首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Valerio Zupo 《Hydrobiologia》2001,449(1-3):131-140
The gut contents of the shrimp Hippolyte inermis were investigated for 1 year along a depth transect through a seagrass bed. Besides size, sex and weight of all individuals were recorded. The diets of immature and adult individuals were compared to detect any influence of food on sex development, since previous investigations indicated a correlation of the life cycle of this protandric species with the abundance of algal food in the environment, and laboratory experiments demonstrated the effect of diatoms of the genus Cocconeis on the direct development of females. Results indicated that the shrimp is an opportunistic herbivore, able to feed on both plant and animal items, with a preference for macroalgae and diatoms present on the leaves of Posidonia oceanica. Small females, deriving from direct differentiation, had a diet significantly different from that of males. The difference was due to a larger abundance of microalgae in the guts of young females. The influence of microalgal food on the sex reversal mechanism of this species, previously detected through laboratory experiments, was demonstrated to control the life cycle of H. inermis in the field.  相似文献   

2.
The effects of cell immobilization on the secretion of extracellular proteases and glucoamylase production by Aspergillus niger were investigated under a variety of immobilization techniques and culture conditions. Immobilization was achieved by means of cell attachment on metal surfaces or spore entrapment and subsequent growth on porous Celite beads. Free-suspension cultures were compared with immobilized mycelium under culture conditions that included growth in shake flasks and an airlift bioreactor. Cell attachment on metal surfaces minimized the secretion of proteases while enhancing glucoamylase production by the fungus. Growth on Celite beads in shake-flask cultures reduced the specific activity of the secreted proteases from 128 to 61 U g−1, while glucoamylase specific activity increased from 205 to 350 U g−1. The effect was more pronounced in bioreactor cultures. A reduction of six orders of magnitude in protease specific activities was observed when the fungus grew immobilized on a rolled metal screen, which served as the draft tube of an airlift bioreactor. Received 29 October 2001/ Accepted in revised form 14 June 2002  相似文献   

3.
Invasive epiphyte Lophocladia lallemandii macroalga induces changes in the erect bryozoan Reteporella grimaldii at shallow Posidonia oceanica meadows at a Mediterranean pristine location. Bryozoan densities at noninvaded seagrass plots (88.32 ± 3.11 colonies m−2) are higher than those at invaded plots (13.39 ± 1.09 colonies m−2) with a fourfold decrease in number of colonies. Activation of enzymatic pathways (catalase, superoxide dismutase, glutathione peroxidase) and increase in lipid peroxidation malondialdehyde (MDA) [0.80 ± 0.06 nmol/mg prot at Posidonia oceanica plots to 1.08 ± 0.04 nmol/mg prot at L. lallemandii (P < 0.05)] is observed on sessile bryozoans as response to anoxia caused by L. lallemandii. δ13C of bryozoan isotopic composition differed among treatments, covering a broad range (−19.30‰ invaded to −2.84‰ at noninvaded plots), suggesting modification of food sources. Induced shifts of a filter-feeding erect bryozoan by dense algal turfs at invaded seagrasses are demonstrated, highlighting the need to further address interaction across natural communities and alien species invaded systems before further cascade effects are driven.  相似文献   

4.
Silicon (Si, as silicate) is involved in numerous important structure and function roles in a wide range of organisms, including man. Silicate availability influences metal concentrations within various cell and tissue types, but, as yet, clear mechanisms for such an influence have been discovered only within the diatoms and sponges. In this study, the influence of silicate on the intracellular accumulation of metals was investigated in baker's yeast (Saccharomyces cerevisiae). It was found that at concentrations up to 10 mM, silicate did not influence the growth rate of S. cerevisiae within a standard complete medium. However, an 11% growth inhibition was observed when silicate was present at 100 mM. Intracellular metal concentrations were investigated in yeast cultures grown without added silicate (−Si) or with the addition of 10 mM silicate (+Si). Decreased amounts of Co (52%), Mn (35%), and Fe (20%) were found within +Si-grown yeast cultures as compared to −Si-grown ones, whereas increased amounts of Mo (56%) and Mg (38%) were found. The amounts of Zn and K were apparently unaffected by the presence of silicon. +Si enhanced the yeast growth rate for low-Zn2+ medium, but it decreased the growth rate under conditions of a low Mg2+ medium and did not alter the growth rates in high Zn2+ and Co2+ media. +Si doubled the uptake rate of Co2+ but did not influence that of Zn2+. We propose that a possible explanation for these results is that polysilicate formation at the cell wall changes the cell wall binding capacity for metal ions. The toxicity of silicate was compared to germanium (Ge, as GeO2), a member of the same group of elements as Si (group 14). Hence, Si and Ge are chemically similar, but silicate starts to polymerize to oligomers above 5 mM, whereas Ge salts remain as monomers at such concentrations. Ge proved to be far more toxic to yeast than Si and no influence of Si on Ge toxicity was found. We propose that these results relate to differences in cellular uptake.  相似文献   

5.
Astragalus membranaceus is one of the most widely used traditional medicinal herbs in China, but the time required to generate a useful product in the field production is long. The growth of adventitious root cultures was compared between cultures grown in solid, liquid, or a 5-L balloon-type bubble bioreactor. The maximum growth ratio (final dry weight/initial dry weight) was determined for adventitious roots grown in the bioreactor. Studies carried out to optimize biomass production of adventitious roots compared adventitious root growth from various inoculum root lengths, inoculum densities, and aeration volume in the bioreactors. The maximum growth ratio occurred in treatments with a 1.5-cm inoculum root length, with 30 g (fresh weight) of inoculum per bioreactor or with an aeration volume of 0.1 vvm (air volume/culture medium volume per min). The polysaccharide, saponin, and flavonoid content of roots from bioreactor-grown cultures were compared to roots from field-grown plants grown for 1 and 3 yr. Total polysaccharide content of adventitious roots in the bioreactor (30.0 mg g−1 dry weight (DW)) was higher than the roots of 1-yr-old (13.8 mg g−1 DW) and 3-yr-old (21.1 mg g−1 DW) plants in the field. Total saponin (3.4 mg g−1 DW) and flavonoid (6.4 mg g−1 DW) contents were nearly identical to 3-yr-old roots and higher than that of 1-yr-old roots under field cultivation.  相似文献   

6.
The wood-degrading basidiomycete Cerrena unicolor C-139 has been suggested as a potential producer of the industrially important enzyme laccase. Basic culture parameters influencing the enzyme synthesis in shaken-flask and aerated bioreactor cultures were evaluated to improve the yields of the process. Production of extracellular laccase was considerably enhanced by the addition of Cu2+ in the micromolar range to a carbon-sufficient and nitrogen-sufficient culture medium (C/N = 16.69). When an optimised medium containing glucose (10 g/L) and l-asparagine (1.5 g/L) was used, and enzyme synthesis was stimulated by addition of 10 μM Cu2+ to the culture medium on days 3, 6 and 9, maximal laccase productivity obtained after 17 days’ cultivation in shaken flask cultures was above 100,000 nkat/L. In fermenter fungal cultures, the influence of stabilisation of medium pH on laccase activity was additionally studied. The use of a bioreactor with an automatic pH control set at pH 6.5 after 48-h incubation resulted in the enzyme activity of 65,000 nkat/L after 8 days’ cultivation.  相似文献   

7.
Cell suspension cultures of Commiphora wightii, grown in modified MS medium containing 2,4-dichlorophenoxyacetic acid (0.5 mg l−1) and kinetin (0.25 mg l−1), produced ∼5 μg guggulsterone g−1 dry wt. In a 2 l stirred tank bioreactor, the biomass was 5.5 g l−1 and total guggulsterone was 36 μg l−1.  相似文献   

8.
In vitro bulblet formation was studied using solid, liquid and bioreactor culture (immersion and periodic immersion in liquid media using ebb and flood) in order to develop a cost effective method for the mass propagation of Lilium oriental hybrid ‘Casablanca’. Although the percent of bulblet formation was higher in solid culture, the increased growth rate and production of large number of bulblets in bioreactor makes it suitable for mass propagation. Four times per day and 15 min of medium supply was optimal for bulblet formation in ebb and flood bioreactor. Bulblet formation was also found to be effective in 16-h photoperiod. It was also observed that bulblet formation in the medium with 1.0 mg dm−3 BA and 0.3 mg dm−3 NAA was higher than in the medium without growth regulators, but formation of abnormal bulblets was higher in medium with BA and NAA. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Guggulsterone, a hypolipidemic natural agent, is produced in resin canals of the plant Commiphora wightii. In this study, the efficacy of different plant growth regulators was evaluated for optimizing its production. Morphactin was found to be effective in enhancing the accumulation of guggulsterones in callus cultures. Maximum callus growth was recorded on medium containing morphactin (0.1 mg l−1) and 2iP (2.5 mg l−1), whereas maximum guggulsterone production occurred when the calluses were cultured on medium containing 0.1 mg l−1 morphactin and 1.0 mg l−1 2iP. Morphactin and 2iP interacted significantly to enhance the callus growth and guggulsterone production by about 8-folds in one-year-old cultures. However, the effect of morphactin on callus growth and guggulsterone production was not uniform over the levels of 2iP tested. Such an effect of morphactin has never been reported on the production of secondary metabolites.  相似文献   

10.
The effects of silicate and glucose on growth and eicosapentaenoic acid (EPA) production by the diatom Nitzschia laevis were studied. By alternately altering the concentrations of silicate (2.7–64 mg l−1) and glucose (1–40 g l−1) in the medium, the highest cell dry weight (ca. 5.5 g l−1) was obtained at 20 g l−1 glucose and 32 mg l−1 silicate, while the highest specific growth rate (ca. 0.65 day−1) was obtained at a relatively low glucose concentration (5 g l−1) and high silicate concentrations (32–64 mg l−1). At glucose levels of 5 and 20 g l−1, EPA content was higher with lower silicate concentrations (2.7 and 16 mg l−1 silicate, respectively), while at a silicate level of 16 mg l−1, higher glucose concentrations (20–40 g l−1) facilitated EPA formation. The highest EPA yield (131 mg l−1) was obtained at 20 g l−1 glucose and 32 mg l−1 silicate, while the highest EPA productivity (15.1 mg l−1 day−1) was obtained at 20 g l−1 glucose and 64 mg l−1 silicate. Journal of Industrial Microbiology & Biotechnology (2000) 25, 218–224. Received 08 May 2000/ Accepted in revised form 21 July 2000  相似文献   

11.
An obligate requirement for selenium is demonstrated in axenic culture of the coastal marine diatom Thalassiosira pseudonana (clone 3H) (Hust.) Hasle and Heimdal grown in artificial seawater medium. Selenium deficiency was characterized by a reduction in growth rate and eventually by a cessation of cell division. The addition of 10−10 M Na2SeO3 to nutrient enriched artificial seawater resulted in excellent growth of T. pseudonana and only a slight inhibition of growth occurred at Na2SeO3 concentrations of 10−3 and 10−2 M. By contrast, Na2SeO4 failed to support growth of T. pseudonana when supplied at concentrations less than 10−7 M and the growth rate at this concentration was only one quarter of the maximum growth rate. The addition of 10−3 and 10−2 M Na2SeO4 to the culture medium was toxic and cell growth was completely inhibited. Eleven trace elements were tested for their ability to replace the selenium requirement by this alga find all were without effect. In selenium-deficient and selenium-starved cultures of T. pseudonana cell volume increased as much as 10-fold as a result of an increase in cell length (along the pervalvar axis) but cell width was constant. It is concluded that selenium is an indispensable element for the growth of T. pseudonana and it should be included as a nutrient enrichment to artificial seawater medium when culturing this alga.  相似文献   

12.
Sulfate reduction rates and biogeochemical parameters of fish farm sediments across the Mediterranean were investigated in the order to evaluate the potential effects of organic matter inputs on habitat quality for the common seagrass Posidonia oceanica. Four study sites were selected in Spain, Italy, Greece and Cyprus to represent the Mediterranean basin. P. oceanica was found in immediate vicinity of all the farms, which were located at physically exposed sites about 1 km from the shore lines. Organic matter accumulation, sulfate reduction rates and sulfur pools were measured in depth profiles along transects from the farms in both bare and vegetated sediments. Results show that although the organic matter accumulation was minor at the sites (POC < 2.8% DW), the sulfate reduction rates were high, in particular at the largest farm in Italy (up to 212 mmol m−2 d−1), similar to rates found at shallower, temperate fish farm sites, where higher sedimentation rates can be expected. Sulfate reducing bacteria in these low-organic, carbonate-rich Mediterranean sediments respond strongly to organic matter loadings and cause habitat degradation. Sulfate reduction rates measured in the P. oceanica sediments were among the highest recorded (7.8–42.0 mmol m−2 d−1) similar to rates found in degrading meadows impacted by organic matter loadings. As sulfate reduction rates were correlated with the sedimentation rates along the transects rather than organic matter pools this suggests mineralization processes were controlled by organic matter loading in fish farm sediments. The vegetated sediments near the net cages were more reduced due to accumulation of sulfides compared to control sites, which is a possible contributing factor to the observed seagrass decline in the farm surroundings. It is recommended that Mediterranean fish farms are placed in areas with rapid dispersal of particulate waste products to minimize organic matter loading of the sediments and thereby preserve habitat quality for benthic fauna and flora.  相似文献   

13.
The interaction effects between irradiance and temperature on growth rates ofNannochloropsis oceanicawere determined in both laboratory cultures and large-scale tubular photobioreactors. Growth responses were investigated in 48 batch cultures subjected to crossing light/temperature gradients ranging from 34–80μmol photons m−2s−1and 14.5–35.7C respectively. Comparisons were made to growth responses observed in production systems (200L biofences) operated in climate-regulated greenhouses with controlled temperature and artificial light gradients. Cellular responses showed increasing specific growth rates as a function of temperature, with a peak at 25–29C, after which the growth became increasingly unstable. The optimum temperature for growth increased with higher light intensities up to approximately 28C at 80μmol photons m−2s−1. At low light intensities the specific growth rate was less affected by temperature. The maximum daily production measured in the biofence systems increased proportionally with irradiation and reached approximately 0.7gL−1d−1at 1030μmol photons m−2s−1average daily radiation for a culture temperature of 24C. This corresponds to a daily yield of 140g per day in a 200L biofence system. When specific growth rates for the biofence cultures were measured at different densities and plotted against temperature, results showed a peak with the 24C temperature treatment. This peak became less pronounced as the density increased in the cultures. This is consistent with the laboratory results; increasing cell density in the biofence cultures resulted in less average light cell−1, which produced the same temperature dependent response as seen by reducing the external irradiance exposure for the dilute laboratory cultures.  相似文献   

14.
Thalassiosira oceanica (CCMP 1005) was grown over a range of copper concentrations at saturating and subsaturating irradiance to test the hypothesis that Cu and light were interacting essential resources. Growth was a hyperbolic function of irradiance in Cu‐replete medium (263 fmol Cu′ · L?1) with maximum rates achieved at 200 μmol photons · m?2 · s?1. Lowering the Cu concentration at this irradiance to 30.8 fmol Cu′ · L?1 decreased cellular Cu quota by 7‐fold and reduced growth rate by 50%. Copper‐deficient cells had significantly slower (P < 0.0001) rates of maximum, relative photosynthetic electron transport (rETRmax) than Cu‐sufficient cells, consistent with the role of Cu in photosynthesis in this diatom. In low‐Cu medium (30.8 fmol Cu′ · L?1), growth rate was best described as a positive, linear function of irradiance and reached the maximum value measured in Cu‐replete cells when irradiance increased to 400 μmol photons · m?2 · s?1. Thus, at high light, low‐Cu concentration was no longer limiting to growth: Cu concentration and light interacted strongly to affect growth rate of T. oceanica (P < 0.0001). Relative ETRmax and Cu quota of cells grown at low Cu also increased at 400 μmol photons · m?2 · s?1 to levels measured in Cu‐replete cells. Steady‐state uptake rates of Cu‐deficient and sufficient cells were light‐dependent, suggesting that faster growth of T. oceanica under high light and low Cu was a result of light‐stimulated Cu uptake.  相似文献   

15.
The structure, diversity and spatial distribution of the amphipod fauna associated with Posidonia oceanica meadows were studied along the Tunisian coasts in 2007. Samples were collected in nine different meadows at 2 m depth. A total of 44 species belonging to 12 families were collected. The most common species in terms of abundance were Ampithoe helleri, Hyale camptonyx and Ericthonius punctatus. The highest values of abundance and species richness and the lowest values of diversity and equitability were found in meadows with high epiphyte biomass. Multivariate analyses of data indicated that epiphyte biomass and geographical position were major determinants of the distribution and composition of amphipod assemblages along Tunisian coasts. The presence of two lessepsian amphipod species in one of the southern Posidonia oceanica meadows modified the structure of assemblage.  相似文献   

16.
The culture of Saussurea medusa cell were cultured in an internal loop airlift bioreactor with sifter draft tube (ILABSDT) was investigated. Under the optimal culture conditions, which were inoculation size 1.5 g(d.m.) dm−3, aeration rate 0.3 dm3(air) dm−3(medium) min−1, and 14 mesh sifter holes, the maximum biomass, syringin content and syringin production reached 11.7 g(d.m.) dm−3, 17.7 mg g−1 and 206.6 mg dm−3, respectively. Among cell cultures in shake flask, bubble column bioreactor and ILABSDT, ILABSDT had the highest syringin productivity and reached 12.41 mg dm−3 d−1.  相似文献   

17.
We investigated the factors that affect biomass production fromAnoectochilus formosanus in a bioreactor system. Those factors included inoculum size, initial sucrose concentration, media supplements, photosynthetic photon flux density (PPFD), and cuIturing methods. An inoculum size of 8 g L−1 was most suitable for shoot proliferation; biomass accumulation was optimized when the medium was supplemented with 3% sucrose compared with sucrose-free media or those containing concentrations of 6% or 9%. This accumulation also was enhanced under a PPFD of 50 μmol m2 s−1. Likewise, the addition of coconut water (50 mL L−1) plus activated charcoal (0.5 mg L−1) to our Hyponex medium proved most beneficial. Comparative studies among three bioreactor systems — continuous immersion, raft (net), and temporary immersion (the ebb and flood system) — revealed that shoot proliferation and biomass accumulation were more efficient when culturing was performed under continuous immersion.  相似文献   

18.
The seagrass Posidonia oceanica plays a multifunctional role in the coastal area as an important and productive component of ecosystems in the Mediterranean Sea. We detected by RAPD analysis with two arbitrary primers genetic differences in P. oceanica collected from several sites in the Southern Mediterranean. By AMOVA analysis we observed a level of about 20% genetic difference among individuals within a population and 80% among populations. A common band of 200 bp was found in all the amplified samples. Cloning and sequencing analysis of this band revealed the presence of a simple tandem repeat sequence (minisatellite) that we called PoTR (Posidonia oceanica tandem repeat). Finally, the ability of PoTR to detect genetic variability inP. oceanica genome was demonstrated by the presence of amplification products of different lengths utilizing primers internal to this sequence.  相似文献   

19.
Summary Single node stem segments fromin vitro potato shoots cultured in liquid medium in the presence of ancymidol (23.4 μM) developed into bud clusters in either shaken flasks or bioreactor cultures. Buds on the clusters developed tubers after subculture to a tuber induction medium with 23.2 μM kinetin, 19.5 μM ancymidol, and 6-8% sucrose. The number of tubers per cluster and their size were higher in agar induction medium on top of which a second layer of liquid medium was added, than in liquid shake or bioreactor cultures. The highest increase in tuber size (i.e., 720 mg fresh weight after 7 weeks), was obtained in agar cultures flushed twice with liquid tuber induction medium. The potential of bioreactor cultures for potato bud proliferation and enhanced tuber development in double layer agar-liquid cultures is discussed.  相似文献   

20.
Abstract

Distribution, structure and phenology of Posidonia oceanica meadows along Sicilian coasts are reported. Posidonia beds are frequently found in Sicily, especially along the south-eastern, north-western and western coasts. Leaf surface per shoot is identified as the most important variable among the phenological parameters. The rhizomes annual mean primary production turned out to be among the highest values observed in the Mediterranean Sea. Flowering and fruiting of Posidonia oceanica are frequent and can occur every year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号