首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PVR/TIGIT and PD-L1/PD-1 axes play essential roles in tumor immune evasion and could be potential targets for combined immunotherapy. We aimed to evaluate the expression status of the above-mentioned immune markers in lung squamous cell carcinoma (LUSC), and investigate their survival impact and relevance with the immune microenvironment and clinicopathological features. We retrospectively collected specimens from 190 LUSC patients, who underwent pulmonary surgeries, and we performed immunohistochemistry assays of PVR, TIGIT, PD-L1, PD-1 and CD8. In our cohort, the positive rate of PVR was 85.8%, which was much higher than the positive rate of PD-L1 at 26.8%. A total of 32 (16.8%) patients demonstrated co-expression of PVR/PD-L1. High TIGIT density was correlated with positive PD-L1 expression, high PD-1 density, and high CD8 density (PD-L1, P=0.033; PD-1, P<0.001; CD8, P<0.001), and positive PVR expression was correlated with positive PD-L1 expression (P=0.046). High TIGIT density and high PVR/TIGIT expression were correlated with advanced TNM stage (TIGIT density, P=0.020; PVR/TIGIT expression, P=0.041). Patients with positive PVR expression, high TIGIT density, high PVR/TIGIT expression and PVR/PD-L1 co-expression exhibited a significantly worse prognosis (PVR, P=0.038; TIGIT, P=0.027; PVR/TIGIT, P=0.014; PVR/PD-L1, P=0.018). Multivariate analysis demonstrated that PVR/PD-L1 co-expression (Hazard ratio [HR], 1.756, 95% CI, 1.152-2.676, P=0.009) was an independent prognostic factor in LUSC patients. In conclusion, we demonstrated the expression status of PVR/TIGIT and PD-L1/PD-1 in LUSC. PVR/PD-L1 co-expression was an independent prognostic factor in LUSC patients and may serve as a potential predictive biomarker for dual-targeting immunotherapy.  相似文献   

2.
HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.  相似文献   

3.
Extensive infiltration of tumor-associated macrophages was correlated poor prognosis in anaplastic thyroid cancer (ATC). However, the heterogeneity and characteristics of the ATC-associated macrophages (ATAMs) in ATC remain far from clear. We combined single-cell RNA-sequencing analysis and gene expression microarray datasets to assess the molecular signature of ATAMs. Compared with normal thyroid-associated macrophages (NTAMs), 778 differentially expressed genes (DEGs) significantly changed in ATAMs compared with NTAMs. These DEGs were correlated with oxidative phosphorylation (M2 phenotype) and phagocytosis (M1 phenotype). Moreover, ATAMs highly expressed pro-tumor genes associated with angiogenesis, fibrosis, metalloprotease activity, and metastasis. Notably, we identified one ATC-specific subset, IL2RA+ VSIG4+ ATAMs, co-expressed M1 and M2 markers. The infiltration of IL2RA+ VSIG4+ ATAMs showed strong correlation with BRAF and RAS signaling, and its high infiltration was associated with favorable prognosis in thyroid-cancer patients. IL2RA+ VSIG4+ ATAMs were associated with increased tumor-infiltrating lymphocytes (B cells, CD8+ T cells, Tregs). IL2RA+ VSIG4+ ATAMs interacted with CD8+ T cells and Tregs through immune checkpoints (such as LGALS9_HAVCR2), cytokines (such as CXCL10_CXCR3), and receptors (such as CSF1R_CSF1), thereby forming an immunosuppressive microenvironment. Multiplex immunohistochemistry staining and coculture experiment confirmed that ATC cancer cells were able to induce the polarization of IL2RA+ VSIG4+ ATAMs. Besides, we identified several novel ATC-specific immune checkpoint genes including the immunosuppressive molecule VSIG4, LAIR1, and LILRB2. Expression of VSIG4 was also significantly correlated with tumor-infiltrating lymphocytes (B cells, CD8+ T cells, Tregs). In conclusion, our study revealed an ATC-specific ATAM subset with bifunctional phenotype, which provided a comprehensive insight to delineate the molecular characteristics of ATC-associated macrophages.  相似文献   

4.
5.
6.
Reversing the highly immunosuppressive tumor microenvironment (TME) is essential to achieve long-term efficacy with cancer immunotherapy. Despite the impressive clinical response to checkpoint blockade in multiple types of cancer, only a minority of patients benefit from this approach. Here, we report that the oncolytic virus M1 induces immunogenic tumor cell death and subsequently restores the ability of dendritic cells to prime antitumor T cells. Intravenous injection of M1 disrupts immune tolerance in the privileged TME, reprogramming immune-silent (cold) tumors into immune-inflamed (hot) tumors. M1 elicits potent CD8+ T cell-dependent therapeutic effects and establishes long-term antitumor immune memory in poorly immunogenic tumor models. Pretreatment with M1 sensitizes refractory tumors to subsequent checkpoint blockade by boosting T-cell recruitment and upregulating the expression of PD-L1. These findings reveal the antitumor immunological mechanism of the M1 virus and indicated that oncolytic viruses are ideal cotreatments for checkpoint blockade immunotherapy.Subject terms: Cancer microenvironment, Targeted therapies  相似文献   

7.
8.
Human T-cell leukemia virus type 1 (HTLV-1) infects CD4+ T cells and induces proliferation of infected cells in vivo, which leads to the onset of adult T-cell leukemia (ATL) in some infected individuals. The HTLV-1 bZIP factor (HBZ) gene, which is encoded in the minus strand of HTLV-1, plays critical roles in pathogenesis. In this study, RNA-seq and ChIP-seq analyses using HBZ transduced T cells revealed that HBZ upregulates the expression and promoter acetylation levels of a co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT), in addition to those of regulatory T cells related genes, Foxp3 and Ccr4. TIGIT was expressed on CD4+ T cells from HBZ-transgenic (HBZ-Tg) mice, and on ATL cells and HTLV-1 infected CD4+ T cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in vivo. Expression of Blimp1 and IL-10 was upregulated in TIGIT+CD4+ cells of HBZ-Tg mice compared with TIGIT-CD4+ T cells, suggesting the correlation between TIGIT expression and IL-10 production. When CD4+ T cells from HBZ-Tg mice were stimulated with TIGIT’s ligand, CD155, their production of the inhibitory cytokine IL-10 was enhanced. Furthermore, dendritic cells from HBZ-Tg mice produced high levels of IL-10 after stimulation. These data suggest that HBZ alters immune system to suppressive state via TIGIT and IL-10. Importantly, TIGIT suppressed T-cell responses to another HTLV-1 virus protein, Tax, in vitro. Blocking of TIGIT and PD-1 slightly increased anti-Tax T-cell activity in some HAM/TSP patients. These results suggest that HBZ-induced TIGIT on HTLV-1 infected cells impairs T-cell responses to viral antigens. This study shows that HBZ-induced TIGIT plays a pivotal role in attenuating host immune responses and shaping a microenvironment favorable to HTLV-1.  相似文献   

9.
Mast cells have emerged as critical intermediaries in the regulation of peripheral tolerance. Their presence in many precancerous lesions and tumors is associated with a poor prognosis, suggesting mast cells may promote an immunosuppressive tumor microenvironment and impede the development of protective anti-tumor immunity. The studies presented herein investigate how mast cells influence tumor-specific T cell responses. Male MB49 tumor cells, expressing HY antigens, induce anti-tumor IFN-??+ T cell responses in female mice. However, normal female mice cannot control progressive MB49 tumor growth. In contrast, mast cell-deficient c-KitWsh (Wsh) female mice controlled tumor growth and exhibited enhanced survival. The role of mast cells in curtailing the development of protective immunity was shown by increased mortality in mast cell-reconstituted Wsh mice with tumors. Confirmation of enhanced immunity in female Wsh mice was provided by (1) higher frequency of tumor-specific IFN-??+ CD8+ T cells in tumor-draining lymph nodes compared with WT females and (2) significantly increased ratios of intratumoral CD4+ and CD8+ T effector cells relative to tumor cells in Wsh mice compared to WT. These studies are the first to reveal that mast cells impair both regional adaptive immune responses and responses within the tumor microenvironment to diminish protective anti-tumor immunity.  相似文献   

10.
Graft-versus-host disease (GVHD) is the most common complication and major limitation of allogeneic hematopoietic stem cell transplantation. The CD226/TIGIT-CD155 signal is critical for the cross-talk between T cells and dendritic cells (DCs). Studies have shown that blockade of the CD226-CD155 interaction, using an anti-CD226 antibody, can significantly ameliorate GVHD. It has also been reported that a TIGIT-Fc fusion protein exerts immunosuppressive effects by binding to CD155 on DCs. Here, we used a mouse allogeneic acute GVHD model to explore the therapeutic potential and mechanism of action of TIGIT-Fc. C57/BL6 and Balb/c mice were used as hematopoietic cell graft donors and recipients, respectively. In the TIGIT-Fc-treated mice, GVHD symptom occurrence and mortality were delayed compared to that in isotype control group mice. Histopathological analyses revealed that following TIGIT-Fc treatment, liver and small intestine tissue damage was reduced with minimal lymphocytic infiltration. The percentage of CD8+IFN-γ+ and CD8+ granzyme B+ cells significantly decreased in the TIGIT-Fc group. Moreover, treatment with TIGIT-Fc, even after the onset of GVHD, ameliorated symptoms and prolonged survival. TIGIT-Fc also inhibited CD8+ T cell activation in vitro; this was dependent on the presence of CD155 on bone marrow-derived dendritic cells (BMDCs) and on IL-10 production. In addition, TIGIT–CD155 ligation triggered both Erk phosphorylation and STAT3 nuclear translocation. These data indicate that TIGIT plays an important role in the development of GVHD and is an ideal molecular target to treat acute GVHD.  相似文献   

11.
Malignant melanoma is known by its rapid progression and poor response to currently applied treatments. Despite the well-documented melanoma immunogenicity, the results of immunotherapeutic clinical trials are not satisfactory. This poor antitumor reactivity is due to the development of chronic inflammation in the tumor microenvironment characterized by infiltrating leukocytes and soluble mediators, which lead to an immunosuppression associated with cancer progression. Using the ret transgenic mouse melanoma model that closely resembles human melanoma, we demonstrated increased levels of chronic inflammatory factors in skin tumors and metastatic lymph nodes, which correlated with tumor progression. Furthermore, Gr1+CD11b+ myeloid-derived suppressor cells (MDSC), known to block tumor-reactive T cells, were enriched in melanoma lesions and showed an enhanced immunosuppressive capacity. This MDSC accumulation was associated with a strong TCR ζ-chain downregulation in T cells suggesting that the tumor inflammatory microenvironment supports MDSC recruitment and immunosuppressive activity. Indeed, upon administration of phosphodiesterase-5 inhibitor sildenafil or paclitaxel in non-cytotoxic doses, we observed reduced levels of chronic inflammatory mediators in association with decreased MDSC amounts and immunosuppressive function. This led to a partial restoration of ζ-chain expression in T cells and to a significantly increased survival of tumor-bearing mice. CD8 T-cell depletion resulted in an abrogation of beneficial outcome of both drugs, suggesting the involvement of MDSC and CD8 T cells in the observed therapeutic effects. Our data imply that inhibition of chronic inflammation in the tumor microenvironment should be applied in conjunction with melanoma immunotherapies to increase their efficacy.  相似文献   

12.
While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer''s immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation.  相似文献   

13.
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture–based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.  相似文献   

14.
Malignant melanoma is characterized by the development of chronic inflammation in the tumor microenvironment, which leads to a strong immunosuppression associated with a rapid tumor progression. Adenosine is considered as one of the main immunosuppressive factors in the tumor environment. It is produced via enzymatic hydrolysis of extracellular ATP by ectonucleotidases CD39 and CD73 localized on cell surface. Using the ret transgenic mouse melanoma model that closely mimics human melanoma, we demonstrated an increased frequency of ectonucleotidase-positive myeloid-derived suppressor cells (MDSCs) in melanoma lesions and lymphoid organs. Furthermore, we observed that conventional CD4+FoxP3? and CD8+ T cells infiltrating melanoma lesions of ret transgenic mice were distinctly enriched in the CD39+CD73+ subpopulation that co-expressed also PD-1. Ectonucleotidase expression was also up-regulated in CD4+ and CD8+ T cells upon activation. In addition, these ectoenzymes were largely found to be expressed on memory T cell compartment (in particular, on effector memory cells). Our data suggest that extracellular adenosine produced by regulatory T cells (Tregs) and MDSCs can suppress T cell effector functions through paracrine signaling. Another mechanism involves its production also by effector T cells and an inhibition of their anti-tumor reactivity via autocrine signaling as a part of the negative feedback loop. This mode of adenosine signaling could be also used by Tregs and MDSCs to enhance their immunosuppressive activity.  相似文献   

15.
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture–based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.  相似文献   

16.
CCL2 and interleukin (IL)-6 are among the most prevalent cytokines in the tumor microenvironment, with expression generally correlating with tumor progression and metastasis. CCL2 and IL-6 induced expression of each other in CD11b+ cells isolated from human peripheral blood. It was demonstrated that both cytokines induce up-regulation of the antiapoptotic proteins cFLIPL (cellular caspase-8 (FLICE)-like inhibitory protein), Bcl-2, and Bcl-XL and inhibit the cleavage of caspase-8 and subsequent activation of the caspase-cascade, thus protecting cells from apoptosis under serum deprivation stress. Furthermore, both cytokines induced hyperactivation of autophagy in these cells. Upon CCL2 or IL-6 stimulation, CD11b+ cells demonstrated a significant increase in the mannose receptor (CD206) and the CD14+/CD206+ double-positive cells, suggesting a polarization of macrophages toward the CD206+ M2-type phenotype. Caspase-8 inhibitors mimicked the cytokine-induced up-regulation of autophagy and M2 polarization. Furthermore, E64D and leupeptin, which are able to function as inhibitors of autophagic degradation, reversed the effect of caspase-8 inhibitors in the M2-macrophage polarization, indicating a role of autophagy in this mechanism. Additionally, in patients with advanced castrate-resistant prostate cancer, metastatic lesions exhibited an increased CD14+/CD206+ double-positive cell population compared with normal tissues. Altogether, these findings suggest a role for CCL2 and IL-6 in the survival of myeloid monocytes recruited to the tumor microenvironment and their differentiation toward tumor-promoting M2-type macrophages via inhibition of caspase-8 cleavage and enhanced autophagy.  相似文献   

17.
Lung cancer is the leading cause of cancer death in both sexes worldwide and has a predicted 5-year survival rate of <20%. Immunotherapy targeting immune checkpoints such as the programmed death 1 (PD-1) signaling pathway has led to a shift of paradigm in the treatment of advanced non–small-cell lung cancer (NSCLC) but remains without effect in ∼80% of patients. Accumulating evidence suggests that several immunosuppressive mechanisms may work together in NSCLC. The contribution and cooperation between different immunosuppressive mechanisms in NSCLC remain unknown. Recently, the CD39-adenosine pathway has gained increasing attention as a crucial immunosuppressive mechanism and possible target for immunotherapy. Immune cells were extracted from lung and tumor tissue after lung resection in 12 patients by combined enzymatic and mechanical tissue disaggregation. A multiparameter flow cytometry panel was established to investigate the expression and coexpression of CD39 and PD-1 on key lymphocyte subtypes. Frequencies of CD39+, PD-1+, and CD39+/PD-1+cells were higher among both CD4+ and CD8+ T cells isolated from NSCLC tumor tissue than in T cells from normal lung tissue. Similarly, the frequency of FoxP3+ CD4+ T cells (Tregs) was highly significantly elevated in tumor tissue compared to adjacent lung tissue. The consistent upregulation of CD39 on immune cells in tumor microenvironment indicates that the CD39 signaling pathway may, in addition to the PD-1 pathway, represent another important mechanism for tumor-induced immunosuppression in NSCLC. In addition, the present study indicates that a comprehensive immune response profiling with flow cytometry may be both feasible and clinically relevant.  相似文献   

18.
Effective tumor immunotherapy may require not only activation of anti-tumor effector cells, but also abrogation of tumor-mediated immunosuppression. The cytokine TGF-β, is frequently elevated in the tumor microenvironment and is a potent immunosuppressive agent and promoter of tumor metastasis. OX40 (CD134) is a member of the TNF-α receptor superfamily and ligation by agonistic antibody (anti-OX40) enhances effector function, expansion, and survival of activated T cells. In this study, we examined the therapeutic efficacy and anti-tumor immune response induced by the combination of a small molecule TGF-β signaling inhibitor, SM16, plus anti-OX40 in the poorly immunogenic, highly metastatic, TGF-β-secreting 4T1 mammary tumor model. Our data show that SM16 and anti-OX40 mutually enhanced each other to elicit a potent anti-tumor effect against established primary tumors, with a 79% reduction in tumor size, a 95% reduction in the number of metastatic lung nodules, and a cure rate of 38%. This positive treatment outcome was associated with a 3.2-fold increase of tumor-infiltrating, activated CD8+ T cells, an overall accumulation of CD4+ and CD8+ T cells, and an increased tumor-specific effector T cell response. Complete abrogation of the therapeutic effect in vivo following depletion of CD4+ and CD8+ T cells suggests that the anti-tumor efficacy of SM16+ anti-OX40 therapy is T cell dependent. Mice that were cured of their tumors were able to reject tumor re-challenge and manifested a significant tumor-specific peripheral memory IFN-γ response. Taken together, these data suggest that combining a TGF-β signaling inhibitor with anti-OX40 is a viable approach for treating metastatic breast cancer.  相似文献   

19.
Cytokine immunogene therapy is a promising strategy for cancer treatment. Interleukin (IL)-12 boosts potent antitumor immunity by inducing T helper 1 cell differentiation and stimulating cytotoxic T lymphocyte and natural killer cell cytotoxicity. IL-23 has been proposed to have similar but not overlapping functions with IL-12 in inducing Th1 cell differentiation and antitumor immunity. However, the therapeutic effects of intratumoral co-expression of IL-12 and IL-23 in a cancer model have yet to be investigated. Therefore, we investigated for the first time an effective cancer immunogene therapy of syngeneic tumors via intratumoral inoculation of oncolytic adenovirus co-expressing IL-23 and p35, RdB/IL23/p35. Intratumoral administration of RdB/IL23/p35 elicited strong antitumor effects and increased survival in a murine B16-F10 syngeneic tumor model. The levels of IL-12, IL-23, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were elevated in RdB/IL23/p35-treated tumors. Moreover, the proportion of regulatory T cells was markedly decreased in mice treated with RdB/IL23/p35. Consistent with these data, mice injected with RdB/IL23/p35 showed massive infiltration of CD4+ and CD8+ T cells into the tumor as well as enhanced induction of tumor-specific immunity. Importantly, therapeutic mechanism of antitumor immunity mediated by RdB/IL23/p35 is associated with the generation and recruitment of IFN-γ- and TNF-α-co-producing T cells in tumor microenvironment. These results provide a new insight into therapeutic mechanisms of IL-12 plus IL-23 and provide a potential clinical cancer immunotherapeutic agent for improved antitumor immunity.  相似文献   

20.
CD8+ cytotoxic T lymphocytes (CTLs) are preferred immune cells for targeting cancer. During cancer progression, CTLs encounter dysfunction and exhaustion due to immunerelated tolerance and immunosuppression within the tumor microenvironment (TME), with all favor adaptive immune-resistance. Cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and regulatory T cells (Tregs) could make immunologic barriers against CD8 + T cell-mediated antitumor immune responses. Thus, CD8 + T cells are needed to be primed and activated toward effector CTLs in a process called tumor immunity cycle for making durable and efficient antitumor immune responses. The CD8 + T cell priming is directed essentially as a corroboration work between cells of innate immunity including dendritic cells (DCs) and natural killer (NK) cells with CD4 + T cells in adoptive immunity. Upon activation, effector CTLs infiltrate to the core or invading site of the tumor (so-called infiltrated–inflamed [I–I] TME) and take essential roles for killing cancer cells. Exogenous reactivation and/or priming of CD8 + T cells can be possible using rational immunotherapy strategies. The increase of the ratio for costimulatory to coinhibitory mediators using immune checkpoint blockade (ICB) approach. Programmed death-1 receptor (PD-1)–ligand (PD-L1) and CTL-associated antigen 4 (CTLA-4) are checkpoint receptors that can be targeted for relieving exhaustion of CD8 + T cells and renewing their priming, respectively, and thereby eliminating antigen-expressing cancer cells. Due to a diverse relation between CTLs with Tregs, the Treg activity could be dampened for increasing the number and rescuing the functional potential of CTLs to induce immunosensitivity of cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号