首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Constant progress in genetic engineering has given rise to a number of promising areas of research that facilitated the expansion of industrial biotechnology. The field of metabolic engineering, which utilizes genetic tools to manipulate microbial metabolism to enhance the production of compounds of interest, has had a particularly strong impact by providing new platforms for chemical production. Recent developments in synthetic biology promise to expand the metabolic engineering toolbox further by creating novel biological components for pathway design. The present review addresses some of the recent advances in synthetic biology and how these have the potential to affect metabolic engineering in the yeast Saccharomyces cerevisiae. While S. cerevisiae for years has been a robust industrial organism and the target of multiple metabolic engineering trials, its potential for synthetic biology has remained relatively unexplored and further research in this field could strongly contribute to industrial biotechnology. This review also addresses are general considerations for pathway design, ranging from individual components to regulatory systems, overall pathway considerations and whole-organism engineering, with an emphasis on potential contributions of synthetic biology to these areas. Some examples of applications for yeast synthetic biology and metabolic engineering are also discussed.  相似文献   

2.
Bacteria have long been used for the synthesis of a wide range of useful proteins and compounds. The developments of new bioprocesses and improvements of existing strategies for syntheses of valuable products in various bacterial cell hosts have their own challenges and limitations. The field of synthetic biology has combined knowledge from different science and engineering disciplines and facilitated the advancement of novel biological components which has inspired the design of targeted biosynthesis. Here we discuss recent advances in synthetic biology with relevance to biosynthesis in bacteria and the applications of computational algorithms and tools for manipulation of cellular components. Continuous improvements are necessary to keep up with increasing demands in terms of complexity, scale, and predictability of biosynthesis products.  相似文献   

3.
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.  相似文献   

4.
In the field of synthetic biology, recent genetic engineering efforts have enabled the construction of novel genetic circuits with diverse functionalities and unique activation mechanisms. Because of these advances, artificial genetic networks are becoming increasingly complex, and are demonstrating more robust behaviors with reduced crosstalk between defined modules. These properties have allowed for the identification of a growing set of design principles that govern genetic networks, and led to an increased number of applications for genetic circuits in the fields of metabolic engineering and biomedical engineering. Such progress indicates that synthetic biology is rapidly evolving into an integrated engineering practice that uses rational and combinatorial design of synthetic gene networks to solve complex problems in biology, medicine, and human health.  相似文献   

5.
合成生物学旨在建立一套完整的工程理论和方法,通过设计和组装基本生物学元件,更为有效地实现复杂生物系统的设计,并使其完成可编程的生物学功能。近年来随着可编程基因组元件的出现,特别是CRISPR和CRISPRi技术平台的建立和完善,使得合成生物学进入了一个全新发展的时期。本文重点综述CRISPR等基因组编辑和调控技术,其在构建可编程生物学元件和复杂基因线路的应用以及合成生物学在医学中(称为医学合成生物学)的发展前景。  相似文献   

6.
虽然合成生物学还处于早期研究阶段,但最近十年,该领域取得了非常显著的研究进展。合成生物学是以工程学思想为基础,通过人工设计、改造基因线路,从而赋予细胞或生物体新的功能,现已广泛应用于各个领域。随着人们对基因线路设计的深入研究,使得合成生物学研究走向临床应用成为可能。本文将围绕哺乳动物合成生物学在疾病治疗方面的研究进展,介绍基因线路的设计思路和方法、不同诱导因子调控的开环式基因线路以及用于疾病诊疗的闭环式基因环路在生物医学领域的应用。最后对合成生物学走向临床治疗的应用前景和挑战进行展望。  相似文献   

7.
The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology.  相似文献   

8.
Progress in DNA technology, analytical methods and computational tools is leading to new developments in synthetic biology and metabolic engineering, enabling new ways to produce molecules of industrial and therapeutic interest. Here, we review recent progress in both antibiotic production and strategies to counteract bacterial resistance to antibiotics. Advances in sequencing and cloning are increasingly enabling the characterization of antibiotic biosynthesis pathways, and new systematic methods for de novo biosynthetic pathway prediction are allowing the exploration of the metabolic chemical space beyond metabolic engineering. Moreover, we survey the computer-assisted design of modular assembly lines in polyketide synthases and non-ribosomal peptide synthases for the development of tailor-made antibiotics. Nowadays, production of novel antibiotic can be tranferred into any chosen chassis by optimizing a host factory through specific strain modifications. These advances in metabolic engineering and synthetic biology are leading to novel strategies for engineering antimicrobial agents with desired specificities.  相似文献   

9.
The emerging field of synthetic biology holds tremendous potential for developing novel drugs to treat various human conditions. The current study discusses the scope of synthetic biology for human therapeutics via microbial approach. In this context, synthetic biology aims at designing, engineering and building new microbial synthetic cells that do not pre-exist in nature as well as re-engineer existing microbes for synthesis of therapeutic products. It is expected that the construction of novel microbial genetic circuitry for human therapeutics will greatly benefit from the data generated by ??omics?? approaches and multidisciplinary nature of synthetic biology. Development of novel antimicrobial drugs and vaccines by engineering microbial systems are a promising area of research in the field of synthetic biology for human theragnostics. Expression of plant based medicinal compounds in the microbial system using synthetic biology tools is another avenue dealt in the present study. Additionally, the study suggest that the traditional medicinal knowledge can do value addition for developing novel drugs in the microbial systems using synthetic biology tools. The presented work envisions the success of synthetic biology for human therapeutics via microbial approach in a holistic manner. Keeping this in view, various legal and socio-ethical concerns emerging from the use of synthetic biology via microbial approach such as patenting, biosafety and biosecurity issues have been touched upon in the later sections.  相似文献   

10.
Recent advances in the field of synthetic biology have led to the design of a new generation of complex, man-made biological networks that operate inside living cells in a desired manner. Key elements of these systems are often controllable genetic switches that are capable of processing therapeutic signals by sensing and responding to the environment. For biomedical applications, however, it is necessary to seal these engineered cells in order to protect them from the host immune system and enable straightforward removal after completion of the therapy. A promising and successful approach is the microencapsulation of defined cells into a semi-permeable and biocompatible microcapsule. Shielding from the external environment still allows exchange to occur on a molecular basis. Thus, the powerful combination of synthetic biology and microencapsulation has been opening the door to novel and innovative cell-based biomedical applications, such as smart implantable drug delivery systems. This review highlights recent developments in the overlap of these two areas, thereby presenting promising developments and perspectives for future treatment strategies.  相似文献   

11.
In vivo biosensors can recognize and respond to specific cellular stimuli. In recent years, biosensors have been increasingly used in metabolic engineering and synthetic biology, because they can be implemented in synthetic circuits to control the expression of reporter genes in response to specific cellular stimuli, such as a certain metabolite or a change in pH. There are many types of natural sensing devices, which can be generally divided into two main categories: protein-based and nucleic acid-based. Both can be obtained either by directly mining from natural genetic components or by engineering the existing genetic components for novel specificity or improved characteristics. A wide range of new technologies have enabled rapid engineering and discovery of new biosensors, which are paving the way for a new era of biotechnological progress. Here, we review recent advances in the design, optimization, and applications of in vivo biosensors in the field of metabolic engineering and synthetic biology.  相似文献   

12.
自20世纪90年代初期诞生以来,代谢工程历经了30年的快速发展。作为代谢工程的首选底盘细胞之一,酿酒酵母细胞工厂已被广泛应用于大量大宗化学品和新型高附加值生物活性物质的生物制造,在能源、医药和环境等领域取得了巨大的突破。近年来,合成生物学、生物信息学以及机器学习等相关技术也极大地促进了代谢工程的技术发展和应用。文中回顾了近30年来酿酒酵母代谢工程重要的技术发展,首先总结了经典代谢工程的常用方法和策略,以及在此基础上发展而来的系统代谢工程和合成生物学驱动的代谢工程技术。最后结合最新技术发展趋势,展望了未来酿酒酵母代谢工程发展的新方向。  相似文献   

13.
Synthetic biology can be defined as the “repurposing and redesign of biological systems for novel purposes or applications, ” and the field lies at the interface of several biological research areas. This broad definition can be taken to include a variety of investigative endeavors, and successful design of new biological paradigms requires integration of many scientific disciplines including (but not limited to) protein engineering, metabolic engineering, genomics, structural biology, chemical biology, systems biology, and bioinformatics. This review focuses on recent applications of synthetic biology principles in three areas: (i) the construction of artificial biomolecules and biomaterials; (ii) the synthesis of both fine and bulk chemicals (including biofuels); and (iii) the construction of “smart” biological systems that respond to the surrounding environment.  相似文献   

14.
5-Aminolevulinic acid (5-ALA) is the precursor for the biosynthesis of tetrapyrrole compounds and has broad applications in the medical and agricultural fields. Because of the disadvantages of chemical synthesis methods, microbial production of 5-ALA has drawn intensive attention and has been regarded as an alternative in the last years, especially with the rapid development of metabolic engineering and synthetic biology. In this mini-review, recent advances on the application and microbial production of 5-ALA using novel biological approaches (such as whole-cell enzymatic-transformation, metabolic pathway engineering and cell-free process) are described and discussed in detail. In addition, the challenges and prospects of synthetic biology are discussed.  相似文献   

15.
The field of synthetic biology is rapidly expanding and has over the past years evolved from the development of simple gene networks to complex treatment-oriented circuits. The reprogramming of cell fate with open-loop or closed-loop synthetic control circuits along with biologically implemented logical functions have fostered applications spanning over a wide range of disciplines, including artificial insemination, personalized medicine and the treatment of cancer and metabolic disorders. In this review we describe several applications of interactive gene networks, a synthetic biology-based approach for future gene therapy, as well as the utilization of synthetic gene circuits as blueprints for the design of stimuli-responsive biohybrid materials. The recent progress in synthetic biology, including the rewiring of biosensing devices with the body's endogenous network as well as novel therapeutic approaches originating from interdisciplinary work, generates numerous opportunities for future biomedical applications.  相似文献   

16.
Synthetic biology is a recently emerging field that applies engineering formalisms to design and construct new biological parts, devices, and systems for novel functions or life forms that do not exist in nature. Synthetic biology relies on and shares tools from genetic engineering, bioengineering, systems biology and many other engineering disciplines. It is also different from these subjects, in both insights and approach. Applications of synthetic biology have great potential for novel contributions to established fields and for offering opportunities to answer fundamentally new biological questions. This article does not aim at a thorough survey of the literature and detailing progress in all different directions. Instead, it is intended to communicate a way of thinking for synthetic biology in which basic functional elements are defined and assembled into living systems or biomaterials with new properties and behaviors. Four major application areas with a common theme are discussed and a procedure (or "protocol") for a standard synthetic biology work is suggested.  相似文献   

17.
Typically, the outcome of biologically engineered unit operations cannot be controlled a priori due to the incorporation of ad hoc design into complex natural systems. To mitigate this problem, synthetic biology presents a systematic approach to standardizing biological components for the purpose of increasing their programmability and robustness when assembled with the aim to achieve novel biological functions. A complex engineered biological system using only standardized biological components is yet to exist. Nevertheless, current attempts to create and to implement modular, standardized biological components pave the way for the future creation of highly predictable artificial biological systems. Although synthetic biology frameworks can be applied to any biological engineering endeavor, this article will focus on providing a brief overview of advances in the field and its recent utilization for the engineering of microbes.  相似文献   

18.
Nonribosomal peptide and polyketide natural products are structurally diverse small molecules synthesized on complex enzyme assemblies. The ability to rationally engineer secondary metabolic pathways is a promising approach to novel therapeutics. Atomic resolution structures of biosynthetic enzymes provide information on active site architecture and macromolecular assembly that can aid in the engineering of new compounds. This review surveys recent applications toward biosynthetic engineering of natural products guided by structural biology.  相似文献   

19.
In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.  相似文献   

20.
Small peptides are a group of natural products with low molecular weights and complex structures. The diverse structures of small peptides endow them with broad bioactivities and suggest their potential therapeutic use in the medical field. The remaining challenge is methods to address the main limitations, namely (i) the low amount of available small peptides from natural sources, and (ii) complex processes required for traditional chemical synthesis. Therefore, harnessing microbial cells as workhorse appears to be a promising approach to synthesize these bioactive peptides. As an emerging engineering technology, synthetic biology aims to create standard, well-characterized and controllable synthetic systems for the biosynthesis of natural products. In this review, we describe the recent developments in the microbial production of small peptides. More importantly, synthetic biology approaches are considered for the production of small peptides, with an emphasis on chassis cells, the evolution of biosynthetic pathways, strain improvements and fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号