首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Canopy light interception determines the amount of energy captured by a crop, and is thus critical to modeling crop growth and yield, and may substantially contribute to the prediction uncertainty of crop growth models (CGMs). We thus analyzed the canopy light interception models of the 26 wheat (Triticum aestivum) CGMs used by the Agricultural Model Intercomparison and Improvement Project (AgMIP). Twenty-one CGMs assume that the light extinction coefficient (K) is constant, varying from 0.37 to 0.80 depending on the model. The other models take into account the illumination conditions and assume either that all green surfaces in the canopy have the same inclination angle (θ) or that θ distribution follows a spherical distribution. These assumptions have not yet been evaluated due to a lack of experimental data. Therefore, we conducted a field experiment with five cultivars with contrasting leaf stature sown at normal and double row spacing, and analyzed θ distribution in the canopies from three-dimensional canopy reconstructions. In all the canopies, θ distribution was well represented by an ellipsoidal distribution. We thus carried out an intercomparison between the light interception models of the AgMIP–Wheat CGMs ensemble and a physically based K model with ellipsoidal leaf angle distribution and canopy clumping (KellC). Results showed that the KellC model outperformed current approaches under most illumination conditions and that the uncertainty in simulated wheat growth and final grain yield due to light models could be as high as 45%. Therefore, our results call for an overhaul of light interception models in CGMs.  相似文献   

3.
In this study, we evaluate a preload-based Starling-like controller for implantable rotary blood pumps (IRBPs) using left ventricular end-diastolic pressure (PLVED) as the feedback variable. Simulations are conducted using a validated mathematical model. The controller emulates the response of the natural left ventricle (LV) to changes in PLVED. We report the performance of the preload-based Starling-like controller in comparison with our recently designed pulsatility controller and constant speed operation. In handling the transition from a baseline state to test states, which include vigorous exercise, blood loss and a major reduction in the LV contractility (LVC), the preload controller outperformed pulsatility control and constant speed operation in all three test scenarios. In exercise, preload-control achieved an increase of 54% in mean pump flow (QP-) with minimum loading on the LV, while pulsatility control achieved only a 5% increase in flow and a decrease in mean pump speed. In a hemorrhage scenario, the preload control maintained the greatest safety margin against LV suction. PLVED for the preload controller was 4.9 mmHg, compared with 0.4 mmHg for the pulsatility controller and 0.2 mmHg for the constant speed mode. This was associated with an adequate mean arterial pressure (MAP) of 84 mmHg. In transition to low LVC, QP- for preload control remained constant at 5.22 L/min with a PLVED of 8.0 mmHg. With regards to pulsatility control, QP- fell to the nonviable level of 2.4 L/min with an associated PLVED of 16 mmHg and a MAP of 55 mmHg. Consequently, pulsatility control was deemed inferior to constant speed mode with a PLVED of 11 mmHg and a QP- of 5.13 L/min in low LVC scenario. We conclude that pulsatility control imposes a danger to the patient in the severely reduced LVC scenario, which can be overcome by using a preload-based Starling-like control approach.  相似文献   

4.
The fixation index F st plays a central role in ecological and evolutionary genetic studies. The estimators of Wright (F^st1), Weir and Cockerham (F^st2), and Hudson et al. (F^st3) are widely used to measure genetic differences among different populations, but all have limitations. We propose a minimum variance estimator F^stm using F^st1 and F^st2. We tested F^stm in simulations and applied it to 120 unrelated East African individuals from Ethiopia and 11 subpopulations in HapMap 3 with 464,642 SNPs. Our simulation study showed that F^stm has smaller bias than F^st2 for small sample sizes and smaller bias than F^st1 for large sample sizes. Also, F^stm has smaller variance than F^st2 for small F st values and smaller variance than F^st1 for large F st values. We demonstrated that approximately 30 subpopulations and 30 individuals per subpopulation are required in order to accurately estimate F st.  相似文献   

5.
PurposeSkin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery.MethodsMean skin temperature (T-sk) was assessed in thirty healthy males during 30 min rest (24.0 ± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery (24.0 ± 1.3°C, 56 ± 9%). T-sk was assessed at four sites using two conductive devices (thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera).ResultsBland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T-sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery.ConclusionsThese results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T-sk in the presence of, or following, metabolic and environmental induced heat stress.  相似文献   

6.
The usual practice of using a control chart to monitor a process is to take samples from the process with fixed sampling interval (FSI). In this paper, a synthetic X¯ control chart with the variable sampling interval (VSI) feature is proposed for monitoring changes in the process mean. The VSI synthetic X¯ chart integrates the VSI X¯ chart and the VSI conforming run length (CRL) chart. The proposed VSI synthetic X¯ chart is evaluated using the average time to signal (ATS) criterion. The optimal charting parameters of the proposed chart are obtained by minimizing the out-of-control ATS for a desired shift. Comparisons between the VSI synthetic X¯ chart and the existing X¯, synthetic X¯, VSI X¯ and EWMA X¯ charts, in terms of ATS, are made. The ATS results show that the VSI synthetic X¯ chart outperforms the other X¯ type charts for detecting moderate and large shifts. An illustrative example is also presented to explain the application of the VSI synthetic X¯ chart.  相似文献   

7.

Background

Minute ventilation (V·E) during walking has been shown to be higher in older individuals than in young individuals, but the mechanisms underlying the higher ventilatory response is unclear. Central command and peripheral neural reflex are important neural control mechanisms underlying ventilatory response during exercise. Passive leg movement has been used to exclude the influence of central command due to the lack of voluntary activation of muscles. The aim of the present study was to compare the ventilatory response during and after passive walking-like leg movement (PWM) in young and older individuals.

Methods

Eight young subjects (20 ± 2 years) and seven older subjects (70 ± 1 years) participated in this study. Subjects spent 7 minutes in a quiet standing (QS) position. Thereafter, they performed 14-minute rhythmic PWM at 1 Hz and this was followed by 7 minutes of QS.

Results

V·E values during pre-PWM QS were calculated as 1-minute averages using data obtained between 5 and 6 minutes. V·E values at pre-PWM QS in the young and older groups were 8.4 ± 2.1 and 7.5 ± 1.2 l/minute, respectively. V·E values increased significantly at the first minute of PWM to 11.4 ± 2.2 and 10.4 ± 2.5 l/minute in the young and older groups, respectively (P <0.001). In the young group, V·E at the last minute of PWM (9.2 ± 2.0 l/minute) was not significantly different from that at pre-PWM QS due to a decline in V·E, whereas V·E at the last minute of PWM in the older group (9.4 ± 2.2 l/minute) was still significantly higher (P <0.01). On the other hand, V·E at the first minute of post-PWM QS (7.2 ± 1.8 l/minute) was significantly lower than that during pre-PWM QS in the young group (P <0.05) but not in the older group.

Conclusions

Ventilatory response during and after PWM is higher in older individuals than in young individuals. This may be associated with a mechanism(s) other than central command. Our findings may explain part of the higher V·E response while walking in older individuals.  相似文献   

8.
9.
Organismal metabolic rates (MRs) are the basis of energy and nutrient fluxes through ecosystems. In the marine realm, fishes are some of the most prominent consumers. However, their metabolic demand in the wild (field MR [FMR]) is poorly documented, because it is challenging to measure directly. Here, we introduce a novel approach to estimating the component of FMR associated with voluntary activity (i.e., the field active MR [AMRfield]). Our approach combines laboratory‐based respirometry, swimming speeds, and field‐based stereo‐video systems to estimate the activity of individuals. We exemplify our approach by focusing on six coral reef fish species, for which we quantified standard MR and maximum MR (SMR and MMR, respectively) in the laboratory, and body sizes and swimming speeds in the field. Based on the relationships between MR, body size, and swimming speeds, we estimate that the activity scope (i.e., the ratio between AMRfield and SMR) varies from 1.2 to 3.2 across species and body sizes. Furthermore, we illustrate that the scaling exponent for AMRfield varies across species and can substantially exceed the widely assumed value of 0.75 for SMR. Finally, by scaling organismal AMRfield estimates to the assemblage level, we show the potential effect of this variability on community metabolic demand. Our approach may improve our ability to estimate elemental fluxes mediated by a critically important group of aquatic animals through a non‐destructive, widely applicable technique.  相似文献   

10.
Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3 N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems.  相似文献   

11.
To better understand the interaction of physical activity and air pollution exposure, it is important to quantify the change in ventilation rate incurred by activity. In this paper, we describe a method for estimating ventilation using easily-measured variables such as heart rate (HR), breathing rate (fB), and forced vital capacity (FVC). We recruited healthy adolescents to use a treadmill while we continuously measured HR, fB, and the tidal volume (VT) of each breath. Participants began at rest then walked and ran at increasing speed until HR was 160–180 beats per minute followed by a cool down period. The novel feature of this method is that minute ventilation (V˙E) was normalized by FVC. We used general linear mixed models with a random effect for subject and identified nine potential predictor variables that influence either V˙E or FVC. We assessed predictive performance with a five-fold cross-validation procedure. We used a brute force selection process to identify the best performing models based on cross-validation percent error, the Akaike Information Criterion and the p-value of parameter estimates. We found a two-predictor model including HR and fB to have the best predictive performance (V˙E/FVC = -4.247+0.0595HR+0.226fB, mean percent error = 8.1±29%); however, given the ubiquity of HR measurements, a one-predictor model including HR may also be useful (V˙E/FVC = -3.859+0.101HR, mean percent error = 11.3±36%).  相似文献   

12.
For human complex traits, non-additive genetic variation has been invoked to explain “missing heritability,” but its discovery is often neglected in genome-wide association studies. Here we propose a method of using SNP data to partition and estimate the proportion of phenotypic variance attributed to additive and dominance genetic variation at all SNPs (hSNP2 and δSNP2) in unrelated individuals based on an orthogonal model where the estimate of hSNP2 is independent of that of δSNP2. With this method, we analyzed 79 quantitative traits in 6,715 unrelated European Americans. The estimate of δSNP2 averaged across all the 79 quantitative traits was 0.03, approximately a fifth of that for additive variation (average hSNP2 = 0.15). There were a few traits that showed substantial estimates of δSNP2, none of which were replicated in a larger sample of 11,965 individuals. We further performed genome-wide association analyses of the 79 quantitative traits and detected SNPs with genome-wide significant dominance effects only at the ABO locus for factor VIII and von Willebrand factor. All these results suggest that dominance variation at common SNPs explains only a small fraction of phenotypic variation for human complex traits and contributes little to the missing narrow-sense heritability problem.  相似文献   

13.
The basic reproductive number (R₀) and the distribution of the serial interval (SI) are often used to quantify transmission during an infectious disease outbreak. In this paper, we present estimates of R₀ and SI from the 2003 SARS outbreak in Hong Kong and Singapore, and the 2009 pandemic influenza A(H1N1) outbreak in South Africa using methods that expand upon an existing Bayesian framework. This expanded framework allows for the incorporation of additional information, such as contact tracing or household data, through prior distributions. The results for the R₀ and the SI from the influenza outbreak in South Africa were similar regardless of the prior information (R^0 = 1.36–1.46, μ^ = 2.0–2.7, μ^ = mean of the SI). The estimates of R₀ and μ for the SARS outbreak ranged from 2.0–4.4 and 7.4–11.3, respectively, and were shown to vary depending on the use of contact tracing data. The impact of the contact tracing data was likely due to the small number of SARS cases relative to the size of the contact tracing sample.  相似文献   

14.
Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily x~ = 8.05 (daytime pH = 8.45, night-time pH = 7.65) and daily x~ = 7.65 (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults’ response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.  相似文献   

15.
Methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) is a new drug target that is expressed in cancer cells but not in normal adult cells, which provides an Achilles heel to selectively kill cancer cells. Despite the availability of crystal structures of MTHFD2 in the inhibitor- and cofactor-bound forms, key information is missing due to technical limitations, including (a) the location of absolutely required Mg2+ ion, and (b) the substrate-bound form of MTHFD2. Using computational modeling and simulations, we propose that two magnesium ions are present at the active site whereby (i) Arg233, Asp225, and two water molecules coordinate MgA2+, while MgA2+ together with Arg233 stabilize the inorganic phosphate (Pi); (ii) Asp168 and three water molecules coordinate MgB2+, and MgB2+ further stabilizes Pi by forming a hydrogen bond with two oxygens of Pi; (iii) Arg201 directly coordinates the Pi; and (iv) through three water-mediated interactions, Asp168 contributes to the positioning and stabilization of MgA2+, MgB2+ and Pi. Our computational study at the empirical valence bond level allowed us also to elucidate the detailed reaction mechanisms. We found that the dehydrogenase activity features a proton-coupled electron transfer with charge redistribution connected to the reorganization of the surrounding water molecules which further facilitates the subsequent cyclohydrolase activity. The cyclohydrolase activity then drives the hydration of the imidazoline ring and the ring opening in a concerted way. Furthermore, we have uncovered that two key residues, Ser197/Arg233, are important factors in determining the cofactor (NADP+/NAD+) preference of the dehydrogenase activity. Our work sheds new light on the structural and kinetic framework of MTHFD2, which will be helpful to design small molecule inhibitors that can be used for cancer treatment.  相似文献   

16.
Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs (hg2) across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of hg2 from imputed SNPs (5.1× enrichment; p = 3.7 × 10−17) and 38% (SE = 4%) of hg2 from genotyped SNPs (1.6× enrichment, p = 1.0 × 10−4). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of hg2 despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease.  相似文献   

17.
The field of recurrent neural networks is over-populated by a variety of proposed learning rules and protocols. The scope of this work is to define a generalized framework, to move a step forward towards the unification of this fragmented scenario. In the field of supervised learning, two opposite approaches stand out, error-based and target-based. This duality gave rise to a scientific debate on which learning framework is the most likely to be implemented in biological networks of neurons. Moreover, the existence of spikes raises the question of whether the coding of information is rate-based or spike-based. To face these questions, we proposed a learning model with two main parameters, the rank of the feedback learning matrix R and the tolerance to spike timing τ. We demonstrate that a low (high) rank R accounts for an error-based (target-based) learning rule, while high (low) tolerance to spike timing promotes rate-based (spike-based) coding. We show that in a store and recall task, high-ranks allow for lower MSE values, while low-ranks enable a faster convergence. Our framework naturally lends itself to Behavioral Cloning and allows for efficiently solving relevant closed-loop tasks, investigating what parameters (R,τ) are optimal to solve a specific task. We found that a high R is essential for tasks that require retaining memory for a long time (Button and Food). On the other hand, this is not relevant for a motor task (the 2D Bipedal Walker). In this case, we find that precise spike-based coding enables optimal performances. Finally, we show that our theoretical formulation allows for defining protocols to estimate the rank of the feedback error in biological networks. We release a PyTorch implementation of our model supporting GPU parallelization.  相似文献   

18.
In the 200 years since the Sumatran rhinoceros was first scientifically described (Fisher 1814), the range of the species has contracted from a broad region in Southeast Asia to three areas on the island of Sumatra and one in Kalimantan, Indonesia. Assessing population and spatial distribution of this very rare species is challenging because of their elusiveness and very low population number. Using an occupancy model with spatial dependency, we assessed the fraction of the total landscape occupied by Sumatran rhinos over a 30,345-km2 survey area and the effects of covariates in the areas where they are known to occur. In the Leuser Landscape (surveyed in 2007), the model averaging result of conditional occupancy estimate was ψ^(SE[ψ^])=0.151(0.109) or 2,371.47 km2, and the model averaging result of replicated level detection probability p^(SE[p^])=0.252(0.267); in Way Kambas National Park—2008: ψ^(SE[ψ^])=0.468(0.165) or 634.18 km2, and p^(SE[p^])=0.138(0.571); and in Bukit Barisan Selatan National Park—2010: ψ^(SE[ψ^])=0.322(0.049) or 819.67 km2, and p^(SE[p^])=0.365(0.42). In the Leuser Landscape, rhino occurrence was positively associated with primary dry land forest and rivers, and negatively associated with the presence of a road. In Way Kambas, occurrence was negatively associated with the presence of a road. In Bukit Barisan Selatan, occurrence was negatively associated with presence of primary dryland forest and rivers. Using the probabilities of site occupancy, we developed spatially explicit maps that can be used to outline intensive protection zones for in-situ conservation efforts, and provide a detailed assessment of conserving Sumatran rhinos in the wild. We summarize our core recommendation in four points: consolidate small population, strong protection, determine the percentage of breeding females, and recognize the cost of doing nothing. To reduce the probability of poaching, here we present only the randomized location of site level occupancy in our result while retaining the overall estimation of occupancy for a given area.  相似文献   

19.

Background

In recent theoretical developments, the information available (e.g. genotypes) divides the original population into two groups: animals with this information (selected animals) and animals without this information (excluded animals). These developments require inversion of the part of the pedigree-based numerator relationship matrix that describes the genetic covariance between selected animals (A22). Our main objective was to propose and evaluate methodology that takes advantage of any potential sparsity in the inverse of A22 in order to reduce the computing time required for its inversion. This potential sparsity is brought out by searching the pedigree for dependencies between the selected animals. Jointly, we expected distant ancestors to provide relationship ties that increase the density of matrix A22 but that their effect on A22-1 might be minor. This hypothesis was also tested.

Methods

The inverse of A22 can be computed from the inverse of the triangular factor (T-1) obtained by Cholesky root-free decomposition of A22. We propose an algorithm that sets up the sparsity pattern of T-1 using pedigree information. This algorithm provides positions of the elements of T-1 worth to be computed (i.e. different from zero). A recursive computation of A22-1 is then achieved with or without information on the sparsity pattern and time required for each computation was recorded. For three numbers of selected animals (4000; 8000 and 12 000), A22 was computed using different pedigree extractions and the closeness of the resulting A22-1 to the inverse computed using the fully extracted pedigree was measured by an appropriate norm.

Results

The use of prior information on the sparsity of T-1 decreased the computing time for inversion by a factor of 1.73 on average. Computational issues and practical uses of the different algorithms were discussed. Cases involving more than 12 000 selected animals were considered. Inclusion of 10 generations was determined to be sufficient when computing A22.

Conclusions

Depending on the size and structure of the selected sub-population, gains in time to compute A22-1 are possible and these gains may increase as the number of selected animals increases. Given the sequential nature of most computational steps, the proposed algorithm can benefit from optimization and may be convenient for genomic evaluations.  相似文献   

20.
Bulge loops are common features of RNA structures that are involved in the formation of RNA tertiary structures and are often sites for interactions with proteins and ions. Minimal thermodynamic data currently exist on the bulge size and sequence effects. Using thermal denaturation methods, thermodynamic properties of 1- to 5-nt adenine and guanine bulge loop constructs were examined in 10 mM MgCl2 or 1 M KCl. The ΔG37 loop parameters for 1- to 5-nt purine bulge loops in RNA constructs were between 3.07 and 5.31 kcal/mol in 1 M KCl buffer. In 10 mM magnesium ions, the ΔΔG° values relative to 1 M KCl were 0.47–2.06 kcal/mol more favorable for the RNA bulge loops. The ΔG37 loop parameters for 1- to 5-nt purine bulge loops in DNA constructs were between 4.54 and 5.89 kcal/mol. Only 4- and 5-nt guanine constructs showed significant change in stability for the DNA constructs in magnesium ions. A linear correlation is seen between the size of the bulge loop and its stability. New prediction models are proposed for 1- to 5-nt purine bulge loops in RNA and DNA in 1 M KCl. We show that a significant stabilization is seen for small bulge loops in RNA in the presence of magnesium ions. A prediction model is also proposed for 1- to 5-nt purine bulge loop RNA constructs in 10 mM magnesium chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号