首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Process Biochemistry》2014,49(9):1538-1542
The keratinase from Bacillus licheniformis BBE11-1 is a serine protease and expressed as a pre-pro-precursor. To produce a mature and active keratinase, the propeptide must be cleaved on the C-terminal via cis or trans. In this study, to enhance the production of keratinase in Bacillus subtilis, single amino acid substitutions, single residue deletions and linkers were introduced at the C-terminus of the propeptide. The results showed that optimizing the residue of cleavage site of propeptide will affect the cleavage efficiency of propeptide, and the mature enzyme yield of Leu(P1)Ala mutant increases 50% compared with the wild-type. In addition, inserting linkers and deleting individual residues at the C-terminal of the propeptide decreases the mature keratinase production. Our results indicated that the primary structure of the C-terminus of propeptide is crucial for the mature keratinase production. Propeptide engineering at C-terminus may be an effective approach to increase the yield of keratinase.  相似文献   

2.
Pyrolysin-like proteases from hyperthermophiles are characterized by large insertions and long C-terminal extensions (CTEs). However, little is known about the roles of these extra structural elements or the maturation of these enzymes. Here, the recombinant proform of Pyrococcus furiosus pyrolysin (Pls) and several N- and C-terminal deletion mutants were successfully expressed in Escherichia coli. Pls was converted to mature enzyme (mPls) at high temperatures via autoprocessing of both the N-terminal propeptide and the C-terminal portion of the long CTE, indicating that the long CTE actually consists of the C-terminal propeptide and the C-terminal extension (CTEm), which remains attached to the catalytic domain in the mature enzyme. Although the N-terminal propeptide deletion mutant PlsΔN displayed weak activity, this mutant was highly susceptible to autoproteolysis and/or thermogenic hydrolysis. The N-terminal propeptide acts as an intramolecular chaperone to assist the folding of pyrolysin into its thermostable conformation. In contrast, the C-terminal propeptide deletion mutant PlsΔC199 was converted to a mature form (mPlsΔC199), which is the same size as but less stable than mPls, suggesting that the C-terminal propeptide is not essential for folding but is important for pyrolysin hyperthermostability. Characterization of the full-length (mPls) and CTEm deletion (mPlsΔC740) mature forms demonstrated that CTEm not only confers additional stability to the enzyme but also improves its catalytic efficiency for both proteineous and small synthetic peptide substrates. Our results may provide important clues about the roles of propeptides and CTEs in the adaptation of hyperthermophilic proteases to hyperthermal environments.  相似文献   

3.
Vibrio vulnificus, a marine bacterium capable of causing wound infection and septicemia, secretes a 45-kDa metalloprotease (vEP) with many biological activities. The precursor of vEP consists of four regions: a signal peptide, an N-terminal propeptide (nPP), a C-terminal propeptide, and the mature protease. Two forms of vEP-vEP-45, which contains the mature protease plus the C-terminal propeptide, and vEP-34, which contains only the mature protease-were expressed in Escherichia coli and purified. vEP-45 and vEP-34 had similar activities with azocasein as a substrate, but vEP-34 had reduced activity toward insoluble proteins. The nPP of vEP was expressed as a His tag fusion protein, and its effect on vEP activity was investigated. nPP inhibited the activities of both vEP-45 and vEP-34 but not that of thermolysin, a different but related zinc-dependent protease. The inhibition of vEP by nPP was further examined using vEP-34 as a representative enzyme. The inhibition could be completely reversed under conditions of low enzyme and propeptide concentrations and with prolonged incubation, which resulted from the degradation of nPP by vEP. However, even at high nPP and vEP concentrations, inhibition of vEP by nPP at high temperatures was not effective, resulting in the degradation of both nPP and vEP. These results demonstrate that the nPP of vEP could bind to vEP and inhibit its activity, resulting in the degradation of the propeptide.  相似文献   

4.
Vacuolar processing enzyme (VPE) is a cysteine proteinase responsible for the maturation of various vacuolar proteins in higher plants. To clarify the mechanism of maturation and activation of VPE, we expressed the precursors of Arabidopsis gamma VPE in insect cells. The cells accumulated a glycosylated proprotein precursor (pVPE) and an unglycosylated preproprotein precursor (ppVPE) which might be unfolded. The N-terminal sequence of pVPE revealed that ppVPE had a 22-amino-acid signal peptide to be removed co-translationally. Under acidic conditions, the 56-kDa pVPE was self-catalytically converted to a 43-kDa intermediate form (iVPE) and then to the 40-kDa mature form (mVPE). N-terminal sequencing of iVPE and mVPE showed that sequential removal of the C-terminal propeptide and N-terminal propeptide produced mVPE. Both iVPE and mVPE exhibited the activity, while pVPE exhibited no activity. These results imply that the removal of the C-terminal propeptide is essential for activating the enzyme. Further removal of the N-terminal propeptide from iVPE is not required to activate the enzyme. To demonstrate that the C-terminal propeptide functions as an inhibitor of VPE, we expressed the C-terminal propeptide and produced specific antibodies against it. We found that the C-terminal propeptide reduced the activity of VPE and that this inhibitory activity was suppressed by specific antibodies against it. Our findings suggest that the C-terminal propeptide functions as an auto-inhibitory domain that masks the catalytic site. Thus, the removal of the C-terminal propeptide of pVPE might expose the catalytic site of the enzyme.  相似文献   

5.
A cDNA coding for the murine proprotein convertase-1 (mPC1 also known as mPC3 or mSPC3) was inserted into theAutographa californicanuclear polyhedrosis virus. Following infection ofSpodoptera frugiperdacells, the recombinant N-glycosylated protein is secreted into the cell culture medium from which it can be purified to homogeneity as a fully enzymatically active enzyme. Two major secreted molecular forms of mPC1 with apparent molecular weights of 85 and 71 kDa, respectively, and a minor one of 75 kDa are immunodetected in the medium. Automated NH2-terminal sequencing reveals that all three forms result from processing at the predicted zymogen activation site whereas both the 75- and the 71-kDa forms are truncated at their COOH-terminus. Labeling by an active-site titrant demonstrates that the 85-kDa form is optimally labeled at near neutral pH whereas the COOH-truncated forms are optimally labeled at acidic pH. Additionally it is shown that the 85-kDa mPC1 is transformed into the COOH-truncated forms followingin vitroincubation at acidic pH levels and in presence of calcium. Concomitantly, the transformation from 85 to 71 kDa is accompanied by a 10- to 40-fold increase in enzymatic activity upon assaying at pH 6.0. The 71-kDa form can be recovered after purification at a level of 1 to 1.5 mg per liter of cell culture medium and is enzymatically stable only in the pH range from 5.0 to 6.5. Cells treated with tunicamycin show a drastically reduced secretion of the convertase in the medium but are not affected by swainsonine and deoxymannojirimycin. Finally, the 85-kDa secreted mPC1 is shown to be sulfated.  相似文献   

6.
In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, sequesters precursor aminopeptidase I (prApe1) dodecamers in the form of a large complex into a Cvt vesicle using autophagic machinery, targeting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo critical for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex formation and autophagic receptor recognition. Here we report the X-ray crystal structure of Ape1 at 2.5 Å resolution and reveal its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis demonstrates that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar targeting in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, we found that 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is essential for the assembly of the Cvt vesicle for vacuolar delivery. This study describes a molecular framework for understanding the mechanism of Cvt or autophagosomal biogenesis in selective macroautophagy.  相似文献   

7.
Lantibiotics are peptide-derived antibiotics that inhibit the growth of Gram-positive bacteria via interactions with lipid II and lipid II-dependent pore formation in the bacterial membrane. Due to their general mode of action the Gram-positive producer strains need to express immunity proteins (LanI proteins) for protection against their own lantibiotics. Little is known about the immunity mechanism protecting the producer strain against its own lantibiotic on the molecular level. So far, no structures have been reported for any LanI protein. We solved the structure of SpaI, a LanI protein from the subtilin producing strain Bacillus subtilis ATCC 6633. SpaI is a 16.8-kDa lipoprotein that is attached to the outside of the cytoplasmic membrane via a covalent diacylglycerol anchor. SpaI together with the ABC transporter SpaFEG protects the B. subtilis membrane from subtilin insertion. The solution-NMR structure of a 15-kDa biologically active C-terminal fragment reveals a novel fold. We also demonstrate that the first 20 N-terminal amino acids not present in this C-terminal fragment are unstructured in solution and are required for interactions with lipid membranes. Additionally, growth tests reveal that these 20 N-terminal residues are important for the immunity mediated by SpaI but most likely are not part of a possible subtilin binding site. Our findings are the first step on the way of understanding the immunity mechanism of B. subtilis in particular and of other lantibiotic producing strains in general.  相似文献   

8.
9.
Glutamyl endopeptidases (GSEs) specifically hydrolyze peptide bonds formed by α-carboxyl groups of Glu and Asp residues. We cloned the gene for a thermophilic GSE (designated TS-GSE) from Thermoactinomyces sp. CDF. A proform of TS-GSE that contained a 61-amino acid N-terminal propeptide and a 218-amino acid mature domain was produced in Escherichia coli. We found that the proform possessed two processing sites and was capable of autocatalytic activation via multiple pathways. The N-terminal propeptide could be autoprocessed at the Glu?1-Ser1 bond to directly generate the mature enzyme. It could also be autoprocessed at the Glu?12-Lys?11 bond to yield an intermediate, which was then converted into the mature form after removal of the remaining part of the propeptide. The segment surrounding the two processing sites was flexible, which allowed the proform and the intermediate form to be trans-processed into the mature form by either active TS-GSE or heterogeneous proteases. Deletion analysis revealed that the N-terminal propeptide is important for the correct folding and maturation of TS-GSE. The propeptide, even its last 11-amino acid peptide segment, could inhibit the activity of its cognate mature domain. The mature TS-GSE displayed a temperature optimum of 85 °C and retained approximately 90 % of its original activity after incubation at 70 °C for 6 h, representing the most thermostable GSE reported to date. Mutational analysis suggested that the disulfide bonds Cys32-Cys48 and Cys180-Cys183 cumulatively contributed to the thermostability of TS-GSE.  相似文献   

10.
When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520–2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The polypeptide had a signal peptide (2 kDa) consisting of 25 amino acid residues preceding the N-terminal amino acid sequence of the enzyme and exhibited significant homology with hyaluronidase of Streptomyces griseus (identity score, 37.7%). Escherichia coli transformed with the gene without the signal peptide sequence showed a xanthan lyase activity and produced intracellularly a large amount of the enzyme (400 mg/liter of culture) with a molecular mass of 97 kDa. During storage at 4°C, the purified enzyme (97 kDa) from E. coli was converted to a low-molecular-mass (75-kDa) enzyme with properties closely similar to those of the enzyme (75 kDa) from Bacillus sp. strain GL1, specifically in optimum pH and temperature for activity, substrate specificity, and mode of action. Logarithmically growing cells of Bacillus sp. strain GL1 on the medium with xanthan were also found to secrete not only xanthan lyase (75 kDa) but also a 97-kDa protein with the same N-terminal amino acid sequence as that of xanthan lyase (75 kDa). These results suggest that, in Bacillus sp. strain GL1, xanthan lyase is first synthesized as a preproform (99 kDa), secreted as a precursor (97 kDa) by a signal peptide-dependent mechanism, and then processed into a mature form (75 kDa) through excision of a C-terminal protein fragment with a molecular mass of 22 kDa.  相似文献   

11.
VEGF-D is an angiogenic and lymphangiogenic glycoprotein that can be proteolytically processed generating various forms differing in subunit composition due to the presence or absence of N- and C-terminal propeptides. These propeptides flank the central VEGF homology domain, that contains the binding sites for VEGF receptors (VEGFRs), but their biological functions were unclear. Characterization of propeptide function will be important to clarify which forms of VEGF-D are biologically active and therefore clinically relevant. Here we use VEGF-D mutants deficient in either propeptide, and in the capacity to process the remaining propeptide, to monitor the functions of these domains. We report for the first time that VEGF-D binds heparin, and that the C-terminal propeptide significantly enhances this interaction (removal of this propeptide from full-length VEGF-D completely prevents heparin binding). We also show that removal of either the N- or C-terminal propeptide is required for VEGF-D to drive formation of VEGFR-2/VEGFR-3 heterodimers which have recently been shown to positively regulate angiogenic sprouting. The mature form of VEGF-D, lacking both propeptides, can also promote formation of these receptor heterodimers. In a mouse tumor model, removal of only the C-terminal propeptide from full-length VEGF-D was sufficient to enhance angiogenesis and tumor growth. In contrast, removal of both propeptides is required for high rates of lymph node metastasis. The findings reported here show that the propeptides profoundly influence molecular interactions of VEGF-D with VEGF receptors, co-receptors, and heparin, and its effects on tumor biology.  相似文献   

12.
Enterococci account for nearly 10% of all nosocomial infections and constitute a significant treatment challenge due to their multidrug resistance properties. One of the well-studied virulence factors of Enterococcus faecalis is a secreted bacterial protease, termed gelatinase, which has been shown to contribute to the process of biofilm formation. Gelatinase belongs to the M4 family of bacterial zinc metalloendopeptidases, typified by thermolysin. Gelatinase is synthesized as a preproenzyme consisting of a signal sequence, a putative propeptide, and then the mature enzyme. We determined that the molecular mass of the mature protein isolated from culture supernatant was 33,030 Da, which differed from the predicted molecular mass, 34,570 Da, by over 1,500 Da. Using N-terminal sequencing, we confirmed that the mature protein begins at the previously identified sequence VGSEV, thus suggesting that the 1,500-Da molecular mass difference resulted from a C-terminal processing event. By using mutants with site-directed mutations within a predicted C-terminal processing site and mutants with C-terminal deletions fused to a hexahistidine tag, we determined that the processing site is likely to be between residues D304 and I305 and that it requires the Q306 residue. The results suggest that the E. faecalis gelatinase requires C-terminal processing for full activation of protease activity, making it a unique enzyme among the members of the M4 family of proteases of gram-positive bacteria.  相似文献   

13.
An extracellular metalloprotease (vEP) secreted by Vibrio vulnificus ATCC29307 is a 45-kDa proteolytic enzyme that has prothrombin activation and fibrinolytic activities during bacterial infection. The action of vEP could result in clotting that could serve to protect the bacteria from the host defense machinery. Very recently, we showed that the C-terminal propeptide (C-ter100), which is unique to vEP, is involved in regulation of vEP activity. To understand the structural basis of this function of vEP C-ter100, we have determined the solution structure and backbone dynamics using multidimensional nuclear magnetic resonance spectroscopy. The solution structure shows that vEP C-ter100 is composed of eight anti-parallel β-strands with a unique fold that has a compact β-barrel formation which stabilized by hydrophobic and hydrogen bonding networks. Protein dynamics shows that the overall structure, including loops, is very rigid and stabilized. By structural database analysis, we found that vEP C-ter100 shares its topology with that of the collagen-binding domain of collagenase, despite low sequence homology between the two domains. Fluorescence assay reveals that vEP C-ter100 interacts strongly with iron (Fe3+). These findings suggest that vEP protease might recruit substrate molecules, such as collagen, by binding at C-ter100 and that vEP participates in iron uptake from iron-withholding proteins of the host cell during infection.  相似文献   

14.
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (phosphorylating, E.C. 1.2.1.13) (GAPDH) of higher plants exists as an A2B2 heterotetramer that catalyses the reductive step of the Calvin cycle. In dark chloroplasts the enzyme exhibits a molecular mass of 600 kDa, whereas in illuminated chloroplasts the molecular mass is altered in favor of the more active 150 kDa form. We have expressed in Escherichia coli proteins corresponding to the mature A and B subunits of spinach chloroplast GAPDH (GapA and GapB, respectively) in addition to a derivative of the B subunit lacking the GapB-specific C-terminal extension (CTE). One mg of each of the three proteins so expressed was purified to electrophoretic homogeneity with conventional methods. Spinach GapA purified from E. coli is shown to be a highly active homotetramer (50–70 U/mg) which does not associate under aggregating conditions in vitro to high-molecular-mass (HMM) forms of ca. 600 kDa. Since B4 forms of the enzyme have not been described from any source, we were surprised to find that spinach GapB purified from E. coli was active (15–35 U/mg). Spinach GapB lacking the CTE purified from E. coli is more highly active (130 U/mg) than GapB with the CTE. Under aggregating conditions, GapB lacking the CTE is a tetramer that does not associate to HMM forms whereas GapB with the CTE occurs exclusively as an aggregated HMM form. The data indicate that intertetramer association of chloroplast GAPDH in vitro occurs through GapB-mediated protein-protein interaction.Abbreviations GAPDH glyceraldehyde-3-phosphate dehydrogenase - CTE carboxy-terminal extension - HMM high molecular mass - ATP adenosine triphosphate - 3PGA 3-phosphoglycerate - 1,3bisPGA 1,3-bisphosphoglycerate - HMM high-molecular mass  相似文献   

15.
Unlike Bacillus subtilis and Escherichia coli, the gram-positive lactic acid bacterium Lactococcus lactis does not possess the SecDF protein, a component of the secretion (Sec) machinery involved in late secretion stages and required for the high-capacity protein secretion in B. subtilis. In this study, we complemented the L. lactis Sec machinery with SecDF from B. subtilis and evaluated the effect on the secretion of two forms of staphylococcal nuclease, NucB and NucT, which are efficiently and poorly secreted, respectively. The B. subtilis SecDF-encoding gene was tested in L. lactis at different levels. Increased quantities of the precursor and mature forms were observed only at low levels of SecDF and at high NucT production levels. This SecDF secretion enhancement was observed at the optimal growth temperature (30°C) and was even greater at 15°C. Furthermore, the introduction of B. subtilis SecDF into L. lactis was shown to have a positive effect on a secreted form of Brucella abortus L7/L12 antigen.  相似文献   

16.
Vibriolysin, an extracellular protease of Vibrio proteolyticus, is synthesized as a preproenzyme. The N-terminal propeptide functions as an intramolecular chaperone and an inhibitor of the mature enzyme. Extracellular production of recombinant vibriolysin has been achieved in Bacillus subtilis, but not in Escherichia coli, which is widely used as a host for the production of recombinant proteins. Vibriolysin is expressed as an inactive form in E. coli possibly due to the inhibitory effect of the N-terminal propeptide. In this study, we isolated the novel vibriolysin engineered by in vivo random mutagenesis, which is expressed as active mature vibriolysin in E. coli. The Western blot analysis showed that the N-terminal propeptide of the engineered enzyme was processed and degraded, confirming that the propeptide inhibits the mature enzyme. Two mutations located within the engineered vibriolysin resulted in the substitution of stop codon for Trp at position 11 in the signal peptide and of Val for Ala at position 183 in the N-terminal propeptide (where position 1 is defined as the first methionine). It was found that the individual mutations are related to the enzyme activity. The novel vibriolysin was extracellularly overproduced in BL21(DE3) and purified from the culture supernatant by ion-exchange chromatography followed by hydrophobic-interaction chromatography, resulting in an overall yield of 2.2 mg/L of purified protein. This suggests that the novel engineered vibriolysin is useful for overproduction in an E. coli expression system.  相似文献   

17.
A 75-kDa melanosomal glycoprotein (gp75) is the product of a gene that maps to the b (brown) locus, a genetic locus that determines coat color in the mouse. The b locus is conserved (88% identity) between mouse and human. The mouse monoclonal antibody TA99 was used to study the biosynthesis and processing of gp75. gp75 was synthesized as a 55-kDa polypeptide, glycosylated by addition and processing of five or more Asnlinked carbohydrate chains through the cis and trans Golgi, and transported to melanosomes as a mature 75kDa form. Synthesis and processing of gp75 was rapid (T1/2 < 30 min), and early steps in processing were required for efficient export of gp75 to melanosomes. Fully processed mature gp75 was quite stable (T1/2 = 22–24 h) in the melanosome. Digestion of high-mannose carbohydrate chains with endo-β-N-acetylglucosaminidase H revealed two alternative processed forms of gp75 that differed in the number or composition of complex-type carbohydrate chains. The rate of synthesis and movement through intracellular membrane compartments was the same for both glycosylated forms. Studies with inhibitors of steps in oligosaccharide processing showed that alternative forms of gp75 were generated during trimming reactions by mannosidase IA/IB and that further maturation resulted in the two mature forms of gp75. We propose that the kinetics of biosynthesis and processing reflect events in the biogenesis and maturation of melanosomes.  相似文献   

18.
The First Salamander Defensin Antimicrobial Peptide   总被引:1,自引:0,他引:1  
Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD) was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its seqeuence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders.  相似文献   

19.
《Gene》1996,172(1):121-124
Heterologous expression of the gene coding for 3-phosphoglycerate kinase (PGK) of the hyperthermophilic archaeum, Pyrococcus woesei (Pw), in Escherichia coli (Ec) yielded only low recovery of recombinant PGK (re-PGK) in heatprecipitated crude extracts. Moreover, we noticed contamination with a 28-kDa protein, from which PGK could hardly be separated, even under stringent conditions after tagging the re-PGK with a His6-tag. The preparations contaminated with the 28-kDa protein showed an unexpectedly low thermal stability. Under the same conditions (85°C, 30 min), however, the enzyme from the original organism was completely resistant to heat inactivation. As shown by sizeexclusion chromatography, re-PGK forms tight associations with the 28-kDa protein, which was found to represent a C-terminal fragment of PGK and to arise as a product of internal translation initiation within the pgk gene. Mutations changing the internal ribosome-binding site effectively suppressed the production of the 28-kDa protein and restored the thermal stability of the Pw re-PGK.  相似文献   

20.
Pro-aminopeptidase processing protease (PA protease) is an extracellular zinc metalloprotease produced by Aeromonas caviae T-64 and it is classified as M04.016 according to the MEROPS database. The precursor of PA protease consists of four regions; a signal peptide, an N-terminal propeptide, a C-terminal propeptide, and the mature PA protease. The in vitro refolding of the intermediate pro-PA protease containing the C-terminal propeptide (MC) was investigated in the presence and absence of the N-terminal propeptide. The results indicate that the noncovalently linked N-terminal propeptide is able to assist in the refolding of MC. In the absence of the N-terminal propeptide, MC is trapped into a folding competent state that is converted into the active form by the addition of the N-terminal propeptide. Moreover, the N-terminal propeptide was found to form a complex with the folded MC and inhibit further processing of MC into the mature PA protease. Inhibitory activity of the purified N-terminal propeptide toward mature PA protease was also observed, and the mode of this inhibition was determined to be a mixed, noncompetitive inhibition with an associated allosteric effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号