首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microtubule (MT)‐associated putative kinase RUNKEL (RUK) is an important component of the phragmoplast machinery involved in cell plate formation in Arabidopsis somatic cytokinesis. Since loss‐of‐function ruk mutants display seedling lethality, it was previously not known whether RUK functions in mature sporophytes or during gametophyte development. In this study we utilized RUK proteins that lack the N‐terminal kinase domain to further examine biological processes related to RUK function. Truncated RUK proteins when expressed in wild‐type Arabidopsis plants cause cellularization defects not only in seedlings and adult tissues but also during male meiocyte development, resulting in abnormal pollen and reduced fertility. Ultrastructural analysis of male tetrads revealed irregular and incomplete or absent intersporal cell walls, caused by disorganized radial MT arrays. Moreover, in ruk mutants endosperm cellularization defects were also caused by disorganized radial MT arrays. Intriguingly, in seedlings expressing truncated RUK proteins, the kinesin HINKEL, which is required for the activation of a mitogen‐activated protein kinase signaling pathway regulating phragmoplast expansion, was mislocalized. Together, these observations support a common role for RUK in both phragmoplast‐based cytokinesis in somatic cells and syncytial cytokinesis in reproductive cells.  相似文献   

2.
Partitioning of the cytoplasm during cytokinesis or cellularisation requires syntaxin-mediated membrane fusion [1-3]. Whereas in animals, membrane fusion promotes ingression of a cleavage furrow from the plasma membrane [4,5], somatic cells of higher plants form de novo a transient membrane compartment, the cell plate, which is initiated in the centre of the division plane and matures into a new cell wall and its flanking plasma membranes [6,7]. Cell plate formation results from the fusion of Golgi-derived vesicles delivered by a dynamic cytoskeletal array, the phragmoplast. Mutations in two Arabidopsis genes, KNOLLE (KN) and KEULE (KEU), cause abnormal seedlings with multinucleate cells and incomplete cell walls [1,8]. The KN gene encodes a cytokinesis-specific syntaxin which localises to the cell plate [9]. Here, we show that KN protein localisation is unaffected in keu mutant cells, which, like kn, display phragmoplast microtubules and accumulate ADL1 protein in the plane of cell division but vesicles fail to fuse with one another. Genetic interactions between KN and KEU were analysed in double mutant embryos. Whereas the haploid gametophytes gave rise to functional gametes, the embryos behaved like single cells displaying multiple, synchronously cycling nuclei, cell cycle-dependent microtubule arrays and ADL1 accumulation between pairs of daughter nuclei. This complete inhibition of cytokinesis from fertilisation indicates that KN and KEU, have partially redundant functions and interact specifically in vesicle fusion during cytokinesis of somatic cells.  相似文献   

3.
Plant cytokinesis starts in the center of the division plane, with vesicle fusion generating a new membrane compartment, the cell plate, that subsequently expands laterally by continuous fusion of newly arriving vesicles to its margin. Targeted delivery of vesicles is assisted by the dynamic reorganization of a plant-specific cytoskeletal array, the phragmoplast, from a solid cylinder into an expanding ring-shaped structure. This lateral translocation is brought about by depolymerization of microtubules in the center, giving way to the expanding cell plate, and polymerization of microtubules along the edge. Whereas several components are known to mediate cytokinetic vesicle fusion [8-10], no gene function involved in phragmoplast dynamics has been identified by mutation. Mutations in the Arabidopsis HINKEL gene cause cytokinesis defects, such as enlarged cells with incomplete cell walls and multiple nuclei. Proper targeting of the cytokinesis-specific syntaxin KNOLLE [8] and lateral expansion of the phragmoplast are not affected. However, the phragmoplast microtubules appear to persist in the center, where vesicle fusion should result in cell plate formation. Molecular analysis reveals that the HINKEL gene encodes a plant-specific kinesin-related protein with a putative N-terminal motor domain and is expressed in a cell cycle-dependent manner similar to the KNOLLE gene. Our results suggest that HINKEL plays a role in the reorganization of phragmoplast microtubules during cell plate formation.  相似文献   

4.
In sexually reproducing plants, the meiocyte-producing archesporal cell lineage is maintained at the diploid state to consolidate the formation of haploid gametes. In search of molecular factors that regulate this ploidy consistency, we isolated an Arabidopsis thaliana mutant, called enlarged tetrad2 (et2), which produces tetraploid meiocytes through the stochastic occurrence of premeiotic endomitosis. Endomitotic polyploidization events were induced by alterations in cell wall formation, and similar cytokinetic defects were sporadically observed in other tissues, including cotyledons and leaves. ET2 encodes GLUCAN SYNTHASE-LIKE8 (GSL8), a callose synthase that mediates the deposition of callose at developing cell plates, root hairs, and plasmodesmata. Unlike other gsl8 mutants, in which defects in cell plate formation are seedling lethal, cytokinetic defects in et2 predominantly occur in flowers and have little effect on vegetative growth and development. Similarly, mutations in STEROL METHYLTRANSFERASE2 (SMT2), a major sterol biosynthesis enzyme, also lead to weak cytokinetic defects, primarily in the flowers. In addition, SMT2 allelic mutants also generate tetraploid meiocytes through the ectopic induction of premeiotic endomitosis. These observations demonstrate that appropriate callose and sterol biosynthesis are required for maintaining the ploidy level of the premeiotic germ lineage and that subtle defects in cytokinesis may lead to diploid gametes and polyploid offspring.  相似文献   

5.
The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.

Formins regulate phragmoplast expansion, microtubule turnover rate, actin nucleation, and cell plate membrane remodeling during cytokinesis.  相似文献   

6.
Early endosperm development involves a series of rapid nuclear divisions in the absence of cytokinesis; thus, many endosperm mutants reveal genes whose functions are essential for mitosis. This work finds that the endosperm of Arabidopsis thaliana endosperm-defective1 (ede1) mutants never cellularizes, contains a reduced number of enlarged polyploid nuclei, and features an aberrant microtubule cytoskeleton, where the specialized radial microtubule systems and cytokinetic phragmoplasts are absent. Early embryo development is substantially normal, although occasional cytokinesis defects are observed. The EDE1 gene was cloned using a map-based approach and represents the pioneer member of a conserved plant-specific family of genes of previously unknown function. EDE1 is expressed in the endosperm and embryo of developing seeds, and its expression is tightly regulated during cell cycle progression. EDE1 protein accumulates in nuclear caps in premitotic cells, colocalizes along microtubules of the spindle and phragmoplast, and binds microtubules in vitro. We conclude that EDE1 is a novel plant-specific microtubule-associated protein essential for microtubule function during the mitotic and cytokinetic stages that generate the Arabidopsis endosperm and embryo.  相似文献   

7.
Directional cell expansion in interphase and nuclear and cell division in M-phase are mediated by four microtubule arrays, three of which are unique to plants: the interphase array, the preprophase band, and the phragmoplast. The plant microtubule-associated protein MAP65 has been identified as a key structural component in these arrays. The Arabidopsis genome has nine MAP65 genes, and here we show that one, AtMAP65-3/PLE, locates only to the mitotic arrays and is essential for cytokinesis. The Arabidopsis pleiade (ple) alleles are single recessive mutations, and we show that these mutations are in the AtMAP65-3 gene. Moreover, these mutations cause C-terminal truncations that abolish microtubule binding. In the ple mutants the anaphase spindle is normal, and the cytokinetic phragmoplast can form but is distorted; not only is it wider, but the midline, the region where oppositely oriented microtubules overlap, is unusually expanded. Here we present data that demonstrate an essential role for AtMAP65-3/PLE in cytokinesis in plant cells.  相似文献   

8.
Cell reproduction is a complex process involving whole cell structures and machineries in space and time, resulting in regulated distribution of endomembranes, organelles, and genomes between daughter cells. Secretory pathways supported by the activity of the Golgi apparatus play a crucial role in cytokinesis in plants. From the onset of phragmoplast initiation to the maturation of the cell plate, delivery of secretory vesicles is necessary to sustain successful daughter cell separation. Tethering of secretory vesicles at the plasma membrane is mediated by the evolutionarily conserved octameric exocyst complex. Using proteomic and cytologic approaches, we show that EXO84b is a subunit of the plant exocyst. Arabidopsis thaliana mutants for EXO84b are severely dwarfed and have compromised leaf epidermal cell and guard cell division. During cytokinesis, green fluorescent protein–tagged exocyst subunits SEC6, SEC8, SEC15b, EXO70A1, and EXO84b exhibit distinctive localization maxima at cell plate initiation and cell plate maturation, stages with a high demand for vesicle fusion. Finally, we present data indicating a defect in cell plate assembly in the exo70A1 mutant. We conclude that the exocyst complex is involved in secretory processes during cytokinesis in Arabidopsis cells, notably in cell plate initiation, cell plate maturation, and formation of new primary cell wall.  相似文献   

9.
The tobacco mitogen-activated protein kinase kinase kinase NPK1 regulates lateral expansion of the cell plate at cytokinesis. Here, we show that the kinesin-like proteins NACK1 and NACK2 act as activators of NPK1. Biochemical analysis suggests that direct binding of NACK1 to NPK1 stimulates kinase activity. NACK1 is accumulated specifically in M phase and colocalized with NPK1 at the phragmoplast equator. Overexpression of a truncated NACK1 protein that lacks the motor domain disrupts NPK1 concentration at the phragmoplast equator and cell plate formation. Incomplete cytokinesis is also observed when expression of NACK1 and NACK2 is repressed by virus-induced gene silencing and in embryonic cells from Arabidopsis mutants in which a NACK1 ortholog is disrupted. Thus, we conclude that expansion of the cell plate requires NACK1/2 to regulate the activity and localization of NPK1.  相似文献   

10.
In plants, cell wall placement during cytokinesis is determined by the position of the preprophase band (PPB) and the subsequent expansion of the phragmoplast, which deposits the new cell wall, to the cortical division site delineated by the PPB. New cell walls are often incorrectly oriented during asymmetric cell divisions in the leaf epidermis of maize (Zea mays) discordia1 (dcd1) mutants, and this defect is associated with aberrant PPB formation in asymmetrically dividing cells. dcd1 was cloned and encodes a putative B' regulatory subunit of the PP2A phosphatase complex highly similar to Arabidopsis thaliana FASS/TONNEAU2, which is required for PPB formation. We also identified alternative discordia1 (add1), a second gene in maize nearly identical to dcd1. While loss of add1 function does not produce a noticeable phenotype, knock down of both genes in add1(RNAi) dcd1(RNAi) plants prevents PPB formation and causes misorientation of symmetric and asymmetric cell divisions. Immunolocalization studies with an antibody that recognizes both DCD1 and ADD1 showed that these proteins colocalize with PPBs and remain at the cortical division site through metaphase. Our results indicate that DCD1 and ADD1 function in PPB formation, that this function is more critical in asymmetrically dividing cells than in symmetrically dividing cells, and that DCD1/ADD1 may have other roles in addition to promoting PPB formation at the cortical division site.  相似文献   

11.
Arabidopsis Fused kinase TWO-IN-ONE (TIO) controls phragmoplast expansion through its interaction with the Kinesin-12 subfamily proteins that anchor the plus ends of interdigitating microtubules in the phragmoplast midzone. Previous analyses of loss-of-function mutants and RNA interference lines revealed that TIO positively controls both somatic and gametophytic cell cytokinesis; however, knowledge of the full spectrum of TIO functions during plant development remains incomplete. To characterize TIO functions further, we expressed TIO and a range of TIO variants under control of the TIO promoter in wild-type Arabidopsis plants. We discovered that TIO-overexpressing transgenic lines produce enlarged pollen grains, arising from incomplete cytokinesis during male meiosis, and show sporophytic abnormalities indicative of polyploidy. These phenotypes arose independently in TIO variants in which either gametophytic function or the ability of TIO to interact with Kinesin-12 subfamily proteins was abolished. Interaction assays in yeast showed TIO to bind to the AtNACK2/TETRASPORE, and plants doubly homozygous for kinesin-12a and kinesin-12b knockout mutations to produce enlarged pollen grains. Our results show TIO to dominantly inhibit male meiotic cytokinesis in a dosage-dependent manner that may involve direct binding to a component of the canonical NACK-PQR cytokinesis signaling pathway.  相似文献   

12.
Plant cells divide in two by constructing a new cell wall (cell plate) between daughter nuclei after mitosis. Golgi-derived vesicles are transported to the equator of a cytoskeletal structure called a phragmoplast, where they fuse together to form the cell plate. Orientation of new cell walls involves actindependent guidance of phragmoplasts and associated cell plates to cortical sites established prior to mitosis. Recent work has provided new insights into how actin filaments and other proteins in the phragmoplast and cell plate contribute to cytokinesis. Newly discovered mutations have identified a variety of genes required for cytokinesis or its spatial regulation.  相似文献   

13.
Zuo J  Niu QW  Nishizawa N  Wu Y  Kost B  Chua NH 《The Plant cell》2000,12(7):1137-1152
The formation of the cell plate, a unique structure in dividing plant cells, is pivotal for cytokinesis. A mutation in the Arabidopsis KORRIGAN (KOR) gene causes the formation of aberrant cell plates, incomplete cell walls, and multinucleated cells, leading to severely abnormal seedling morphology. The mutant, designed kor1-2, was identified as a stronger allele than the previously identified kor1-1, which appears to be defective only in cell elongation. KOR1 encodes an endo-1,4-beta-d-glucanase with a transmembrane domain and two putative polarized targeting signals in the cytosolic tail. When expressed in tobacco BY2 cells, a KOR1-GFP (green fluorescence protein) fusion protein was localized to growing cell plates. Substitution mutations in the polarized targeting motifs of KOR1 caused the fusion proteins to localize to the plasma membrane as well. Expression of these mutant genes in kor1-2 plants complemented only the cell elongation defect but not the cytokinesis defect, indicating that polarized targeting of KOR1 to forming cell plates is essential for cytokinesis. Our results suggest that KOR1 plays a critical role during cytokinesis.  相似文献   

14.
The FUSED (FU) Ser/Thr protein kinase family has a key role in the hedgehog signaling pathway known to control cell proliferation and patterning in fruit flies and humans . The genomes of Arabidopsis thaliana and rice each encode a single Fu ortholog, but their role is unknown. Here, we show that cytokinesis-defective mutants, which we named two-in-one (tio), result from mutations in Arabidopsis Fu. Phenotypic analysis of tio mutants reveals an essential role for TIO in conventional modes of cytokinesis in plant meristems and during male gametogenesis. TIO also has a key role in nonconventional modes of cytokinesis (cellularization) during female gametogenesis. We demonstrate that TIO is tightly localized to the midline of the nascent phragmoplast and remains associated with the expanding phragmoplast ring. These data reveal the evolution of a divergent role for the Fu kinase family as an essential phragmoplast-associated protein that functions in different cell type-specific modes of cytokinesis in plants.  相似文献   

15.
Holding DR  Springer PS 《Planta》2002,214(3):373-382
The Arabidopsis thaliana (L.) Heynh. gene PROLIFERA (PRL) is a member of the MCM family of genes that are required for DNA replication during the S phase of the cell cycle. PRL is expressed in dividing cells throughout plant development. During reproductive development, PRL is expressed in both the developing megaspore mother cells and microspore mother cells, but is not expressed in the developing microgametophyte, suggesting that it does not function in the final haploid divisions leading to the production of a mature pollen grain. Disruption of PRL leads to megagametophyte and embryo lethality. prl mutant embryos arrest at a variety of stages, and often show defects in cytokinesis. Multinucleate cells and non-stereotypical cell division planes are commonly observed in developing prl mutant embryos, although mcm mutations in other organisms have not been reported to affect cytokinesis. These observations suggest that PRL may play a role in cytokinesis that is distinct from its role in regulating DNA replication. Additionally, a novel cytokinesis checkpoint that monitors cell cycle progression may exist in Arabidopsis.  相似文献   

16.
Lee YR  Liu B 《Current biology : CB》2000,10(13):797-800
The phragmoplast executes cytokinesis in higher plants. The major components of the phragmoplast are microtubules, which are arranged in two mirror-image arrays perpendicular to the division plane [1]. The plus ends of these microtubules are located near the site of the future cell plate. Golgi-derived vesicles are transported along microtubules towards the plus ends to deliver materials bound for the cell plate [2] [3]. During cell division, rapid microtubule reorganization in the phragmoplast requires the orchestrated activities of microtubule motor proteins such as kinesins. We isolated an Arabidopsis cDNA clone of a gene encoding an amino-terminal motor kinesin, AtPAKRP1, and have determined the partial sequence of its rice homolog. Immunofluorescence experiments with two sets of specific antibodies revealed consistent localization of AtPAKRP1 and its homolog in Arabidopsis and rice cells undergoing anaphase, telophase and cytokinesis. AtPAKRP1 started to accumulate along microtubules towards the spindle midzone during late anaphase. Once the phragmoplast microtubule array was established, AtPAKRP1 conspicuously localized to microtubules near the future cell plate. Our results provide evidence that AtPAKRP1 is a hitherto unknown motor that may take part in the establishment and/or maintenance of the phragmoplast microtubule array.  相似文献   

17.
The process of microtubule nucleation in plant cells is still a major question in plant cell biology. gamma-Tubulin is known as one of the key molecular players for microtubule nucleation in animal and fungal cells. Here, we provide genetic evidence that in Arabidopsis thaliana, gamma-tubulin is required for the formation of spindle, phragmoplast, and cortical microtubule arrays. We used a reverse genetics approach to investigate the role of the two Arabidopsis gamma-tubulin genes in plant development and in the formation of microtubule arrays. Isolation of mutants in each gene and analysis of two combinations of gamma-tubulin double mutants showed that the two genes have redundant functions. The first combination is lethal at the gametophytic stage. Disruption of both gamma-tubulin genes causes aberrant spindle and phragmoplast structures and alters nuclear division in gametophytes. The second combination of gamma-tubulin alleles affects late seedling development, ultimately leading to lethality 3 weeks after germination. This partially viable mutant combination enabled us to follow dynamically the effects of gamma-tubulin depletion on microtubule arrays in dividing cells using a green fluorescent protein marker. These results establish the central role of gamma-tubulin in the formation and organization of microtubule arrays in Arabidopsis.  相似文献   

18.
The mechanisms underlying completion of cytokinesis are still poorly understood. Here, we show that the Drosophila orthologue of mammalian Citron kinases is essential for the final events of the cytokinetic process. Flies bearing mutations in the Drosophila citron kinase (dck) gene were defective in both neuroblast and spermatocyte cytokinesis. In both cell types, early cytokinetic events such as central spindle assembly and contractile ring formation were completely normal. Moreover, cytokinetic rings constricted normally, leading to complete furrow ingression. However late telophases of both cell types displayed persistent midbodies associated with disorganized F actin and anillin structures. Similar defects were observed in dck RNA interference (RNAi) telophases, which, in addition to abnormal F actin and anillin rings, also displayed aberrant membrane protrusions at the cleavage site. Together, these results indicate that mutations in the dck gene result in morphologically abnormal intercellular bridges and in delayed resolution of these structures, suggesting that the wild-type function of dck is required for abscission at the end of cytokinesis. The phenotype of Dck-depleted cells is different from those observed in most Drosophila cytokinesis mutants but extraordinarily similar to that caused by anillin RNAi, suggesting that Dck and anillin are in the same pathway for completion of cytokinesis.  相似文献   

19.
Cytokinesis is the division of the cytoplasm and its separation into two daughter cells. Cell plate growth and cytokinesis appear to require callose, but direct functional evidence is still lacking. To determine the role of callose and its synthesis during cytokinesis, we identified and characterized mutants in many members of the GLUCAN SYNTHASE-LIKE (GSL; or CALLOSE SYNTHASE) gene family in Arabidopsis (Arabidopsis thaliana). Most gsl mutants (gsl1–gsl7, gsl9, gsl11, and gsl12) exhibited roughly normal seedling growth and development. However, mutations in GSL8, which were previously reported to be gametophytic lethal, were found to produce seedlings with pleiotropic defects during embryogenesis and early vegetative growth. We found cell wall stubs, two nuclei in one cell, and other defects in cell division in homozygous gsl8 insertional alleles. In addition, gsl8 mutants and inducible RNA interference lines of GSL8 showed reduced callose deposition at cell plates and/or new cell walls. Together, these data show that the GSL8 gene encodes a putative callose synthase required for cytokinesis and seedling maturation. In addition, gsl8 mutants disrupt cellular and tissue-level patterning, as shown by the presence of clusters of stomata in direct contact and by islands of excessive cell proliferation in the developing epidermis. Thus, GSL8 is required for patterning as well as cytokinesis during Arabidopsis development.Cytokinesis divides the cytoplasm of a plant cell by the deposition of plasma membrane and a cell wall during late mitosis. This process requires the phragmoplast, a dynamic, plant-specific cytoskeletal and membranous array, which delivers vesicles containing lipids, proteins, and cell wall components to the division plane to construct the cell plate. Cell plate formation involves several stages: initiation through vesicle fusion, the formation of a tubular-vesicular network, a transition to a solely tubular phase, and then further fusion to form a fenestrated sheet (Samuels et al., 1995). The outward growth of the cell plate leads to its fusion with the parental cell wall (Jürgens, 2005a, 2005b; Backues et al., 2007).Key regulators of cytokinesis include KNOLLE, KEULE, KORRIGAN, and HINKEL, which when defective induce pleiotropic phenotypes and seedling lethality (Lukowitz et al., 1996; Nicol et al., 1998; Zuo et al., 2000; Assaad et al., 2001; Strompen et al., 2002). KNOLLE, a syntaxin homolog, is required for the fusion of exocytic vesicles via a SNARE/SNAP33 complex (Lukowitz et al., 1996; Heese et al., 2001). KEULE, a homolog of yeast Sec1p, regulates syntaxin function by interacting with KNOLLE (Waizenegger et al., 2000; Assaad et al., 2001). KORRIGAN is an endo-1,4-β-glucanase required for cell wall biogenesis during cytokinesis (Zuo et al., 2000). And HINKEL is a kinesin-related protein required for the reorganization of phragmoplast microtubules during cytokinesis (Strompen et al., 2002).Additional regulators include Formin5, TWO-IN-ONE (TIO), and Arabidopsis (Arabidopsis thaliana) dynamin-like proteins (ADLs; Kang et al., 2001, 2003; Hong et al., 2003; Collings et al., 2005; Ingouff et al., 2005; Oh et al., 2005). Formin5 localizes to the cell plate and is an actin-organizing protein involved in cytokinesis and cell polarity. TIO, a Ser/Thr protein kinase, functions in cytokinesis in plant meristems and in gametogenesis (Oh et al., 2005). Members of the Arabidopsis DRP family associate with the developing cell plate, whereas DRP1a (ADL1A) locally constricts tubular membranes, interacts with callose synthase, and may facilitate callose deposition into the lumen.Callose, a β-1,3-glucan polymer with β-1,6-branches (Stone and Clarke, 1992), is synthesized in both sporophytic and gametophytic tissues and appears to play various roles. Callose accumulates at the cell plate during cytokinesis, in plasmodesmata, where it regulates cell-to-cell communication, and in dormant phloem, where it seals sieve plates after mechanical injury, pathogen attack, and metal toxicity (Stone and Clarke, 1992; Samuels et al., 1995; Lucas and Lee, 2004).Twelve GLUCAN SYNYHASE-LIKE (GSL) genes (also known as CALLOSE SYNTHASE [CalS]) have been identified in the Arabidopsis genome based on sequence homology (Richmond and Somerville, 2000; Hong et al., 2001; Enns et al., 2005). A GSL that functions in callose deposition after injury and pathogen treatment is GSL5 (Jacobs et al., 2003). Five other members of the Arabidopsis GSL family are required for microgametogenesis. GSL1 and GSL5 act redundantly to produce a callosic wall that prevents microspore degeneration, and both are needed for fertilization (Enns et al., 2005). GSL2 is required for the callosic wall around pollen mother cells, for the patterning of the pollen exine (Dong et al., 2005), and for callose deposition in the wall and plugs of pollen tubes (Nishikawa et al., 2005). GSL8 and GSL10 are independently required for the asymmetric division of microspores and for the entry of microspores into mitosis (Töller et al., 2008; Huang et al., 2009).Callose is a major component of the cell plate, especially during later plate development (Kakimoto and Shibaoka, 1992; Samuels et al., 1995; Hong et al., 2001). Callose appears to structurally reinforce the developing cell plate after the breakdown of the phragmoplast microtubule array and during plate consolidation (Samuels and Staehelin, 1996; Rensing et al., 2002). It is likely that callose is synthesized at the cell plate rather than in the endoplasmic reticulum and in the Golgi (Kakimoto and Shibaoka, 1988). GSL6 (CalS1) appears to be involved in callose synthesis at the cell plate, since a 35S∷GFP-GSL6 fusion in transgenic BY-2 tobacco (Nicotiana tabacum) cells increases callose accumulation, and GFP fluorescence was found specifically at the cell plate (Hong et al., 2001). However, functional and genetic data on the role of any GSL in Arabidopsis sporophytic cytokinesis are still lacking.Here, we report that GSL8 (CalS10) is required for normal cytokinesis. In addition, gsl8 mutants exhibit excessive cell proliferation and abnormal cell patterning, phenotypes not previously reported for cytokinesis-defective mutants.  相似文献   

20.
Collings DA  Harper JD  Vaughn KC 《Planta》2003,218(2):204-216
We have investigated changes in the distribution of peroxisomes through the cell cycle in onion (Allium cepa L.) root meristem cells with immunofluorescence and electron microscopy, and in leek (Allium porrum L.) epidermal cells with immunofluorescence and peroxisomal-targeted green fluorescent protein. During interphase and mitosis, peroxisomes distribute randomly throughout the cytoplasm, but beginning late in anaphase, they accumulate at the division plane. Initially, peroxisomes occur within the microtubule phragmoplast in two zones on either side of the developing cell plate. However, as the phragmoplast expands outwards to form an annulus, peroxisomes redistribute into a ring immediately inside the location of the microtubules. Peroxisome aggregation depends on actin microfilaments and myosin. Peroxisomes first accumulate in the division plane prior to the formation of the microtubule phragmoplast, and throughout cytokinesis, always co-localise with microfilaments. Microfilament-disrupting drugs (cytochalasin and latrunculin), and a putative inhibitor of myosin (2,3-butanedione monoxime), inhibit aggregation. We propose that aggregated peroxisomes function in the formation of the cell plate, either by regulating hydrogen peroxide production within the developing cell plate, or by their involvement in recycling of excess membranes from secretory vesicles via the -oxidation pathway. Differences in aggregation, a phenomenon which occurs in onion, some other monocots and to a lesser extent in tobacco BY-2 suspension cells, but which is not obvious in the roots of Arabidopsis thaliana (L.) Heynh., may reflect differences within the primary cell walls of these plants.Abbreviations BDM 2,3-butanedione monoxime - DAPI 4,6-diamidino-2-phenylindole - ER endoplasmic reticulum - GFP green fluorescent protein  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号