首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Social media exhibit rich yet distinct temporal dynamics which cover a wide range of different scales. In order to study this complex dynamics, two fundamental questions revolve around (1) the signatures of social dynamics at different time scales, and (2) the way in which these signatures interact and form higher-level meanings.

Method

In this paper, we propose the Recursive Convolutional Bayesian Model (RCBM) to address both of these fundamental questions. The key idea behind our approach consists of constructing a deep-learning framework using specialized convolution operators that are designed to exploit the inherent heterogeneity of social dynamics. RCBM’s runtime and convergence properties are guaranteed by formal analyses.

Results

Experimental results show that the proposed method outperforms the state-of-the-art approaches both in terms of solution quality and computational efficiency. Indeed, by applying the proposed method on two social network datasets, Twitter and Yelp, we are able to identify the compositional structures that can accurately characterize the complex social dynamics from these two social media. We further show that identifying these patterns can enable new applications such as anomaly detection and improved social dynamics forecasting. Finally, our analysis offers new insights on understanding and engineering social media dynamics, with direct applications to opinion spreading and online content promotion.  相似文献   

2.
The identification of promising metabolic engineering targets is a key issue in metabolic control analysis (MCA). Conventional approaches make intensive use of model-based studies, such as exploiting post-pulse metabolic dynamics after proper perturbation of the microbial system. Here, we present an easy-to-use, purely data-driven approach, defining pool efflux capacities (PEC) for identifying reactions that exert the highest flux control in linear pathways. Comparisons with linlog-based MCA and data-driven substrate elasticities (DDSE) showed that similar key control steps were identified using PEC. Using the example of l-methionine production with recombinant Escherichia coli, PEC consistently and robustly identified main flux controls using perturbation data after a non-labeled 12C-l-serine stimulus. Furthermore, the application of full-labeled 13C-l-serine stimuli yielded additional insights into stimulus propagation to l-methionine. PEC analysis performed on the 13C data set revealed the same targets as the 12C data set. Notably, the typical drawback of metabolome analysis, namely, the omnipresent leakage of metabolites, was excluded using the 13C PEC approach.  相似文献   

3.
Contagion, a concept from epidemiology, has long been used to characterize social influence on people’s behavior and affective (emotional) states. While it has revealed many useful insights, it is not clear whether the contagion metaphor is sufficient to fully characterize the complex dynamics of psychological states in a social context. Using wearable sensors that capture daily face-to-face interaction, combined with three daily experience sampling surveys, we collected the most comprehensive data set of personality and emotion dynamics of an entire community of work. From this high-resolution data about actual (rather than self-reported) face-to-face interaction, a complex picture emerges where contagion (that can be seen as adaptation of behavioral responses to the behavior of other people) cannot fully capture the dynamics of transitory states. We found that social influence has two opposing effects on states: adaptation effects that go beyond mere contagion, and complementarity effects whereby individuals’ behaviors tend to complement the behaviors of others. Surprisingly, these effects can exhibit completely different directions depending on the stable personality or emotional dispositions (stable traits) of target individuals. Our findings provide a foundation for richer models of social dynamics, and have implications on organizational engineering and workplace well-being.  相似文献   

4.
Many ecological studies employ general models that can feature an arbitrary number of populations. A critical requirement imposed on such models is clone consistency: If the individuals from two populations are indistinguishable, joining these populations into one shall not affect the outcome of the model. Otherwise a model produces different outcomes for the same scenario. Using functional analysis, we comprehensively characterize all clone-consistent models: We prove that they are necessarily composed from basic building blocks, namely linear combinations of parameters and abundances. These strong constraints enable a straightforward validation of model consistency. Although clone consistency can always be achieved with sufficient assumptions, we argue that it is important to explicitly name and consider the assumptions made: They may not be justified or limit the applicability of models and the generality of the results obtained with them. Moreover, our insights facilitate building new clone-consistent models, which we illustrate for a data-driven model of microbial communities. Finally, our insights point to new relevant forms of general models for theoretical ecology. Our framework thus provides a systematic way of comprehending ecological models, which can guide a wide range of studies.  相似文献   

5.
Phenotype-centric modeling enables a paradigm shift in the analysis of mechanistic models. It brings the focus to a network's biochemical phenotypes and their relationship with measurable traits (e.g., product yields, system dynamics, signal amplification factors, etc.) and away from computationally intensive simulation-centric modeling. Here, we explore applications of this new modeling strategy in the field of rational metabolic engineering using the amorphadiene biosynthetic network as a case study. This network has previously been studied using a mechanistic model and the simulation-centric strategy, and thus provides an excellent means to compare and contrast results obtained from these two very different strategies. We show that the phenotype-centric strategy, without values for the parameters, not only identifies beneficial intervention strategies obtained with the simulation-centric strategy, but it also provides an understanding of the mechanistic context for the validity of these predictions. Additionally, we propose a set of hypothetical strains with the potential to outperform reported production strains and to enhance the mechanistic understanding of the amorphadiene biosynthetic network. Further, we identify the landscape of possible intervention strategies for the given model. We believe that phenotype-centric modeling can advance the field of rational metabolic engineering by enabling the development of next generation kinetics-based algorithms and methods that do not rely on a priori knowledge of kinetic parameters but allow a structured, global analysis of system design in the parameter space.  相似文献   

6.
CommunityRx (CRx), an information technology intervention, provides patients with a personalized list of healthful community resources (HealtheRx). In repeated clinical studies, nearly half of those who received clinical “doses” of the HealtheRx shared their information with others (“social doses”). Clinical trial design cannot fully capture the impact of information diffusion, which can act as a force multiplier for the intervention. Furthermore, experimentation is needed to understand how intervention delivery can optimize social spread under varying circumstances. To study information diffusion from CRx under varying conditions, we built an agent-based model (ABM). This study describes the model building process and illustrates how an ABM provides insight about information diffusion through in silico experimentation. To build the ABM, we constructed a synthetic population (“agents”) using publicly-available data sources. Using clinical trial data, we developed empirically-informed processes simulating agent activities, resource knowledge evolution and information sharing. Using RepastHPC and chiSIM software, we replicated the intervention in silico, simulated information diffusion processes, and generated emergent information diffusion networks. The CRx ABM was calibrated using empirical data to replicate the CRx intervention in silico. We used the ABM to quantify information spread via social versus clinical dosing then conducted information diffusion experiments, comparing the social dosing effect of the intervention when delivered by physicians, nurses or clinical clerks. The synthetic population (N = 802,191) exhibited diverse behavioral characteristics, including activity and knowledge evolution patterns. In silico delivery of the intervention was replicated with high fidelity. Large-scale information diffusion networks emerged among agents exchanging resource information. Varying the propensity for information exchange resulted in networks with different topological characteristics. Community resource information spread via social dosing was nearly 4 fold that from clinical dosing alone and did not vary by delivery mode. This study, using CRx as an example, demonstrates the process of building and experimenting with an ABM to study information diffusion from, and the population-level impact of, a clinical information-based intervention. While the focus of the CRx ABM is to recreate the CRx intervention in silico, the general process of model building, and computational experimentation presented is generalizable to other large-scale ABMs of information diffusion.  相似文献   

7.
In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding of the structure and function of coupled social networks.  相似文献   

8.
Epidemiological models can provide the dynamic evolution of a pandemic but they are based on many assumptions and parameters that have to be adjusted over the time the pandemic lasts. However, often the available data are not sufficient to identify the model parameters and hence infer the unobserved dynamics. Here, we develop a general framework for building a trustworthy data-driven epidemiological model, consisting of a workflow that integrates data acquisition and event timeline, model development, identifiability analysis, sensitivity analysis, model calibration, model robustness analysis, and projection with uncertainties in different scenarios. In particular, we apply this framework to propose a modified susceptible–exposed–infectious–recovered (SEIR) model, including new compartments and model vaccination in order to project the transmission dynamics of COVID-19 in New York City (NYC). We find that we can uniquely estimate the model parameters and accurately project the daily new infection cases, hospitalizations, and deaths, in agreement with the available data from NYC’s government’s website. In addition, we employ the calibrated data-driven model to study the effects of vaccination and timing of reopening indoor dining in NYC.  相似文献   

9.
Using a simple geometric model, we propose a general method for computing the linking number of the DNA embedded in chromatin fibers. The relevance of the method is reviewed through the single molecule experiments that have been performed in vitro with magnetic tweezers. We compute the linking number of the DNA in the manifold conformational states of the nucleosome which have been evidenced in these experiments and discuss the functional dynamics of chromosomes in the light of these manifold states.  相似文献   

10.
In response to the outbreak of an emerging infectious disease, e.g., H1N1 influenza, public health authorities will take timely and effective intervention measures to contain disease spread. However, due to the scarcity of required resources and the consequent social-economic impacts, interventions may be suggested to cover only certain subpopulations, e.g., immunizing vulnerable children and the elderly as well as closing schools or workplaces for social distancing. Here we are interested in addressing the question of how to identify the relative priorities of subpopulations for two measures of disease intervention, namely vaccination and contact reduction, especially when these measures are implemented together at the same time. We consider the measure of vaccination that immunizes susceptible individuals in different age subpopulations and the measure of contact reduction that cuts down individuals’ effective contacts in different social settings, e.g., schools, households, workplaces, and general communities. In addition, we construct individuals’ cross-age contact frequency matrix by inferring basic contact patterns respectively for different social settings from the socio-demographical census data. By doing so, we present a prioritization approach to identifying the target subpopulations that will lead to the greatest reduction in the number of disease transmissions. We calculate the relative priorities of subpopulations by considering the marginal effects of reducing the reproduction number for the cases of vaccine allocation by age and contact reduction by social setting. We examine the proposed approach by revisiting the real-world scenario of the 2009 Hong Kong H1N1 influenza epidemic and determine the relative priorities of subpopulations for age-specific vaccination and setting-specific contact reduction. We simulate the influenza-like disease spread under different settings of intervention. The results have shown that the proposed approach can improve the effectiveness of disease control by containing disease transmissions in a host population.  相似文献   

11.

Background

Data-driven cell classification is becoming common and is now being implemented on a massive scale by projects such as the Human Cell Atlas. The scale of these efforts poses a challenge. How can the results be made searchable and accessible to biologists in general? How can they be related back to the rich classical knowledge of cell-types, anatomy and development? How will data from the various types of single cell analysis be made cross-searchable? Structured annotation with ontology terms provides a potential solution to these problems. In turn, there is great potential for using the outputs of data-driven cell classification to structure ontologies and integrate them with data-driven cell query systems.

Results

Focusing on examples from the mouse retina and Drosophila olfactory system, I present worked examples illustrating how formalization of cell ontologies can enhance querying of data-driven cell-classifications and how ontologies can be extended by integrating the outputs of data-driven cell classifications.

Conclusions

Annotation with ontology terms can play an important role in making data driven classifications searchable and query-able, but fulfilling this potential requires standardized formal patterns for structuring ontologies and annotations and for linking ontologies to the outputs of data-driven classification.
  相似文献   

12.
13.
The engineering of large-scale decentralised systems requires sound methodologies to guarantee the attainment of the desired macroscopic system-level behaviour given the microscopic individual-level implementation. While a general-purpose methodology is currently out of reach, specific solutions can be given to broad classes of problems by means of well-conceived design patterns. We propose a design pattern for collective decision making grounded on experimental/theoretical studies of the nest-site selection behaviour observed in honeybee swarms (Apis mellifera). The way in which honeybee swarms arrive at consensus is fairly well-understood at the macroscopic level. We provide formal guidelines for the microscopic implementation of collective decisions to quantitatively match the macroscopic predictions. We discuss implementation strategies based on both homogeneous and heterogeneous multiagent systems, and we provide means to deal with spatial and topological factors that have a bearing on the micro-macro link. Finally, we exploit the design pattern in two case studies that showcase the viability of the approach. Besides engineering, such a design pattern can prove useful for a deeper understanding of decision making in natural systems thanks to the inclusion of individual heterogeneities and spatial factors, which are often disregarded in theoretical modelling.  相似文献   

14.
Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover''s Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell''s Method.  相似文献   

15.
This paper describes a data-driven simulation study that explores the relative impact of several low-cost and practical non-pharmaceutical interventions on the spread of COVID-19 in an outpatient hospital dialysis unit. The interventions considered include: (i) voluntary self-isolation of healthcare personnel (HCPs) with symptoms; (ii) a program of active syndromic surveillance and compulsory isolation of HCPs; (iii) the use of masks or respirators by patients and HCPs; (iv) improved social distancing among HCPs; (v) increased physical separation of dialysis stations; and (vi) patient isolation combined with preemptive isolation of exposed HCPs. Our simulations show that under conditions that existed prior to the COVID-19 outbreak, extremely high rates of COVID-19 infection can result in a dialysis unit. In simulations under worst-case modeling assumptions, a combination of relatively inexpensive interventions such as requiring surgical masks for everyone, encouraging social distancing between healthcare professionals (HCPs), slightly increasing the physical distance between dialysis stations, and—once the first symptomatic patient is detected—isolating that patient, replacing the HCP having had the most exposure to that patient, and relatively short-term use of N95 respirators by other HCPs can lead to a substantial reduction in both the attack rate and the likelihood of any spread beyond patient zero. For example, in a scenario with R0 = 3.0, 60% presymptomatic viral shedding, and a dialysis patient being the infection source, the attack rate falls from 87.8% at baseline to 34.6% with this intervention bundle. Furthermore, the likelihood of having no additional infections increases from 6.2% at baseline to 32.4% with this intervention bundle.  相似文献   

16.
17.
A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices.  相似文献   

18.
Online consumer behavior in general and online customer engagement with brands in particular, has become a major focus of research activity fuelled by the exponential increase of interactive functions of the internet and social media platforms and applications. Current research in this area is mostly hypothesis-driven and much debate about the concept of Customer Engagement and its related constructs remains existent in the literature. In this paper, we aim to propose a novel methodology for reverse engineering a consumer behavior model for online customer engagement, based on a computational and data-driven perspective. This methodology could be generalized and prove useful for future research in the fields of consumer behaviors using questionnaire data or studies investigating other types of human behaviors. The method we propose contains five main stages; symbolic regression analysis, graph building, community detection, evaluation of results and finally, investigation of directed cycles and common feedback loops. The ‘communities’ of questionnaire items that emerge from our community detection method form possible ‘functional constructs’ inferred from data rather than assumed from literature and theory. Our results show consistent partitioning of questionnaire items into such ‘functional constructs’ suggesting the method proposed here could be adopted as a new data-driven way of human behavior modeling.  相似文献   

19.
Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.  相似文献   

20.
The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D. discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers). This is a well-defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted from the distribution of cells on the developmental path. We propose specific experiments for checking whether such systematics are also found in data and thus, indirectly, provide evidence of a developmental path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号