共查询到20条相似文献,搜索用时 15 毫秒
1.
Online consumer behavior in general and online customer engagement with brands in particular, has become a major focus of research activity fuelled by the exponential increase of interactive functions of the internet and social media platforms and applications. Current research in this area is mostly hypothesis-driven and much debate about the concept of Customer Engagement and its related constructs remains existent in the literature. In this paper, we aim to propose a novel methodology for reverse engineering a consumer behavior model for online customer engagement, based on a computational and data-driven perspective. This methodology could be generalized and prove useful for future research in the fields of consumer behaviors using questionnaire data or studies investigating other types of human behaviors. The method we propose contains five main stages; symbolic regression analysis, graph building, community detection, evaluation of results and finally, investigation of directed cycles and common feedback loops. The ‘communities’ of questionnaire items that emerge from our community detection method form possible ‘functional constructs’ inferred from data rather than assumed from literature and theory. Our results show consistent partitioning of questionnaire items into such ‘functional constructs’ suggesting the method proposed here could be adopted as a new data-driven way of human behavior modeling. 相似文献
2.
In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective. 相似文献
3.
4.
5.
Andrew Whiten 《Current biology : CB》2018,28(8):R344-R346
6.
Igor Chernukhin 《基因组蛋白质组与生物信息学报(英文版)》2013,11(2):127-132
Typically, detection of protein sequences in collision-induced dissociation (CID) tandem MS (MS2) dataset is performed by mapping identified peptide ions back to protein sequence by using the protein database search (PDS) engine. Finding a particular peptide sequence of interest in CID MS2 records very often requires manual evaluation of the spectrum, regardless of whether the peptide-associated MS2 scan is identified by PDS algorithm or not. We have developed a compact cross-platform database-free command-line utility, pepgrep, which helps to find an MS2 fingerprint for a selected peptide sequence by pattern-matching of modelled MS2 data using Peptide-to-MS2 scoring algorithm. pepgrep can incorporate dozens of mass offsets corresponding to a variety of post-translational modifications (PTMs) into the algorithm. Decoy peptide sequences are used with the tested peptide sequence to reduce false-positive results. The engine is capable of screening an MS2 data file at a high rate when using a cluster computing environment. The matched MS2 spectrum can be displayed by using built-in graphical application programming interface (API) or optionally recorded to file. Using this algorithm, we were able to find extra peptide sequences in studied CID spectra that were missed by PDS identification. Also we found pepgrep especially useful for examining a CID of small fractions of peptides resulting from, for example, affinity purification techniques. The peptide sequences in such samples are less likely to be positively identified by using routine protein-centric algorithm implemented in PDS. The software is freely available at http://bsproteomics.essex.ac.uk:8080/data/download/pepgrep-1.4.tgz. 相似文献
7.
8.
Modern experimental strategies often generate genome-scale measurements of human tissues or cell lines in various physiological states. Investigators often use these datasets individually to help elucidate molecular mechanisms of human diseases. Here we discuss approaches that effectively weight and integrate hundreds of heterogeneous datasets to gene-gene networks that focus on a specific process or disease. Diverse and systematic genome-scale measurements provide such approaches both a great deal of power and a number of challenges. We discuss some such challenges as well as methods to address them. We also raise important considerations for the assessment and evaluation of such approaches. When carefully applied, these integrative data-driven methods can make novel high-quality predictions that can transform our understanding of the molecular-basis of human disease.
What to Learn in This Chapter
- What a functional relationship network represents.
- The fundamentals of Bayesian inference for genomic data integration.
- How to build a network of functional relationships between genes using examples of functionally related genes and diverse experimental data.
- How computational scientists study disease using data driven approaches, such as integrated networks of protein-protein functional relationships.
- Strategies to assess predictions from a functional relationship network
This article is part of the “Translational Bioinformatics” collection for PLOS Computational Biology.相似文献
9.
10.
Beverly Nagel 《American anthropologist》2000,102(2):403-404
Anthropology of Food: The Social Dynamics of Food Security. Johan Pottier. Cambridge: Polity Press, 1999. 230 pp. 相似文献
11.
We develop here a multi-agent model of the creation of knowledge (scientific progress or technological evolution) within a community of researchers devoted to such endeavors. In the proposed model, agents learn in a physical-technological landscape, and weight is attached to both individual search and social influence. We find that the combination of these two forces together with random experimentation can account for both i) marginal change, that is, periods of normal science or refinements on the performance of a given technology (and in which the community stays in the neighborhood of the current paradigm); and ii) radical change, which takes the form of scientific paradigm shifts (or discontinuities in the structure of performance of a technology) that is observed as a swift migration of the knowledge community towards the new and superior paradigm. The efficiency of the search process is heavily dependent on the weight that agents posit on social influence. The occurrence of a paradigm shift becomes more likely when each member of the community attaches a small but positive weight to the experience of his/her peers. For this parameter region, nevertheless, a conservative force is exerted by the representatives of the current paradigm. However, social influence is not strong enough to seriously hamper individual discovery, and can act so as to empower successful individual pioneers who have conquered the new and superior paradigm. 相似文献
12.
Social influence is the process by which individuals adapt their opinion, revise their beliefs, or change their behavior as a result of social interactions with other people. In our strongly interconnected society, social influence plays a prominent role in many self-organized phenomena such as herding in cultural markets, the spread of ideas and innovations, and the amplification of fears during epidemics. Yet, the mechanisms of opinion formation remain poorly understood, and existing physics-based models lack systematic empirical validation. Here, we report two controlled experiments showing how participants answering factual questions revise their initial judgments after being exposed to the opinion and confidence level of others. Based on the observation of 59 experimental subjects exposed to peer-opinion for 15 different items, we draw an influence map that describes the strength of peer influence during interactions. A simple process model derived from our observations demonstrates how opinions in a group of interacting people can converge or split over repeated interactions. In particular, we identify two major attractors of opinion: (i) the expert effect, induced by the presence of a highly confident individual in the group, and (ii) the majority effect, caused by the presence of a critical mass of laypeople sharing similar opinions. Additional simulations reveal the existence of a tipping point at which one attractor will dominate over the other, driving collective opinion in a given direction. These findings have implications for understanding the mechanisms of public opinion formation and managing conflicting situations in which self-confident and better informed minorities challenge the views of a large uninformed majority. 相似文献
13.
Dynamics of bryophyte assemblages of saline grassland were studied in Hungary. A survey was carried out in two permanent plots by annual sampling of 0.25-m2 quadrats over a 9-year period. The study investigated: i) the extent of spatial and temporal dependence of the assemblages and individual species; ii) the turnover of individual species and its relationship to life-strategy types and iii) the effect of annual weather conditions on species performance. One of the plots showed succession; the frequency of some perennial species increased, while that of some short-lived species decreased; this process was independent of local weather conditions. The other plot showed a non-directional fluctuation, which was partly related to precipitation in winter and early spring. The spatial and temporal dependence of this assemblage was low; many short-lived species had a high turnover in the studied community. In stable periods, neutral dynamic processes characterize the bryophyte assemblages of the studied saline grassland and the occurrences of species were more or less independent in space and time. Short-lived species showed high fluctuations and were probably influenced by weather conditions or other factors. However, the frequency of perennial species, which were influenced by local conditions, could directionally change displacing the short-lived ones during succession. The relationships between turnover and life-strategy types were weak, both the group of colonist and shuttle species were dynamically heterogeneous. Longer observations are needed for a clearer exploration of the relationships between vegetation changes and weather conditions. 相似文献
14.
Depopulation of rural areas is a widespread phenomenon that has occurred in most industrialized countries, and has contributed significantly to a reduction in the productivity of agro-ecological resources. In this study, we identified the main trends in the dynamics of rural populations in the Central Pyrenees in the 20th C and early 21st C, and used density independent and density dependent models and identified the main factors that have influenced the dynamics. In addition, we investigated the change in the power law distribution of population size in those periods. Populations exhibited density-dependent positive feedback between 1960 and 2010, and a long-term positive correlation between agricultural activity and population size, which has resulted in a free-scale population distribution that has been disrupted by the collapse of the traditional agricultural society and by emigration to the industrialized cities. We concluded that complex socio-ecological systems that have strong feedback mechanisms can contribute to disruptive population collapses, which can be identified by changes in the pattern of population distribution. 相似文献
15.
16.
17.
We quantified the extent and dynamics of social interactions among fruit fly larvae over time. Both a wild-type laboratory population and a recently-caught strain of larvae spontaneously formed social foraging groups. Levels of aggregation initially increased during larval development and then declined with the wandering stage before pupation. We show that larvae aggregated more on hard than soft food, and more at sites where we had previously broken the surface of the food. Groups of larvae initiated burrowing sooner than solitary individuals, indicating that one potential benefit of larval aggregations is an improved ability to dig and burrow into the food substrate. We also show that two closely related species, D. melanogaster and D. simulans, differ in their tendency to aggregate, which may reflect different evolutionary histories. Our protocol for quantifying social behavior in larvae uncovered robust social aggregations in this simple model, which is highly amenable to neurogenetic analyses, and can serve for future research into the mechanisms and evolution of social behavior. 相似文献
18.
This article explores the intrinsic role of context in shaping the course and outcomes of interventions aimed at changing environmentally significant behavior in home and workplace settings. Drawing on sociological theories of symbolic interactionism, we evaluate the social dynamics and mechanisms of two similar, team-based behavior change interventions at work (Environment Champions) and at home (EcoTeams). The analysis shows that the interventions open up different levels of opportunity for reviewing and renegotiating new environmentally friendly behaviors against the reactions and expectations of the immediate peer group, existing workplace or domestic roles, and the situation-specific definitions of what counts as appropriate behavior in the home and the workplace. We argue that policy studies should pay greater attention to the processes of behavior change, or the contextually sensitive relationship between interventions and outcomes, as a step toward refining or streamlining interventions aimed at changing environmentally significant behavior. 相似文献
19.
Genetic markers, defined as variable regions of DNA, can be utilized for distinguishing individuals or populations. As long as markers are independent, it is easy to combine the information they provide. For nonrecombinant sequences like mtDNA, choosing the right set of markers for forensic applications can be difficult and requires careful consideration. In particular, one wants to maximize the utility of the markers. Until now, this has mainly been done by hand.We propose an algorithm that finds the most informative subset of a set of markers. The algorithm uses a depth first search combined with a branch-and-bound approach. Since the worst case complexity is exponential, we also propose some data-reduction techniques and a heuristic.We implemented the algorithm and applied it to two forensic caseworks using mitochondrial DNA, which resulted in marker sets with significantly improved haplotypic diversity compared to previous suggestions. Additionally, we evaluated the quality of the estimation with an artificial dataset of mtDNA. The heuristic is shown to provide extensive speedup at little cost in accuracy. 相似文献
20.
In a complex behavioral system, such as an animal society, the dynamics of the system as a whole represent the synergistic interaction among multiple aspects of the society. We constructed multiple single-behavior social networks for the purpose of approximating from multiple aspects a single complex behavioral system of interest: rhesus macaque society. Instead of analyzing these networks individually, we describe a new method for jointly analyzing them in order to gain comprehensive understanding about the system dynamics as a whole. This method of jointly modeling multiple networks becomes valuable analytical tool for studying the complex nature of the interaction among multiple aspects of any system. Here we develop a bottom-up, iterative modeling approach based upon the maximum entropy principle. This principle is applied to a multi-dimensional link-based distributional framework, which is derived by jointly transforming the multiple directed behavioral social network data, for extracting patterns of synergistic inter-behavioral relationships. Using a rhesus macaque group as a model system, we jointly modeled and analyzed four different social behavioral networks at two different time points (one stable and one unstable) from a rhesus macaque group housed at the California National Primate Research Center (CNPRC). We report and discuss the inter-behavioral dynamics uncovered by our joint modeling approach with respect to social stability. 相似文献