首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The matrix-degrading metalloproteinases stromelysin-1, stromelysin-3, and gelatinase A are expressed during ductal branching morphogenesis of the murine mammary gland. Stromelysin-1 expression in particular correlates with ductal elongation, and in situ hybridization and three-dimensional reconstruction studies revealed that stromelysin-1 mRNA was concentrated in stromal fibroblasts along the length of advancing ducts. Transgenic mice expressing an activated form of stromelysin-1 under the control of the MMTV promoter/enhancer exhibited inappropriate alveolar development in virgin females. Ultrastructural analysis demonstrated that the basement membrane underlying epithelial and myoepithelial cells was amorphous and discontinuous compared with the highly ordered basal lamina in control mammary glands. Transgenic mammary glands had at least a twofold increase in the number of cells/unit area and a 1.4-fold increase in the percent of cycling cells by 13 wk of age compared with nontransgenic littermates. In addition, transgenic glands expressed beta-casein mRNA, but not protein, and resembled the proliferative and differentiated state of an animal between 8 and 10 days pregnant. An analysis of metalloproteinase expression in the glands of normal pregnant females demonstrated that the same matrix metalloproteinase family members, including stromelysin-1, were expressed in connective tissue cells surrounding epithelial clusters during the time of lobuloalveolar development. These results suggest that metalloproteinases may assist in remodeling ECM during normal ductal and alveolar branching morphogenesis, and that disruption of the basement membrane by an activated metalloproteinase can affect basic cellular processes of proliferation and differentiation.  相似文献   

8.
9.
Disruption of Epstein – Barr virus (EBV) latency is mediated through the activation of the viral immediate-early proteins, BZLF1 (Z) and BRLF1 (R).i.; (Chevallier-Greco, A., et al., (1986) EMBO J., 5, 3243 – 9; Countryman, and Miller, G. (1985) Proc. Natl. Acad. Sci. USA, 82, 4085 – 4089). We have previously demonstrated that these proteins cooperatively activate the EBV early promoter BMRF1 in lymphoid cells but not in epithelial cells. Although cooperative transactivation by these proteins has been demonstrated with a number of EBV promoters, the mechanism of this interaction is not well understood. We now show that the cooperative activation of the BMRF1 promoter by Z-plus-R requires an intact R binding site and at least one functional Z response element (ZRE). Despite the presence of an R binding site, the BMRF1 promoter is only moderately responsive to R alone in either HeLa or Jurkat cells. Efficient activation of the BMRF1 promoter by Z alone in HeLa cells requires two ZREs (located at − 59 and − 106), whereas two additional Z binding sites (located at − 42 and − 170) contribute very little to Z-induced activation. In the absence of ZREs, Z acted as a repressor of R-induced transactivation. These observations, along with observations made by other investigators (Giot, J.F. et al., (1991) Nucleic Acids Res., 19, 1251 – 8), suggest that Z-plus-R cooperative activation is dependent upon 1) direct binding by R and Z to responsive promoter elements and 2) contributions by cell-specific factors.  相似文献   

10.
11.
12.
13.
14.
《The Journal of cell biology》1996,135(6):1669-1677
We have used transgenic mice overexpressing the human tissue inhibitor of metalloproteinases (TIMP)-1 gene under the control of the ubiquitous beta-actin promoter/enhancer to evaluate matrix metalloproteinase (MMP) function in vivo in mammary gland growth and development. By crossing the TIMP-1 transgenic animals with mice expressing an autoactivating stromelysin-1 transgene targeted to mammary epithelial cells, we obtained a range of mice with genetically engineered proteolytic levels. The alveolar epithelial cells of mice expressing autoactivating stromelysin-1 underwent unscheduled apoptosis during late pregnancy. When stromelysin-1 transgenic mice were crossed with mice overexpressing TIMP-1, apoptosis was extinguished. Entactin (nidogen) was a specific target for stromelysin-1 in the extracellular matrix. The enhanced cleavage of basement membrane entactin to above-normal levels was directly related to the apoptosis of overlying mammary epithelial cells and paralleled the extracellular MMP activity. These results provide direct evidence for cleavage of an extracellular matrix molecule by an MMP in vivo.  相似文献   

15.
The matrix metalloproteinases (MMPs) are a family of endoproteinases that degrade various components of the extracellular matrix and have been implicated in the pathogenesis of multiple sclerosis. To determine whether up-regulation of MMP-3, or stromelysin-1, was a causative factor during the development of demyelination, we have examined the expression of MMP-3 mRNA and protein in brain tissue of a spontaneously demyelinating mouse model overexpressing DM20 (ND4 line) prior to and during the progression of disease. Stromelysin-1, but not other MMP mRNA was elevated approximately 10-fold in transgenic mice between 5 days and 1 month of age, more than 2 months before the onset of disease, and was coordinately expressed with the DM20 transgene. Stromelysin-1 protein levels were also up-regulated as was tissue inhibitor of metalloproteinase-1 (TIMP-1), an in vivo regulator of stromelysin-1 mRNA. When we crossed our ND4 mice with a line of transgenic mice overexpressing TIMP-1 in brain, clinical signs in these mice were attenuated, and the level of stromelysin-1 protein was reduced. Thus, in this transgenic model of demyelinating disease up-regulation of DM20, MMP-3, and TIMP-1 represent important changes in the chemical pathogenesis in brain, which precede the onset of disease.  相似文献   

16.
Leukoregulin (LR), a product of activated T-cells, has been recently shown to modulate the metabolism of extracellular matrix components in human skin fibroblast cultures (Mauviel et al., J Cell Biol 113:1455-1462, 1991). In this study we focused our attention on the effects of LR on the expression of stromelysin-1 gene. This matrix metalloprotease has a broad spectrum of degradative activity and it is also required for maximal activation of interstitial collagenase. Incubation of skin fibroblast cultures with LR resulted in a dose- and time-dependent elevation of stromelysin-1 mRNA levels, the maximum enhancement being up to approximately sevenfold. This effect was abolished by cycloheximide, suggesting a requirement for ongoing protein synthesis. Transient cell transfections with a promoter/reporter gene construct containing 1.3 kb of 5' flanking DNA of the human stromelysin-1 gene linked to the chloramphenicol acetyl transferase (CAT) gene, indicated enhancement of promoter activity by LR. This enhancement was abolished by a single base substitution in the AP-1 binding site of the promoter. Furthermore, gel mobility shift assays demonstrated enhanced AP-1 binding activity in nuclear extracts from cells incubated with LR. However, LR did not alter the activity of a construct containing three AP-1 sequences in front of the thymidine kinase promoter linked to the CAT gene. These results collectively suggest that activation of stromelysin-1 gene expression by LR is mediated by AP-1 regulatory elements which are necessary, but not sufficient, for gene response.  相似文献   

17.
18.
The pH dependence of matrix metalloproteinase (MMP) catalysis is described by a broad bell-shaped curve, indicating the involvement of two unspecified ionizable groups in proteolysis. Stromelysin-1 has a third pK(a) near 6, resulting in a uniquely sharp acidic catalytic optimum, which has recently been attributed to His(224). This suggests the presence of a critical, but unidentified, S1' substructure. Integrating biochemical characterizations of inhibitor-enzyme interactions with active site topography from corresponding crystal structures, we isolated contributions to the pH dependence of catalysis and inhibition of active site residues Glu(202) and His(224). The acidic pK(a) 5.6 is attributed to the Glu(202).zinc.H(2)O complex, consistent with a role for the invariant active site Glu as a general base in MMP catalysis. The His(224)-dependent substructure is identified as a tripeptide (Pro(221)-Leu(222)-Tyr(223)) that forms the substrate cleft lower wall. Substrate binding induces a beta-conformation in this sequence, which extends and anchors the larger beta-sheet of the enzyme. substrate complex and appears to be essential for productive substrate binding. Because the PXY tripeptide is strictly conserved among MMPs, this "beta-anchor" may represent a common motif required for macromolecular substrate hydrolysis. The striking acidic profile of stromelysin-1 defined by the combined ionization of Glu(202) and His(224) allows the design of highly selective inhibitors.  相似文献   

19.
20.
In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4) is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号