首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colorectal cancer (CRC) is one of the costliest health problems and ranks second in cancer-related mortality in developed countries. With the aid of proteomics, many protein biomarkers for the diagnosis, prognosis, and precise management of CRC have been identified. Furthermore, some protein biomarkers exhibit structural diversity after modifications. Post-translational modifications (PTMs), most of which are catalyzed by a variety of enzymes, extensively increase protein diversity and are involved in many complex and dynamic cellular processes through the regulation of protein function. Accumulating evidence suggests that abnormal PTM events are associated with a variety of human diseases, such as CRC, thus highlighting the need for studying PTMs to discover both the molecular mechanisms and therapeutic targets of CRC. In this review, we begin with a brief overview of the importance of protein PTMs, discuss the general strategies for proteomic profiling of several key PTMs (including phosphorylation, acetylation, glycosylation, ubiquitination, methylation, and citrullination), shift the emphasis to describing the specific methods used for delineating the global landscapes of each of these PTMs, and summarize the recent applications of these methods to explore the potential roles of the PTMs in CRC. Finally, we discuss the current status of PTM research on CRC and provide future perspectives on how PTM regulation can play an essential role in translational medicine for early diagnosis, prognosis stratification, and therapeutic intervention in CRC.  相似文献   

2.
结直肠癌(colorectal cancer,CRC)是癌症相关死亡的第二大主要原因,且患者趋于年轻化,化疗、免疫治疗及靶向治疗等药物治疗虽然取得进展,但因药物的毒性、耐药及价格昂贵严重影响CRC的综合治疗效果,因此寻求新的、更敏感有效的药物和药物靶点是目前研究的热点。铁死亡作为一种近期发现的细胞死亡调节方式,它与癌症药物耐药性、敏感性密切相关,激活铁死亡成为克服传统癌症治疗耐药机制的潜在策略,诱导铁死亡的药物研发应用有望成为治疗CRC的有效手段。本文综述在CRC中铁死亡相关代谢途径药物研究的最新进展,以便整体认识基于铁死亡的药物在CRC中作用的具体机制,充分发掘其治疗潜力,为CRC的诊疗和耐药性的解决提供新的思路。  相似文献   

3.
Circular RNA (circRNA) is a highly abundant type of single-stranded non-coding RNA. Novel research has discovered many roles of circRNA in colorectal cancer (CRC) including proliferation, metastasis and apoptosis. Furthermore, circRNAs also play a role in the development of drug resistance and have unique associations with tumour size, staging and overall survival in CRC that lend circRNAs the potential to serve as diagnostic and prognostic biomarkers. Among cancers worldwide, CRC ranks second in mortality and third in incidence. In order to have a better understanding of the influence of circRNA on CRC development and progression, this review summarizes the role of specific circRNAs in CRC and evaluates their potential value as therapeutic targets and biomarkers for CRC. We aim to provide insight in the development of therapy and clinical decision-making.  相似文献   

4.
5.
Huntington's disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD.  相似文献   

6.
Introduction: Resistance to chemotherapy and development of specific and effective molecular targeted therapies are major obstacles facing current cancer treatment. Comparative proteomic approaches have been employed for the discovery of putative biomarkers associated with cancer drug resistance and have yielded a number of candidate proteins, showing great promise for both novel drug target identification and personalized medicine for the treatment of drug-resistant cancer.

Areas covered: Herein, we review the recent advances and challenges in proteomics studies on cancer drug resistance with an emphasis on biomarker discovery, as well as understanding the interconnectivity of proteins in disease-related signaling pathways. In addition, we highlight the critical role that post-translational modifications (PTMs) play in the mechanisms of cancer drug resistance.

Expert opinion: Revealing changes in proteome profiles and the role of PTMs in drug-resistant cancer is key to deciphering the mechanisms of treatment resistance. With the development of sensitive and specific mass spectrometry (MS)-based proteomics and related technologies, it is now possible to investigate in depth potential biomarkers and the molecular mechanisms of cancer drug resistance, assisting the development of individualized therapeutic strategies for cancer patients.  相似文献   


7.
目前对于结核分枝杆菌(Mycobacterium tuberculosis,Mtb)耐药产生机制研究得较多,但对其调控机制的研究较少。翻译后修饰(Post-translational modifications,PTMs)在结核菌多种生理途径(如代谢、应激反应等)中发挥重要调控作用,而它们和结核菌耐药之间的关系逐渐引起了研究者的关注。文中介绍了结核菌抗生素耐受机制以及存在的一些PTMs,重点讨论了PTMs在调控结核杆菌耐药机制中的潜在作用,以期为新型抗结核药物研发提供新的切入点。  相似文献   

8.
Colorectal cancer (CRC) is one of the most common cancers globally. Despite recent advances in therapeutic approaches, this cancer continues to have a poor prognosis, particularly when diagnosed late. 5-Fluorouracil (5-FU) has been commonly prescribed for patients with CRC, but resistance to 5-FU is one of the main reasons for failure in the treatment of this condition. Recently, microRNAs (miRNAs) have been established as a means of modifying the signaling pathways involved in initiation and progression of CRC and their role as oncogene or tumor suppressor have been investigated in various studies. Moreover, miRNAs through various mechanisms play an important role in inducing tumor resistance or sensitivity to anticancer drugs. Detecting and targeting these mechanisms may be a new therapeutic approach. This review summarizes the current knowledge about the potential roles of miRNAs in 5-FU resistance, with particular emphasis on molecular mechanism involved.  相似文献   

9.
10.
11.
With ever-increasing molecular information about colorectal cancer (CRC), there is an expectation to detect more sensitive and specific molecular markers for new advanced diagnostic methods that can surpass the limitations of current screening tests. Moreover, enhanced molecular pathology knowledge about cancer has led to the development of targeted therapies, designed to interfere with specific aberrant biological pathways in cancer. Furthermore, biotechnology has opened a new window in CRC diagnosis and treatment by introducing different application of antibodies, antibody fragments, non-Ig scaffold proteins, and aptamers in targeted therapy and drug delivery. This review summarizes the molecular diagnostic and therapeutic approaches in CRC with a focus on genetic and epigenetic alterations, protein and metabolite markers as well as targeted therapy and drug delivery by Ig-scaffold proteins, non-Ig scaffold proteins, nanobodies, and aptamers.  相似文献   

12.
Oxaliplatin is a commonly used platinum drug for colorectal cancer (CRC). However, the treatment of CRC by oxaliplatin usually fails because of drug resistance, which results in a huge challenge in the therapy of CRC. Elucidation of molecular mechanisms may help to overcome oxaliplatin resistance of CRC. In our study, we revealed that KIAA1199 can promote oxaliplatin resistance of CRC. Mechanistically, KIAA1199 prevents oxaliplatin mediated apoptosis via up-regulated PARP1 derived from reduced endoplasmic reticulum stress induced by protein O-GlcNAcylation. In the meantime, KIAA1199 can also trigger epithelial mesenchymal transition by stabilizing SNAI1 protein via O-GlcNAcylation. Therefore, KIAA1199 has great potential to be a novel biomarker, therapeutic target for oxaliplatin resistance and metastasis of CRC.  相似文献   

13.
Lysine-specific demethylase 1 (LSD1) is crucial for regulating gene expression by catalyzing the demethylation of mono- and di-methylated histone H3 lysine 4 (H3K4) and lysine 9 (H3K9) and non-histone proteins through the amine oxidase activity with FAD+ as a cofactor. It interacts with several protein partners, which potentially contributes to its diverse substrate specificity. Given its pivotal role in numerous physiological and pathological conditions, the function of LSD1 is closely regulated by diverse post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation. In this review, we aim to provide a comprehensive understanding of the regulation and function of LSD1 following various PTMs. Specifically, we will focus on the impact of PTMs on LSD1 function in physiological and pathological contexts and discuss the potential therapeutic implications of targeting these modifications for the treatment of human diseases.  相似文献   

14.
Head and neck squamous cell carcinomas (HNSCCs) are aggressive and clinically challenging tumours that require a multidisciplinary management approach. Despite significant therapy improvements, HNSCC patients have a poor prognosis with a 5-year survival rate of about 65%. As recently recognised key players in cancer, exosomes are extracellular vesicles (EVs) with a diameter of nearly 50–120 nm which transport information from one cell to another. Exosomes are actively involved in various aspects of tumour initiation, development, metastasis, immune regulation, therapy resistance, and therapeutic applications. However, current knowledge of the role of exosomes in the pathophysiological processes of HNSCC is still in its infancy, and additional studies are needed. In this review, we summarise and discuss the relevance of exosomes in mediating local immunosuppression and therapy resistance of HNSCC. We also review the most recent studies that have explored the therapeutic potential of exosomes as cancer vaccines, drug carriers or tools to reverse the drug resistance of HNSCC.  相似文献   

15.
Post-translational modifications (PTMs) occur on almost all proteins analyzed to date. The function of a modified protein is often strongly affected by these modifications and therefore increased knowledge about the potential PTMs of a target protein may increase our understanding of the molecular processes in which it takes part. High-throughput methods for the identification of PTMs are being developed, in particular within the fields of proteomics and mass spectrometry. However, these methods are still in their early stages, and it is indeed advantageous to cut down on the number of experimental steps by integrating computational approaches into the validation procedures. Many advanced methods for the prediction of PTMs exist and many are made publicly available. We describe our experiences with the development of prediction methods for phosphorylation and glycosylation sites and the development of PTM-specific databases. In addition, we discuss novel ideas for PTM visualization (exemplified by kinase landscapes) and improvements for prediction specificity (by using ESS--evolutionary stable sites). As an example, we present a new method for kinase-specific prediction of phosphorylation sites, NetPhosK, which extends our earlier and more general tool, NetPhos. The new server, NetPhosK, is made publicly available at the URL http://www.cbs.dtu.dk/services/NetPhosK/. The issues of underestimation, over-prediction and strategies for improving prediction specificity are also discussed.  相似文献   

16.
Colorectal cancer (CRC) is one of the most common cause of death among neoplasms around the world. The environmental factors, like diet and obesity, are crucial in CRC pathogenesis by creating cancer-favorable microenvironment and hormonal changes. Adiponectin, the adipose tissue-specific hormone, is generally considered to negatively correlate with CRC development. The interleukin 6 (IL-6) is one of the most important pro-inflammatory cytokine connected with CRC, which is strongly inflammation-associated. The opioids are variable group substantially correlated with cancers - the endogenous opioids affect immune system and cell cycle including proliferation and cell death whereas exogenous opioids are leading clinically used analgesics in terminal cancer patients. In this review we discuss the involvement of adiponectin, IL-6 and opioids in CRC pathogenesis, their link with obesity, possible cross-talk and potential novel therapeutic approach in CRC treatment.  相似文献   

17.
During manufacturing and storage process, therapeutic proteins are subject to various post-translational modifications (PTMs), such as isomerization, deamidation, oxidation, disulfide bond modifications and glycosylation. Certain PTMs may affect bioactivity, stability or pharmacokinetics and pharmacodynamics profile and are therefore classified as potential critical quality attributes (pCQAs). Identifying, monitoring and controlling these PTMs are usually key elements of the Quality by Design (QbD) approach. Traditionally, multiple analytical methods are utilized for these purposes, which is time consuming and costly. In recent years, multi-attribute monitoring methods have been developed in the biopharmaceutical industry. However, these methods combine high-end mass spectrometry with complicated data analysis software, which could pose difficulty when implementing in a quality control (QC) environment. Here we report a multi-attribute method (MAM) using a Quadrupole Dalton (QDa) mass detector to selectively monitor and quantitate PTMs in a therapeutic monoclonal antibody. The result output from the QDa-based MAM is straightforward and automatic. Evaluation results indicate this method provides comparable results to the traditional assays. To ensure future application in the QC environment, this method was qualified according to the International Conference on Harmonization (ICH) guideline and applied in the characterization of drug substance and stability samples. The QDa-based MAM is shown to be an extremely useful tool for product and process characterization studies that facilitates facile understanding of process impact on multiple quality attributes, while being QC friendly and cost-effective.  相似文献   

18.
ABSTRACT: Controlling gene expression via small interfering RNA (siRNA) has opened the doors to a plethora of therapeutic possibilities, with many currently in the pipelines of drug development for various ocular diseases. Despite the potential of siRNA technologies, barriers to intracellular delivery significantly limit their clinical efficacy. However, recent progress in the field of drug delivery strongly suggests that targeted manipulation of gene expression via siRNA delivered through nanocarriers can have an enormous impact on improving therapeutic outcomes for ophthalmic applications. Particularly, synthetic nanocarriers have demonstrated their suitability as a customizable multifunctional platform for the targeted intracellular delivery of siRNA and other hydrophilic and hydrophobic drugs in ocular applications. We predict that synthetic nanocarriers will simultaneously increase drug bioavailability, while reducing side effects and the need for repeated intraocular injections. This review will discuss the recent advances in ocular siRNA delivery via non-viral nanocarriers and the potential and limitations of various strategies for the development of a 'universal' siRNA delivery system for clinical applications.  相似文献   

19.
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell‐to‐cell communication over short distances, and also for long‐range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post‐translationally modified peptides. These peptides are derived from inactive pre‐pro‐peptides of approximately 70–120 amino acids. Multiple post‐translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.  相似文献   

20.
The roles of post-translational modifications (PTMs) in the onset and progression of disease have been extensively studied for decades. More specifically, various PTMs have been the focus of research in Alzheimer's disease (AD). The two most discussed hallmarks of the disease, senile plaques and tau tangles, are the result of PTMs of the amyloidβ protein precursor (AβPP) and the microtubule stabilizing protein: tau. While these modifications have been characterized indirectly by biochemical-based methods, the primary shortcoming to this research can be linked to a lack of a thorough molecular-based means of qualitative and quantitative analysis of many of these modifications within transgenic animal, and human samples. In this review, we discuss the important proteins and their associated PTMs linked to AD and the ways in which mass spectrometry has and will be utilized to analyze them. We also comment on novel ways in which molecular-based mass spectrometry methods should be employed going forward to resolve the interconnections of the PTMs involvement in various stages of AD pathology (preclinical, mild cognitive impairment, advanced-stage AD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号