranous probe. Higher levels of binding and insertion were attained with vesicles that contained 2.5 mol% dicetylphosphate than with neutral vesicles. Positively charged vesicles (2.7 mol% stearylamine) were the least effective targets. At pH 7.4, all binding levels were depressed. While PTx binding increased with increasing temperature, the relative proportion of the vesicle-associated toxin that was photolabeled decreased. The most likely explanation for the decrease is that the bilayer translocation rates increased with increasing temperature, and hence fewer PTx molecules were accessible at the time of photolabeling. At 37 degrees C, binding and insertion both plateaued within 10 min of lowering the pH to 4. After 10 min, the amount of bound toxin decreased slightly with time but there was a dramatic decrease in photolabeling, indicating that inserted PTx had begun to cross the bilayer. This was verified by the finding that when PTx was incubated with vesicles that contained trypsin, cleavage occurred only in those samples in which the pH was shifted down to pH 4. Entry is triggered by an acid-induced conformational change that promotes productive binding and insertion. After insertion, the kinetics of membrane traversal appear to be regulated by the physical properties of the bilayer.  相似文献   

12.
P J Spooner  D M Small 《Biochemistry》1987,26(18):5820-5825
Triacylglycerols are the major substrates for lipolytic enzymes that act at the surface of emulsion-like particles such as triglyceride-rich lipoproteins, chylomicrons, and intracellular lipid droplets. This study examines the effect of cholesterol on the solubility of a triacylglycerol, triolein, in phospholipid surfaces. Solubilities of [carbonyl-13C]triolein in phospholipid bilayer vesicles containing between 0 and 50 mol % free cholesterol, prepared by cosonication, were measured by 13C NMR. The carbonyl resonances from bilayer-incorporated triglyceride were shifted downfield in the 13C NMR spectra from those corresponding to excess, nonincorporated material. This enabled solubilities to be determined directly from carbonyl peak intensities at most cholesterol concentrations. The bilayer solubility of triolein was inversely proportional to the cholesterol/phospholipid mole ratio. In pure phospholipid vesicles the triolein solubility was 2.2 mol %. The triglyceride incorporation decreased to 1.1 mol % at a cholesterol/phospholipid mole ratio of 0.5, and at a mole ratio of 1.0 for the bilayer lipids, the triolein solubility was reduced to just 0.15 mol %. The effects of free cholesterol were more pronounced and progressive than observed previously on the bilayer solubility of cholesteryl oleate (Spooner, P. J. R., Hamilton, J. A., Gantz, D. L., & Small, D. M. (1986) Biochim. Biophys. Acta 860, 345-353]. As with cholesteryl oleate, we suggest that cholesterol also displaces solubilized triglyceride to deeper regions of the bilayer.  相似文献   

13.
Resting subjects risk cardiac arrest if plasma potassium ([K+]p) is raised rapidly to 7-9 mM, but brief bouts of exhaustive exercise in healthy subjects can give similar [K+]p without causing cardiac problems. We investigated the effects of [K+]p and catecholamines on systolic blood pressure (SBP) and mean aortic flow (MAF) in anesthetized rabbits and on maximum output pressure (MOP) in isolated working rabbit hearts. In six rabbits, hyperkalemia (11.4 +/- 0.4 mM) caused a fall in SBP from 116 +/- 6 to 49 +/- 6 mmHg and in MAF from 373 +/- 30 to 181 +/- 53 ml/min (P < 0.01). Raising [K+]p (11.6 +/- 0.3 mM) with norepinephrine (NE) (1.3 micrograms.kg-1.min-1 iv), however, increased SBP from 108 +/- 7 to 150 +/- 6 mmHg (P < 0.01) and MAF from 347 +/- 42 to 434 +/- 35 ml/min (P < 0.01). In 19 isolated working hearts, perfusion with 8 mM K+ Tyrode and then 12 mM K+ Tyrode reduced MOP from 87 +/- 3 (control 4 mM K+) to 67 +/- 3 (8 mM K+) and 51 +/- 2 cmH2O (12 mM K+) (P < 0.01); 12 mM K+ Tyrode with 0.08 microM NE or epinephrine, however, increased MOP from 67 +/- 6 (in 8 mM K+) to 85 +/- 6 cmH2O (NE) and from 58 +/- 2 to 76 +/- 5 cmH2O (epinephrine) (P < 0.01). Catecholamines may therefore play a key role in protecting the heart from exercise-induced hyperkalemia.  相似文献   

14.
J R Lopez  L Parra 《Cell calcium》1991,12(8):543-557
Inositol 1,4,5-trisphosphate (InsP3) has been proposed as an intracellular messenger which mobilizes calcium from the sarcoplasmic reticulum, during excitation-contraction coupling in skeletal muscle. We have measured the myoplasmic free calcium concentration ([Ca2+]i) by means of calcium selective microelectrodes in intact fibers isolated from Leptodactylus insularis microinjected with InsP3. In muscle fibers bathed in normal Ringer, the mean resting [Ca2+]i was 0.11 +/- 0.01 microM (M +/- SEM, n = 30). The microinjection of 0.3, 0.5 and 1 microM InsP3 induced transient increments in the [Ca2+]i to 0.35 +/- 0.02 microM (n = 9), to 0.53 +/- 0.03 microM (n = 11) and 0.94 +/- 0.06 microM (n = 10) respectively. Microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers incubated in low Ca2+ solution induced increments in [Ca2+]i similar to those observed in fibers bathed with normal Ringer. The microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers partially depolarized with 10 mM [K+]o induced transient enhancements of the resting [Ca2+]i that were greater than the transients observed in the normally polarized muscle. In partially depolarized fibers microinjected with 0.3, 0.5 and 1 microM InsP3, the [Ca2+]i was changed to 1.45 +/- 0.14 microM (n = 20), to 3.37 +/- 0.34 microM (n = 7) and to 7.43 +/- 0.70 microM (n = 6) respectively. In all partially depolarized fibers these increments in [Ca2+]i were associated with local contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The morphology of the structures formed after hydration of lipid films of cholesteryl hemisuccinate/dipalmitoylphosphatidylcholine (CHEMS/DPPC) was investigated in low ionic strength solutions. The importance of addition of a charge inducing agent/geometrical structure such as CHEMS for the formation of stable vesicle dispersions upon hydration was demonstrated. The encapsulated volume measured for CHEMS/DPPC ratios below 1:50 was low. For a ratio of CHEMS/DPPC of 1:30 EM micrographs showed mainly small unilamellar vesicles, with particle sizes between 0.07 and 0.3 microns, together with a small number of much larger vesicles. For ratios of CHEMS/DPPC above 0.1 only unilamellar vesicles and no bilayer stacks were found. The results confirm the hypothesis by Hauser (Biochim. Biophys. Acta 772 (1984) 37-50), that the structures formed upon hydration of charged phospholipid films are unilamellar vesicles, while for neutral phospholipid films upon hydration bilayer stacks and multilamellar vesicles are formed. The effect of CHEMS on the liposome bilayer structure can be mainly ascribed to its charge inducing properties and presumably to a minor extent to its molecular geometry, or to a combination of both.  相似文献   

16.
The solubilization of cholesteryl oleate in sonicated phosphatidylcholine vesicles containing between 0 and 50 mol% cholesterol was studied by 13C-NMR using isotopically enriched [carbonyl-13C]cholesteryl oleate. The carbonyl-13C chemical shift from cholesteryl oleate in the phospholipid/cholesterol bilayer was significantly downfield from that for cholesteryl oleate in an oil phase and the peak area, relative to that of the phospholipid carbonyl, was used to determine bilayer solubility of the ester. The solubility (with respect to phospholipid) in the phospholipid bilayer without cholesterol (2.9 mol%) was only moderately reduced (to 2.3 mol%) at cholesterol levels up to 33 mol% but showed a more marked reduction to 1.4 mol% at 40 mol% cholesterol or 1.2 mol% at 50 mol% cholesterol. Since the vesicles containing 50 mol% cholesterol were larger (520 +/- 152 A diameter) than those with no cholesterol (291 +/- 97 A diameter), we measured the solubility of cholesteryl oleate in large vesicles with no cholesterol, prepared by extrusion through polycarbonate membrane filters, and found it similar to that in small, sonicated vesicles with no cholesterol. Therefore, the larger size of vesicles was not the factor responsible for the decreased cholesteryl oleate solubility at high cholesterol contents. A more direct effect of cholesterol is envisioned where the ester becomes displaced to deeper regions of the bilayer.  相似文献   

17.
The effect of temperature, pH, free [Mg(2+)], and ionic strength on the apparent equilibrium constant of arginine kinase (EC 2.7.3.3) was determined. At equilibrium, the apparent K' was defined as [see text] where each reactant represents the sum of all the ionic and metal complex species. The K' at pH 7.0, 1.0 mM free [Mg(2+)], and 0. 25 M ionic strength was 29.91 +/- 0.59, 33.44 +/- 0.46, 35.44 +/- 0. 71, 39.64 +/- 0.74, and 45.19 +/- 0.65 (n = 8) at 40, 33, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy (DeltaH degrees') is -8.19 kJ mol(-1), and the corresponding standard apparent entropy of the reaction (DeltaS degrees') is + 2. 2 J K(-1)mol(-1) in the direction of ATP formation at pH 7.0, free [Mg(2+)] =1.0 mM, ionic strength (I) =0.25 M at 25 degrees C. We further show that the magnitude of transformed Gibbs energy (DeltaG degrees ') of -8.89 kJ mol(-1) is mostly comprised of the enthalpy of the reaction, with 7.4% coming from the entropy TDeltaS degrees' term (+0.66 kJ mol(-1)). Our results are discussed in relation to the thermodynamic properties of its evolutionary successor, creatine kinase.  相似文献   

18.
A calorimetric titration method was used to study the ADP binding to the chymotryptic subfragments of myosin, heavy meromyosin (HMM) and myosin subfragment 1 (S-1), and to myosin aggregated into filaments at low ionic strength. The binding constant (K) and heat of reaction (deltaH, kiloJoules (moles of ADP bound)-1) were determined. For HMM in 0.5 M KCl, 0.01 M MgCl2, 0.02 M Tris (pH 7.8) at 12 degrees, log K = 5.92 +/- 0.13 and deltaH = -70.9 +/- 3.6 kJ mol-1. These results agree with our previous findings for myosin in 0.5 M KCl at 12 degrees. When the KCl concentration was reduced to 0.1 M, the binding constant did not change significantly (log K = 6.09 +/- 0.06) but the binding was more exothermic (deltaH = -90.1 +/- 3.3 kJ mol-1). Similar results were obtained for myosin filaments in 0.1 M KCl and also for both the isoenzymes of S-1(S-1(A1) and S-1(A2) in 0.1 M KCl. In 0.5 M KCl, the binding curves suggest that about one ADP is bound per active site, but as 0.1 M KCl, the apparent stoichiometry drops from 0.7 to 0.75. The most probable explanation is that there is some site heterogeneity which is more evident at lower ionic strength.  相似文献   

19.
Pyrene excimer/monomer (E/M) ratios have been compared with the steady-state fluorescence polarization (P) of diphenylhexatriene (DPH) in multilamellar liposomes of dilaurylphosphatidylcholine and rat liver microsomes. The purpose was to use the well-understood properties of DPH to reveal the nature of bilayer fluidity which pyrene manifests as an E/M ratio. Reducing the temperature (from 37 degrees C to 8 degrees C), increasing the hydrostatic pressure (from 0.1 to 70 MPa), and, in liposomes, cholesterol enrichment (up to 0.30 mole fraction) separately decreased the E/M ratios and increased P. The pyrene membrane/buffer partition coefficient was affected by temperature but not by pressure, and in the case of cholesterol enrichment, it was assumed to be unaffected. Plots of P as a function of the E/M ratio showed the two to be closely correlated (r = 0.99 in liposomes and 0.96 in microsomes), independent of the treatment used to reduce fluidity. The apparent activation volume and enthalpy for excimer formation was calculated and compared with published data. Pyrene E/M ratios probably reflect the intermolecular volume (fluidity) of the outer region of the bilayer, which is reduced by a decrease in temperature and an increase in pressure and cholesterol. DPH reports the bilayer interior, which is similarly ordered by the experimental treatments. The regional distinction between the two probes, however, accounts for the divergence of E/M ratios and P, which has been reported in membranes enriched with fluidizing fatty acids.  相似文献   

20.
Uptake of L-2,4-diaminobutyric acid (DABA), a positively charged analogue of gamma-aminobutyric acid (GABA), by a synaptosomal fraction isolated from rat brain occurred with a Km of 54 +/- 12 microM and a Vmax of 1.3 +/- 0.2 nmol/min/mg protein. The transport of DABA was inhibited competitively by GABA whereas that of GABA was affected in the same manner by addition of DABA. The maximal accumulation of DABA ([DABA]i/[DABA]c) was observed to increase as the second power of the transmembrane electrical potential ([K+]i/[K+]e) and the first power of the sodium ion concentration gradient. These findings indicate that DABA is transported on the GABA carrier with a net charge of +2, where one charge is provided by the cotransported Na+ and the second is contributed by the amino acid itself. Since uptake of GABA, an electroneutral molecule, is accompanied by transfer of two sodium ions, the results obtained with DABA suggest that one of the sodium binding sites on the GABA transporter is in proximity to the amino acid binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号