首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron status was studied in 137 welders exposed to a geometric mean (GM) air concentration of 214 μg/m3 (range 1–3230) of manganese (Mn), in 137 referents and in 34 former welders. The GM concentrations of S-ferritin were 119 (3–1498), 112 (9–1277) and 98 (12–989) μg/L (p = 0.24) in the three groups, respectively. Also the GM concentrations of S-hepcidin were not significantly different between the groups (8.4 μg/L (2.8–117); 6.6 μg/L (1.8–100); 6.5 μg/L (1.2–22)) (p = 0.22). Multiple linear regression analysis including all welders and referents showed an increase in the concentration of S-ferritin associated with having serum carbohydrate deficient transferrin (S-CDT) above the upper reference limit of ≥1.7%, indicating high alcohol consumption. Serum C-reactive protein was not associated with exposure as welders, but an association with S-ferritin was shown. The GM S-ferritin concentrations among all welders and referents with S-CDT  1.7% were 157 μg/L (95% CI 113–218) as compared to 104 μg/L (95% CI 94–116) (p = 0.02) in those with S-CDT < 1.7%. The GM concentrations of Mn in biological fluids were higher in the welders as compared to the referents, while S-Fe, S-Co and B-Co were statistically significantly lower. This could suggest a competitive inhibition from Mn on the uptake of Fe and Co. Increasing concentrations of S-CDT was associated with higher S-Mn, S-Fe and B-Co in the multiple linear regression analysis. The association between S-CDT and S-Fe remained when all subjects with high S-CDT (≥1.7%) were excluded, suggesting increased uptake of Fe even at lower alcohol consumption.  相似文献   

2.
Placental transferrin receptors, located at the apical side of syncytiotrophoblast, mediate placental iron uptake. Regulation of transferrin receptors on the fetal-maternal exchange area could be a major determinant in the regulation of trans-placental iron transport.Transferrin receptor expression in cultured human term cytotrophoblasts is on a much lower level than in choriocarcinoma cells, with a higher proportion of receptors located on the cell surface. Differentiation of cells, either due to longer culture periods or to 8-bromo-cAMP treatment does not lead to an increase of transferrin receptor expression. In vitro, the level of expression is largely regulated by the cellular density in the culture dishes. Low cellular occupancy of the dish leads to a high level of transferrin receptors. Treatment with iron-sources results in a down regulation of transferrin receptors.Thus, though the level of transferrin receptors in cultured normal trophoblast is at a constant level, unaffected by differentiation, high levels of maternal transferrin-iron availability can lead to a decrease in placental iron uptake. This feed-back mechanism makes placental iron uptake independent of maternal iron stores.Abbreviations hCG human Chorionic Gonadotrophin - TfR Transferrin Receptor  相似文献   

3.
Iron is a key element in plant nutrition. Iron deficiency as well as iron overload results in serious metabolic disorders that affect photosynthesis, respiration and general plant fitness with direct consequences on crop production.More than 25% of the cultivable land possesses low iron availability due to high pH (calcareous soils). Plant biologists are challenged by this concern and aimed to find new avenues to ameliorate plant responses and keep iron homeostasis under control even at wide range of iron availability in various soils. For this purpose, detailed knowledge of iron uptake, transport, storage and interactions with cellular compounds will help to construct a more complete picture of its role as essential nutrient. In this review, we summarize and describe the recent findings involving four central players involved in keeping cellular iron homeostasis in plants: nitric oxide, ferritin, frataxin and nitrosyl iron complexes. We attempt to highlight the interactions among these actors in different scenarios occurring under iron deficiency or iron overload, and discuss their counteracting and/or coordinating actions leading to the control of iron homeostasis.  相似文献   

4.
The role of transferrin in iron metabolism is evaluated, both with regard to iron uptake by transferrin and to iron uptake from transferrin by different cells. The heterogeneity of serum transferrin is described and the implications of the heterogeneity are discussed. The composition of ferritin is given and the value of serum ferritins are discussed.  相似文献   

5.
Diabetes mellitus is associated with altered iron homeostasis that can potentially effect reactive oxygen species generation and contribute to diabetes-related complications. We investigated, by quantitative polymerase chain reaction, whether the expression of liver hepcidin, ferritin, and TfR-1 is altered in diabetes. Rats in the control (C) group received a standard diet; control iron (CI) group received a standard diet supplemented with iron; diabetic (D) group received an injection of streptozotocin; and diabetic iron (DI) group received streptozotocin and the diet with iron. Animals of the D group showed higher levels of serum iron, increased concentration of carbonyl protein, and a decrease in antioxidant status. Group D rats showed increased hepatic expression of Trf-1 compared to the other groups. Iron supplementation reversed this increase. Hepcidin mRNA was 81% higher in DI than in C and CI rats. The results suggest that diabetes, with or without excess iron, can cause perturbations in iron status, hepcidin and Trf-1 expression.  相似文献   

6.
During pregnancy, the mother is faced with an increased food demand. A good example of this increased demand is iron (Fe). Fe is needed in all growing cells. During pregnancy, the Fe transport to the fetus increases enormously. This amount can easily induce an Fe deficiency in the mother. Fe suppletion is very important for her, but not for the Fe status of the fetus, which is protected against Fe toxicity as well as deficiency. The placenta seems to be autonomous in Fe uptake. Likely there is a regulation mechanism. The human placenta is hemomonochorial. The cell layer of the fetus in contact with the maternal blood is formed by syncytiotrophoblasts. Fe is transported to the placenta by transferrin. Transferrin binds to a transferrin receptor on the trophoblast membrane and is internalized via an endocytic pathway. During this cycle, Fe is released from transferrin and the transferrin-transferrin receptor complex is recycled to the membrane. Isolated trophoblast cells from term placentas form a syncytium in vitro, and transferrin receptors are expressed. Expression depends on the number of cells in culture, culture time, the amount of Fe available, and the Fe compound. By regulation of the number of transferrin receptors, trophoblasts are able to control their Fe uptake.  相似文献   

7.
As a result of a direct exchange with the external environment, the lungs are exposed to both iron and agents with a capacity to disrupt the homeostasis of this metal (e.g. particles). An increased availability of catalytically reactive iron can result from these exposures and, by generating an oxidative stress, this metal can contribute to tissue injury. By importing this Fe3+ into cells for storage in a chemically less reactive form, the lower respiratory tract demonstrates an ability to mitigate both the oxidative stress presented by iron and its potential for tissue injury. This means that detoxification is accomplished by chemical reduction to Fe2+ (e.g. by duodenal cytochrome b and other ferrireductases), iron import (e.g. by divalent metal transporter 1 and other transporters), and storage in ferritin. The metal can subsequently be exported from the cell (e.g. by ferroportin 1) in a less reactive state relative to that initially imported. Iron is then transported out of the lung via the mucociliary pathway or blood and lymphatic pathways to the reticuloendothelial system for long term storage. This coordinated handling of iron in the lung appears to be disrupted in several acute diseases on the lung including infections, acute respiratory distress syndrome, transfusion-related acute lung injury, and ischemia–reperfusion. Exposures to bleomycin, dusts and fibers, and paraquat similarly alter iron homeostasis in the lung to affect an oxidative stress. Finally, iron homeostasis is disrupted in numerous chronic lung diseases including pulmonary alveolar proteinosis, transplantation, cigarette smoking, and cystic fibrosis.  相似文献   

8.
Acute respiratory disease caused by a novel coronavirus (SARS-CoV-2) has spread all over the world, since its discovery in 2019, Wuhan, China. This disease is called COVID-19 and already killed over 1 million people worldwide. The clinical symptoms include fever, dry cough, dyspnea, headache, dizziness, generalized weakness, vomiting, and diarrhea. Unfortunately, so far, there is no validated vaccine, and its management consists mainly of supportive care. Venous thrombosis and pulmonary embolism are highly prevalent in patients suffering from severe COVID-19. In fact, a prothrombotic state seems to be present in most fatal cases of the disease. SARS-CoV-2 leads to the production of proinflammatory cytokines, causing immune-mediated tissue damage, disruption of the endothelial barrier, and uncontrolled thrombogenesis. Thrombin is the key regulator of coagulation and fibrin formation. In severe COVID-19, a dysfunctional of physiological anticoagulant mechanisms leads to a progressive increase of thrombin activity, which is associated with acute respiratory distress syndrome development and a poor prognosis. Protease-activated receptor type 1 (PAR1) is the main thrombin receptor and may represent an essential link between coagulation and inflammation in the pathophysiology of COVID-19. In this review, we discuss the potential role of PAR1 inhibition and regulation in COVID-19 treatment.  相似文献   

9.
Streptococcus intermedius is well known to produce severe infections in various areas of the body. In this study, we evaluated the ability of S. intermedius to utilise human transferrin as a source of iron and investigated the mechanism by which iron can be obtained from this plasma protein. Adding either ferrous sulfate or holotransferrin to an iron-deficient culture medium allowed growth of S. intermedius. Cultivation of S. intermedius under an iron-poor condition was associated with the over expression of a 58 kDa cell surface protein. Neither siderophore activity nor reductase activity could be detected. Moreover, cells of S. intermedius did not show transferrin-binding activity or proteolytic activity toward transferrin. It was found that S. intermedius could rapidly decrease the pH of the medium during cell growth, resulting in a release of iron from holotransferrin. When the buffering capacity of the culture medium was significantly increased, the holotransferrin could not support growth of S. intermedius. It is suggested that under certain circumstances, S. intermedius may migrate from its normal niche (oral cavity), reach a particular site and create a localised environment where the pH can be lowered with the subsequent release of iron from transferrin. This would allow bacterial growth and initiation of the infectious process.  相似文献   

10.
11.
Ferritin protein nanocages that form iron oxy biominerals in the central nanometer cavity are nature’s answer to managing iron and oxygen; gene deletions are lethal in mammals and render bacteria more vulnerable to host release of antipathogen oxidants. The multifunctional, multisubunit proteins couple iron with oxygen (maxi-ferritins) or hydrogen peroxide (mini-ferritins) at catalytic sites that are related to di-iron sites oxidases, ribonucleotide reductase, methane monooxygenase and fatty acid desaturases, and synthesize mineral precursors. Gated pores, distributed symmetrically around the ferritin cages, control removal of iron by reductants and chelators. Gene regulation of ferritin, long known to depend on iron and, in animals, on a noncoding messenger RNA (mRNA) structure linked in a combinatorial array to functionally related mRNA of iron transport, has recently been shown to be linked to an array of proteins for antioxidant responses such as thioredoxin and quinone reductases. Ferritin DNA responds more to oxygen signals, and ferritin mRNA responds more to iron signals. Ferritin genes (DNA and RNA) and protein function at the intersection of iron and oxygen chemistry in biology.  相似文献   

12.
13.
Ferritin, which includes twenty-four light and heavy chains in varying proportions in different tissues, is primarily responsible for maintaining the body's iron metabolism. Its normal value is between 10 and 200 ngmL?1 in men and between 30 and 300 ngmL?1 in women. Iron is delivered to the tissue via them, and they act as immunomodulators, signaling molecules, and inflammatory markers. When ferritin level exceeds 1000 µgL-1, the patient is categorized as having hyperferritinemia. Iron chelators such as deferiprone, deferirox, and deferoxamine are currently FDA approved to treat iron overload. The inflammation cascade and poor prognosis of COVID-19 may be attributed to high ferritin levels. Critically ill patients can benefit from deferasirox, an iron chelator administered orally at 20–40 mgkg?1 once daily, as well as intravenous deferoxamine at 1000 mg initially followed by 500 mg every 4 to 12 h. It can be combined with monoclonal antibodies, antioxidants, corticosteroids, and lactoferrin to make iron chelation therapy effective for COVID-19 victims. In this article, we analyze the antiviral and antifibrotic activity of iron chelators, thereby promoting iron depletion therapy as a potentially innovative treatment strategy for COVID-19.  相似文献   

14.
Iron accumulation and oxidative stress are associated with neurodegenerative disease. Labile iron is known to catalyze free radical generation and subsequent neuronal damage, whereas the role of oxidative stress in neuronal iron accumulation is less well understood. Here, we examined the effect of hydrogen peroxide (H2O2) treatment on cellular iron-uptake, -storage, and -release proteins in the neuroblastoma cell line SH-SY5Y. We found no detectable change in the iron-uptake proteins transferrin receptor-1 and divalent metal ion transporter. In contrast, H2O2 treatment resulted in significant degradation of the iron-exporter ferroportin (Fpn). A decrease in Fpn is expected to increase the labile iron pool (LIP), reducing the iron-regulatory protein (IRP)–iron-responsive element interaction and increasing the expression of ferritin-H (Ft-H) for iron storage. Instead, we detected IRP1 activation, presumably due to oxidative stress, and a decrease in Ft-H translation. A reduction in Ft-H mRNA was also observed, probably dependent on an antioxidant-response element present in the Ft-H enhancer. The decrease in Fpn and Ft-H upon H2O2 treatment led to a time-dependent increase in the cellular LIP. Our study reveals a complex regulation of neuronal iron-release and iron-storage components in response to H2O2 that may explain iron accumulation detected in neurodegenerative diseases associated with oxidative stress.  相似文献   

15.
16.
Our knowledge of iron homeostasis has increased steadily over the last two decades; much of this has been made possible through the study of animal models of iron-related disease. Analysis of transgenic mice with deletions or perturbations in genes known to be involved in systemic or local regulation of iron metabolism has been particularly informative. The effect of these genes on iron accumulation and hepcidin regulation is traditionally compared with wildtype mice fed a high iron diet, most often a 2% carbonyl iron diet. Recent studies have indicated that a very high iron diet could be detrimental to the health of the mice and could potentially affect homeostasis of other metals, for example zinc and copper. We analyzed mice fed a diet containing either 0.25%, 0.5%, 1% or 2% carbonyl iron for two weeks and compared them with mice on a control diet. Our results indicate that a 0.25% carbonyl iron diet is sufficient to induce maximal hepatic hepcidin response. Importantly these results also demonstrate that in a chronic setting of iron administration, the amount of excess hepatic iron may not further influence hepcidin regulation and that expression of hepcidin plateaus at lower hepatic iron levels. These studies provide further insights into the regulation of this important hormone.  相似文献   

17.
Abstract: Exposure to manganese compounds often occurs as the result of industrial production or mining. Although manganese appears in traces in animal and human tissue and is essential to certain biological processes, it is also toxic. In humans and animals, toxicity is mainly associated with the nervous system. The mechanism underlying behavioral and biochemical alterations observed after manganese intoxication is not fully understood. We have shown that the manganese present in serum after exposure to manganese oxide is bound to transferrin as trivalent manganic ion. In this study of manganese uptake and storage we used a clone of human neuroblastoma cells (SHSY5Y). These cells differentiate and express catechol-aminergic properties. Saturation binding analysis of the transferrin-manganese complex to the cells revealed a single class of binding sites, with an apparent K D of 13 ± 1 n M and a density of 11, 000 ± 2, 000 binding sites per cell. The complex was internalized in a temperature-dependent way and reached saturation after 2 h when ∼2% of the added manganese had been internalized. About 80% of the internalized manganese was found in ferritin after 24 h of exposure. The results demonstrate that the transferrin receptor on SHSY5Y cells can bind and internalize a manganese-transferrin complex as efficiently as an iron-transferrin complex, although a saturation of the manganese uptake was achieved.  相似文献   

18.
Ferritin, a ubiquitously distributed iron storage protein, has been reported to interact with microtubules in vitro (Hasan et al., 2005, FEBS journal 272:822-831). Here, we demonstrate that ferritin binds with the microtubules in an oligomeric form and that the microtubule-bound ferritin contains more than two-fold amount of iron compared to the unbound ferritin fraction in vitro. Indirect immunofluorescence microscopy showed that a significant fraction of the ferritin molecules colocalized with the microtubules as oligomers in a wide variety of cell lines. These findings are consistent with the immediate oligomerization of rhodamine-labeled ferritin, microinjected in living human hepatoma cells. Ferritin oligomers were dynamic in the cytoplasm, and an anti-microtubule drug significantly inhibited their intracellular movement. Treatment of cells with an iron donor, ferric ammonium citrate, remarkably increased the number of cells containing ferritin oligomers. On the other hand, when the cells, such as mouse neuroblastoma cells, were deprived of iron, ferritin oligomers were localized in the microtubule dense, neurite shafts, but were disappeared from the microtubule deficient neurite tips. These data indicate that the microtubules provide a scaffold for the cytoplasmic distribution and transport of the iron-rich ferritin and implicate the role of microtubules in iron metabolism.  相似文献   

19.
Iron is essential for the survival as well as the proliferation and maturation of developing erythroid precursors (EP) into hemoglobin-containing red blood cells. The transferrin-transferrin receptor pathway is the main route for erythroid iron uptake. Using a two-phase culture system, we have previously shown that placental ferritin as well as macrophages derived from peripheral blood monocytes could partially replace transferrin and support EP growth in a transferrin-free medium. We now demonstrate that in the absence of transferrin, ferritin synthesized and secreted by macrophages can serve as an iron source for EP. Macrophages trigger an increase in both the cytosolic and the mitochondrial labile iron pools, in heme and in hemoglobin synthesis, along with a decrease in surface transferrin receptors. Inhibiting macrophage exocytosis, binding extracellular ferritin with specific antibodies, inhibiting EP receptor-mediated endocytosis or acidification of EP lysosomes, all resulted in a decreased EP growth when co-cultured with macrophages under transferrin-free conditions. The results suggest that iron taken up by macrophages is incorporated mainly into their ferritin, which is subsequently secreted by exocytosis. Nearby EP are able to take up this ferritin probably through clathrin-dependent, receptor-mediated endocytosis into endosomes, which following acidification and proteolysis release the iron from the ferritin, making it available for regulatory and synthetic purposes. Thus, macrophages support EP development under transferrin-free conditions by delivering essential iron in the form of metabolizable ferritin.  相似文献   

20.
We investigated the remodeling of iron metabolism during megakaryocytic development of K562 cells. Differentiation was successfully verified by increase of the megakaryocytic marker CD61 and concomitant decrease of the erythroid marker γ-globin. The reduction of erythroid properties was accompanied by changes in the cellular iron content and in the expression of proteins regulating cellular iron homeostasis. Independent of available inorganic or transferrin-bound extracellular iron, total intracellular iron increases while the iron-to-protein ratio decreases. The iron exporter ferroportin is downregulated within 1-6 h, followed by downregulation of transferrin receptor-1 (TfR1) and ferritin heavy chain (H-ferritin) mainly after 24-48 h. The hemochromatosis protein-1, a ligand of TfR1, peaked after 24 h. All effects were independent of iron supply with the exception of H-ferritin, which was restored by excess iron. While alterations of CD61, TfR1 and ferritin expression were revoked by a protein kinase C inhibitor, downregulation of ferroportin remained unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号