首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Betha AK  Williams AM  Martinis SA 《Biochemistry》2007,46(21):6258-6267
Protein synthesis and its fidelity rely upon the aminoacyl-tRNA synthetases. Leucyl-tRNA synthetase (LeuRS), isoleucyl-tRNA synthetase (IleRS), and valyl-tRNA synthetase (ValRS) have evolved a discrete editing domain called CP1 that hydrolyzes the respective incorrectly misaminoacylated noncognate amino acids. Although active CP1 domain fragments have been isolated for IleRS and ValRS, previous reports suggested that the LeuRS CP1 domain required idiosyncratic adaptations to confer editing activity independent of the full-length enzyme. Herein, characterization of a series of rationally designed Escherichia coli LeuRS fragments showed that the beta-strands, which link the CP1 domain to the aminoacylation core of LeuRS, are required for editing of mischarged tRNALeu. Hydrolytic activity was also enhanced by inclusion of short flexible peptides that have been called "hinges" at the end of both LeuRS beta-strands. We propose that these long beta-strand extensions of the LeuRS CP1 domain interact specifically with the tRNA for post-transfer editing of misaminoacylated amino acids.  相似文献   

2.
The editing domains of the closely homologous leucyl, isoleucyl, and valyl-tRNA synthetases (LeuRS, IleRS, and ValRS, respectively) contribute to accurate aminoacylation, by hydrolyzing misformed non-cognate aminoacyl-tRNAs. The editing domain is inserted at the same point of the sequence in IleRS, ValRS, and the archaeal/eukaryal LeuRS, but at a distinct point in the bacterial LeuRS. Here, we showed that LeuRS from the archaeon Pyrococcus horikoshii has editing activity against the nearly cognate isoleucine. The conserved Asp332 in the editing domain is crucial for this activity. A deletion mutant lacking the C-terminal region has only negligible aminoacylation activity, but retains the full activity of adenylate synthesis and editing. We determined the crystal structure of this editing-active, truncated form of P.horikoshii LeuRS at 2.1 A resolution. The structure revealed that it has a novel editing domain orientation. The editing domain of P.horikoshii LeuRS is rotated by approximately 180 degrees (rotational state II), with the two-beta-stranded linker untwisted by a half-turn, as compared to those in IleRS and ValRS (rotational state I). This editing domain rotational state in the archaeal LeuRS is similar to that in the bacterial LeuRS. However, because of the insertion point difference, the orientation of the editing domain relative to the enzyme core in the archaeal LeuRS differs completely from that in the bacterial LeuRS. An insertion region specific to the archaeal/eukaryal LeuRS editing domains interacts with the enzyme core and stabilizes the unique orientation. Thus, we established that there are three types of editing domain orientations relative to the enzyme core, depending on the combination of the editing domain insertion point (i or ii) and the rotational state (I or II): [i, I] for IleRS and ValRS, [ii, II] for the bacterial LeuRS, and now [i, II] for the archaeal/eukaryal LeuRS.  相似文献   

3.
The connective polypeptide 1 (CP1) editing domain of leucyl-tRNA synthetase (LeuRS) from various species either harbors a conserved active site to exclude tRNA mis-charging with noncognate amino acids or is evolutionarily truncated or lost because there is no requirement for high translational fidelity. However, human mitochondrial LeuRS (hmtLeuRS) contains a full-length but degenerate CP1 domain that has mutations in some residues important for post-transfer editing. The significance of such an inactive CP1 domain and a translational accuracy mechanism with different noncognate amino acids are not completely understood. Here, we identified the essential role of the evolutionarily divergent CP1 domain in facilitating hmtLeuRS''s catalytic efficiency and endowing enzyme with resistance to AN2690, a broad-spectrum drug acting on LeuRSs. In addition, the canonical core of hmtLeuRS is not stringent for noncognate norvaline (Nva) and valine (Val). hmtLeuRS has a very weak tRNA-independent pre-transfer editing activity for Nva, which is insufficient to remove mis-activated Nva. Moreover, hmtLeuRS chimeras fused with a functional CP1 domain from LeuRSs of other species, regardless of origin, showed restored post-transfer editing activity and acquired fidelity during aminoacylation. This work offers a novel perspective on the role of the CP1 domain in optimizing aminoacylation efficiency.  相似文献   

4.
Aminoacylation and editing by leucyl-tRNA synthetases (LeuRS) require migration of the tRNA acceptor stem end between the canonical aminoacylation core and a separate domain called CP1 that is responsible for amino acid editing. The LeuRS CP1 domain can also support group I intron RNA splicing in the yeast mitochondria, although splicing-sensitive sites have been identified on the main body. The RDW peptide, a highly conserved peptide within an RDW-containing motif, resides near one of the beta-strand linkers that connects the main body to the CP1 domain. We hypothesized that the RDW peptide was important for interactions of one or more of the LeuRS-RNA complexes. An assortment of X-ray crystallography structures suggests that the RDW peptide is dynamic and forms unique sets of interactions with the aminoacylation and editing complexes. Mutational analysis identified specific sites within the RDW peptide that failed to support protein synthesis activity in complementation experiments. In vitro enzymatic investigations of mutations at Trp445, Arg449, and Arg451 in yeast mitochondrial LeuRS suggested that these sites within the RDW peptide are critical to the aminoacylation complex, but impacted amino acid editing activity to a much less extent. We propose that these highly conserved sites primarily influence productive tRNA interactions in the aminoacylation complex.  相似文献   

5.
Hydrolytic editing activities are present in aminoacyl-tRNA synthetases possessing reduced amino acid discrimination in the synthetic reactions. Post-transfer hydrolysis of misacylated tRNA in class I editing enzymes occurs in a spatially separate domain inserted into the catalytic Rossmann fold, but the location and mechanisms of pre-transfer hydrolysis of misactivated amino acids have been uncertain. Here, we use novel kinetic approaches to distinguish among three models for pre-transfer editing by Escherichia coli isoleucyl-tRNA synthetase (IleRS). We demonstrate that tRNA-dependent hydrolysis of noncognate valyl-adenylate by IleRS is largely insensitive to mutations in the editing domain of the enzyme and that noncatalytic hydrolysis after release is too slow to account for the observed rate of clearing. Measurements of the microscopic rate constants for amino acid transfer to tRNA in IleRS and the related valyl-tRNA synthetase (ValRS) further suggest that pre-transfer editing in IleRS is an enzyme-catalyzed activity residing in the synthetic active site. In this model, the balance between pre-transfer and post-transfer editing pathways is controlled by kinetic partitioning of the noncognate aminoacyl-adenylate. Rate constants for hydrolysis and transfer of a noncognate intermediate are roughly equal in IleRS, whereas in ValRS transfer to tRNA is 200-fold faster than hydrolysis. In consequence, editing by ValRS occurs nearly exclusively by post-transfer hydrolysis in the editing domain, whereas in IleRS both pre- and post-transfer editing are important. In both enzymes, the rates of amino acid transfer to tRNA are similar for cognate and noncognate aminoacyl-adenylates, providing a significant contrast with editing DNA polymerases.  相似文献   

6.
The aminoacyl-tRNA synthetases covalently link transfer RNAs to their cognate amino acids. Some of the tRNA synthetases have evolved editing mechanisms to ensure fidelity in this first step of protein synthesis. The amino acid editing site for leucyl- (LeuRS) and isoleucyl- (IleRS) tRNA synthetases reside within homologous CP1 domains. In each case, a threonine-rich peptide and a second conserved GTG region that are separated by about 100 amino acids comprise parts of the hydrolytic editing site. While a number of sites are conserved between these two enzymes and likely confer a commonality to the mechanisms, some positions are idiosyncratic to LeuRS or IleRS. Herein, we provide evidence that a conserved arginine and threonine at respective sites in LeuRS and IleRS diverged to confer amino acid substrate recognition. This site complements other sites in the amino acid binding pocket of the editing active site of Escherichia coli LeuRS, including Thr252 and Val338, which collectively fine-tune amino acid specificity to confer fidelity.  相似文献   

7.
A present-day aminoacyl-tRNA synthetase with ancestral editing properties   总被引:1,自引:0,他引:1  
Leucyl-, isoleucyl-, and valyl-tRNA synthetases form a subgroup of related aminoacyl-tRNA synthetases that attach similar amino acids to their cognate tRNAs. To prevent amino acid misincorporation during translation, these enzymes also hydrolyze mischarged tRNAs through a post-transfer editing mechanism. Here we show that LeuRS from the deep-branching bacterium Aquifex aeolicus edits the complete set of aminoacylated tRNAs generated by the three enzymes: Ile-tRNA(Ile), Val-tRNA(Ile), Val-tRNA(Val), Thr-tRNA(Val), and Ile-tRNA(Leu). This unusual enlarged editing property was studied in a model of a primitive editing system containing a composite minihelix carrying the triple leucine, isoleucine, and valine identity mimicking the primitive tRNA precursor. We found that the freestanding LeuRS editing domain can edit this precursor in contrast to IleRS and ValRS editing domains. These results suggest that A. aeolicus LeuRS carries editing properties that seem more primitive than those of IleRS and ValRS. They suggest that the A. aeolicus editing domain has preserved the ambiguous editing property from the ancestral common editing domain or, alternatively, that this plasticity results from a specific metabolic adaptation.  相似文献   

8.
Quality control mechanisms during protein synthesis are essential to fidelity and cell survival. Leucyl-tRNA synthetase (LeuRS) misactivates non-leucine amino acids including isoleucine, methionine, and norvaline. To prevent translational errors, mischarged tRNA products are translocated 30Å from the canonical aminoacylation core to a hydrolytic editing-active site within a completely separate domain. Because it is transient, the tRNA translocation mechanism has been difficult to isolate. We have identified a “translocation peptide” within Escherichia coli LeuRS. Mutations in the translocation peptide cause tRNA to selectively bypass the editing-active site, resulting in mischarging that is lethal to the cell. This bypass mechanism also rescues aminoacylation of an editing site mutation that hydrolyzes correctly charged Leu-tRNALeu. Thus, these LeuRS mutants charge tRNALeu but fail to translocate these products to the hydrolytic site, where they are cleared to guard against genetic code ambiguities.Quality control during translation depends on the family of aminoacyl-tRNA synthetases (aaRSs),2 which is responsible for the first step of protein synthesis. Each aaRS selectively aminoacylates just one of the 20 standard amino acids to its cognate tRNA (1). About half of this family of enzymes ensures fidelity by employing a “double sieve model” that relies on two active sites (2, 3). One sieve is synthetic and produces charged tRNA. The other is a hydrolytic editing-active site that clears mistakes. Defects in the editing mechanism cause cell death (4, 5) and also neurological disease in mammals (6).The aminoacylation site in the ancient canonical core of the aaRS activates its cognate amino acid but can also misactivate structurally similar amino acids (1). The editing-active site blocks the correctly charged amino acid (7, 8) and hydrolyzes mischarged amino acids from the tRNA. Amino acid editing destroys mistakes before they can be incorporated by the ribosome, which would result in the production of statistical proteins (1).Amino acid proofreading requires that the charged tRNA transiently migrates between two enzyme domains that are responsible for aminoacylation and editing. For leucyl-tRNA synthetase (LeuRS) and the homologous isoleucyl-(IleRS) and valyl-tRNA synthetases (ValRS), the editing domain resides in a structural insertion called CP1 (9) that splits the Rossmann ATP binding fold. The insert folds independent of the canonical core (1012). The isolated CP1 domains from LeuRS, ValRS, and IleRS can independently and specifically hydrolyze mischarged amino acid from its cognate tRNA (1315).The aminoacylation and editing-active sites of LeuRS are separated by about 30 Å. Thus, the charged 3′ end of the tRNA must be faithfully translocated a significant distance for proofreading and then hydrolysis if it is mischarged (16). It has also been suggested that the tRNA 3′ end binds initially near the editing-active site and requires translocation to the aminoacylation site (17).We hypothesized that flexible molecular hinges might facilitate conformational changes between the aminoacylation and the editing complexes (18). Two putative hinge sites were predicted by computational analysis of Thermus thermophilus LeuRS. One hinge at Ser-227 was located in the N-terminal β-strand that links the aminoacylation and CP1 editing domains (18). Mutations at the predicted hinge site in the β-strand linker of Escherichia coli LeuRS abolished aminoacylation activity and significantly decreased amino acid editing activity (18).A second hinge site at Glu-393 was identified in a flexible peptide within the CP1 domain of T. thermophilus LeuRS (18). Here, we describe results at a homologous Asp-391 site in E. coli LeuRS that demonstrate that this hinge comprises a portion of a translocation peptide. Unlike the predicted β-strand hinge mutation, the aminoacylation and editing activities of the CP1 domain-based hinge mutants in LeuRS were intact. Surprisingly however, mutations within the translocation peptide yield mischarged tRNA despite a robust deacylation activity. We hypothesize that impairing the LeuRS translocation peptide causes the charged tRNA 3′ end to bypass the editing sieve prior to product release. Defects in the translocation peptide and its mechanism result in amino acid toxicities that are lethal to the cell.  相似文献   

9.
Leucyl-tRNA synthetase (LeuRS) is responsible for the Leu-tRNALeu synthesis. The connective peptide 1 (CP1) domain inserted into the Rossmann nucleotide binding fold possesses editing active site to hydrolyze the mischarged tRNALeu with noncognate amino acid, then to ensure high fidelity of protein synthesis. A few co-crystal structures of LeuRS with tRNALeu in different conformations revealed that tRNALeu 3′ end shuttled between synthetic and editing active sites dynamically with direct and specific interaction with the CP1 domain. Here, we reported that Y515 and Y520 outside the editing active site of CP1 domain of Giardia lamblia LeuRS (GlLeuRS) are crucial for post-transfer editing by influencing the binding affinity with mischarged tRNALeu. Mutations on Y515 and Y520 also decreased tRNALeu charging activity to various extents but had no effect on leucine activation. Our results gave some biochemical knowledge about interaction of tRNALeu 3′ end with the CP1 domain in archaeal/eukaryotic LeuRS.  相似文献   

10.
aaRSs (aminoacyl-tRNA synthetases) establish the rules of the genetic code by catalysing the formation of aminoacyl-tRNA. The quality control for aminoacylation is achieved by editing activity, which is usually carried out by a discrete editing domain. For LeuRS (leucyl-tRNA synthetase), the CP1 (connective peptide 1) domain is the editing domain responsible for hydrolysing mischarged tRNA. The CP1 domain is universally present in LeuRSs, except MmLeuRS (Mycoplasma mobile LeuRS). The substitute of CP1 in MmLeuRS is a nonapeptide (MmLinker). In the present study, we show that the MmLinker, which is critical for the aminoacylation activity of MmLeuRS, could confer remarkable tRNA-charging activity on the inactive CP1-deleted LeuRS from Escherichia coli (EcLeuRS) and Aquifex aeolicus (AaLeuRS). Furthermore, CP1 from EcLeuRS could functionally compensate for the MmLinker and endow MmLeuRS with post-transfer editing capability. These investigations provide a mechanistic framework for the modular construction of aaRSs and their co-ordination to achieve catalytic efficiency and fidelity. These results also show that the pre-transfer editing function of LeuRS originates from its conserved synthetic domain and shed light on future study of the mechanism.  相似文献   

11.
Sarkar J  Mao W  Lincecum TL  Alley MR  Martinis SA 《FEBS letters》2011,585(19):2986-2991
The broad-spectrum benzoxaborole antifungal AN2690 blocks protein synthesis by inhibiting leucyl-tRNA synthetase (LeuRS) via a novel oxaborole tRNA trapping mechanism in the editing site. Herein, one set of resistance mutations is at Asp487 outside the LeuRS hydrolytic editing pocket, in a region of unknown function. It is located within a eukaryote/archaea specific insert I4, which forms part of a cap over a benzoxaborole-AMP that is bound in the LeuRS CP1 domain editing active site. Mutational and biochemical analysis at Asp487 identified a salt bridge between Asp487 and Arg316 in the hinge region of the I4 cap of yeast LeuRS that is critical for tRNA deacylation. We hypothesize that this electrostatic interaction stabilizes the cap during binding of the editing substrate for hydrolysis.  相似文献   

12.
Statistical proteomes that are naturally occurring can result from mechanisms involving aminoacyl-tRNA synthetases (aaRSs) with inactivated hydrolytic editing active sites. In one case, Mycoplasma mobile leucyl-tRNA synthetase (LeuRS) is uniquely missing its entire amino acid editing domain, called CP1, which is otherwise present in all known LeuRSs and also isoleucyl- and valyl-tRNA synthetases. This hydrolytic CP1 domain was fused to a synthetic core composed of a Rossmann ATP-binding fold. The fusion event splits the primary structure of the Rossmann fold into two halves. Hybrid LeuRS chimeras using M. mobile LeuRS as a scaffold were constructed to investigate the evolutionary protein:protein fusion of the CP1 editing domain to the Rossmann fold domain that is ubiquitously found in kinases and dehydrogenases, in addition to class I aaRSs. Significantly, these results determined that the modular construction of aaRSs and their adaptation to accommodate more stringent amino acid specificities included CP1-dependent distal effects on amino acid discrimination in the synthetic core. As increasingly sophisticated protein synthesis machinery evolved, the addition of the CP1 domain increased specificity in the synthetic site, as well as provided a hydrolytic editing site.  相似文献   

13.
Comprehensive steady-state and transient kinetic studies of the synthetic and editing activities of Escherichia coli leucyl-tRNA synthetase (LeuRS) demonstrate that the enzyme depends almost entirely on post-transfer editing to endow the cell with specificity against incorporation of norvaline into protein. Among the three class I tRNA synthetases possessing a dedicated post-transfer editing domain (connective peptide 1; CP1 domain), LeuRS resembles valyl-tRNA synthetase in its reliance on post-transfer editing, whereas isoleucyl-tRNA synthetase differs in retaining a distinct tRNA-dependent synthetic site pre-transfer editing activity to clear noncognate amino acids before misacylation. Further characterization of the post-transfer editing activity in LeuRS by single-turnover kinetics demonstrates that the rate-limiting step is dissociation of deacylated tRNA and/or amino acid product and highlights the critical role of a conserved aspartate residue in mediating the first-order hydrolytic steps on the enzyme. Parallel analyses of adenylate and aminoacyl-tRNA formation reactions by wild-type and mutant LeuRS demonstrate that the efficiency of post-transfer editing is controlled by kinetic partitioning between hydrolysis and dissociation of misacylated tRNA and shows that trans editing after rebinding is a competent kinetic pathway. Together with prior analyses of isoleucyl-tRNA synthetase and valyl-tRNA synthetase, these experiments provide the basis for a comprehensive model of editing by class I tRNA synthetases, in which kinetic partitioning plays an essential role at both pre-transfer and post-transfer steps.  相似文献   

14.
Yeast mitochondrial leucyl-tRNA synthetase (LeuRS) binds to the bI4 intron and collaborates with the bI4 maturase to aid excision of the group I intron. Deletion analysis isolated the inserted LeuRS CP1 domain as a critical factor in the protein's splicing activity. Protein fragments comprised of just the LeuRS CP1 region rescued complementation of a yeast strain that expressed a splicing-defective LeuRS. Three-hybrid analysis determined that these CP1-containing LeuRS fragments, ranging from 214 to 375 amino acids, bound to the bI4 intron. In each case, interactions with only the LeuRS protein fragment specifically stimulated bI4 intron splicing activity. Substitution of a homologous CP1 domain from isoleucyl-tRNA synthetase or mutation within the LeuRS CP1 region of the smallest protein fragment abolished RNA binding and splicing activity. The CP1 domain is best known for its amino acid editing activity. However, these results suggest that elements within the LeuRS CP1 domain also play a novel role, independent of the full-length tRNA synthetase, in binding the bI4 group I intron and facilitating its self-splicing activity.  相似文献   

15.
The yeast mitochondrial leucyl-tRNA synthetase (ymLeuRS) performs dual essential roles in group I intron splicing and protein synthesis. A specific LeuRS domain called CP1 is responsible for clearing noncognate amino acids that are misactivated during aminoacylation. The ymLeuRS CP1 domain also plays a critical role in splicing. Herein, the ymLeuRS CP1 domain was isolated from the full-length enzyme and was active in RNA splicing in vitro. Unlike its Escherichia coli LeuRS CP1 domain counterpart, it failed to significantly hydrolyze misaminoacylated tRNA(Leu). In addition and in stark contrast to the yeast domain, the editing-active E. coli LeuRS CP1 domain failed to recapitulate the splicing activity of the full-length E. coli enzyme. Although LeuRS-dependent splicing activity is rooted in an ancient adaptation for its aminoacylation activity, these results suggest that the ymLeuRS has functionally diverged to confer a robust splicing activity. This adaptation could have come at some expense to the protein's housekeeping role in aminoacylation and editing.  相似文献   

16.
Hausmann CD  Ibba M 《FEBS letters》2008,582(15):2178-2182
Methanothermobacter thermautotrophicus contains a multi-aminoacyl-tRNA synthetase complex (MSC) of LysRS, LeuRS and ProRS. Elongation factor (EF) 1A also associates to the MSC, with LeuRS possibly acting as a core protein. Analysis of the MSC revealed that LysRS and ProRS specifically interact with the idiosyncratic N- and C- termini of LeuRS, respectively. EF-1A instead interacts with the inserted CP1 proofreading domain, consistent with models for post-transfer editing by class I synthetases such as LeuRS. Together with previous genetic data, these findings show that LeuRS plays a central role in mediating interactions within the archaeal MSC by acting as a core scaffolding protein.  相似文献   

17.
Nordin BE  Schimmel P 《Biochemistry》2003,42(44):12989-12997
The genetic code depends on amino acid fine structure discrimination by aminoacyl-tRNA synthetases. For isoleucyl- (IleRS) and valyl-tRNA synthetases (ValRS), reactions that hydrolyze misactivated noncognate amino acids help to achieve high accuracy in aminoacylation. Two editing pathways contribute to aminoacylation fidelity: pretransfer and post-transfer. In pretransfer editing, the misactivated amino acid is hydrolyzed as an aminoacyl adenylate, while in post-transfer editing a misacylated tRNA is deacylated. Both reactions are dependent on a tRNA cofactor and require translocation to a site located approximately 30 A from the site of amino acid activation. Using a series of 3'-end modified tRNAs that are deficient in either aminoacylation, deacylation, or both, total editing (the sum of pre- and post-transfer editing) was shown to require both aminoacylation and deacylation activities. These and additional results with IleRS are consistent with a post-transfer deacylation event initiating formation of an editing-active enzyme/tRNA complex. In this state, the primed complex processively edits misactivated valyl-adenylate via the pretransfer route. Thus, misacylated tRNA is an obligatory intermediate for editing by either pathway.  相似文献   

18.
Lee KW  Briggs JM 《Proteins》2004,54(4):693-704
Aminoacyl-tRNA synthetases (aaRSs) strictly discriminate their cognate amino acids. Some aaRSs accomplish this via proofreading and editing mechanisms. Mursinna and coworkers recently reported that substituting a highly conserved threonine (T252) with an alanine within the editing domain of Escherichia coli leucyl-tRNA synthetase (LeuRS) caused LeuRS to cleave its cognate aminoacylated leucine from tRNA(Leu) (Mursinna et al., Biochemistry 2001;40:5376-5381). To achieve atomic level insight into the role of T252 in LeuRS and the editing reaction of aaRSs, a series of molecular modeling studies including homology modeling and automated docking simulations were carried out. A 3D structure of E. coli LeuRS was constructed via homology modeling using the X-ray structure of Thermus thermophilus LeuRS as a template because the E. coli LeuRS structure is not available from X-ray or NMR studies. However, both the X-ray T. thermophilus and homology-modeled E. coli structures were used in our studies. Amino acid binding sites in the proposed editing domain, which is also called the connective polypeptide 1 (CP1) domain, were investigated by automated docking studies. The root mean square deviation (RMSD) for backbone atoms between the X-ray and homology-modeled structures was 1.18 A overall and 0.60 A for the editing (CP1) domain. Automated docking studies of a leucine ligand into the editing domain were performed for both structures: homology structure of E. coli LeuRS and X-ray structure of T. thermophilus LeuRS for comparison. The results of the docking studies suggested that there are two possible amino acid binding sites in the CP1 domain for both proteins. The first site lies near a threonine-rich region that includes the highly conserved T252 residue, which is important for amino acid discrimination. The second site is located in a flexible loop region surrounded by residues E292, A293, M295, A296, and M298. The important T252 residue is at the bottom of the first binding pocket.  相似文献   

19.
Leucyl-tRNA synthetase (LeuRS) has an insertion domain, called connective peptide 2 (CP2), either directly preceding or following the editing domain (CP1 domain), depending on the species. The global structures of the CP2 domains from all LeuRSs are similar. Although the CP1 domain has been extensively explored to be responsible for hydrolysis of mischarged tRNALeu, the role of the CP2 domain remains undefined. In the present work, deletion of the CP2 domain of Giardia lamblia LeuRS (GlLeuRS) showed that the CP2 domain is indispensable for amino acid activation and post-transfer editing and that it contributes to LeuRS-tRNALeu binding affinity. In addition, its functions are conserved in both eukaryotic/archaeal and prokaryotic LeuRSs from G. lamblia, Pyrococcus horikoshii (PhLeuRS), and Escherichia coli (EcLeuRS). Alanine scanning and site-directed mutagenesis assays of the CP2 domain identified several residues that are crucial for its various functions. Data from the chimeric mutants, which replaced the CP2 domain of GlLeuRS with either PhLeuRS or EcLeuRS, showed that the CP2 domain of PhLeuRS but not that of EcLeuRS can partially restore amino acid activation and post-transfer editing functions, suggesting that the functions of the CP2 domain are dependent on its location in the primary sequence of LeuRS.  相似文献   

20.
Chen JF  Guo NN  Li T  Wang ED  Wang YL 《Biochemistry》2000,39(22):6726-6731
The amino acid discrimination by aminoacyl-tRNA synthetase is achieved through two sifting steps; amino acids larger than the cognate substrate are rejected by a "coarse sieve", while the reaction products of amino acids smaller than the cognate substrate will go through a "fine sieve" and be hydrolyzed. This "double-sieve" mechanism has been proposed for IleRS, a class I aminoacyl-tRNA synthetase. In this study, we created LeuRS-B, a mutant leucyl-tRNA synthetase from Escherichia coli with a duplication of the peptide fragment from Met328 to Pro368 (within its CP1 domain). This mutant has 50% of the leucylation activity of the wild-type enzyme and has the same ability to discriminate noncognate amino acids in the first step of the reaction. However, LeuRS-B can catalyze mischarging of tRNA(Leu) by methionine or isoleucine, suggesting that it is impaired in the ability to edit incorrect products. Wild-type leucyl-tRNA synthetase can edit the mischarged tRNA(Leu) made by LeuRS-B, while a separated CP1 domain cannot. These data suggest that the CP1 domain of leucyl-tRNA synthetase is crucial to the second editing sieve and that CP1 needs the structural context in leucyl-tRNA synthetase to fulfill its editing function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号