首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial vaginosis (BV), characterized by a shift of the vaginal microbiota from a Lactobacillus-dominated community to a dense biofilm containing a complex mixture of organisms, is an important risk factor in poor reproductive health outcomes. The Nugent score, based on Gram stain, is used to diagnose BV and Gardnerella vaginalis abundance in the sample is one factor determining Nugent score. A high Nugent score is indicative of BV but does not always correspond to the presence of clinical symptoms. G. vaginalis is recognized as a heterogeneous group of organisms, which can also be part of the normal, healthy vaginal microbiome. In addition, asymptomatic BV and non-Gardnerella types of BV are being recognized. In an attempt to resolve the heterogeneous group of G. vaginalis, a phylogenetic tree of cpn60 universal target sequences from G. vaginalis isolates was constructed that indicates the existence of four subgroups of G. vaginalis. This subdivision, supported by whole genome similarity calculation of representative strains using JSpecies, demonstrates that these subgroups may represent different species. The cpn60 subgroupings did not correspond with the Piot biotyping scheme, but did show consistency with ARDRA genotyping and sialidase gene presence. Isolates from all four subgroups produced biofilm in vitro. We also investigated the distribution of G. vaginalis subgroups in vaginal samples from Kenyan women with Nugent scores consistent with BV, Intermediate and Normal microbiota (n = 44). All subgroups of G. vaginalis were detected in these women, with a significant difference (z = −3.372, n = 39, p = 0.001) in frequency of G. vaginalis subgroup B between BV and Normal groups. Establishment of a quantifiable relationship between G. vaginalis subgroup distribution and clinical status could have significant diagnostic implications.  相似文献   

2.

Background  

Gardnerella vaginalis is a facultative gram positive organism that requires subculture every 1–2 days to maintain viability. It has been linked with bacterial vaginosis (BV), a syndrome that has been associated with increased risk for preterm delivery, pelvic inflammatory disease and HIV acquisition. About 10% of the G. vaginalis isolates have been reported to produce sialidase, but there have not been any studies relating sialidase production and biotype. Sialidase activity is dramatically increased in the vaginal fluid of women with BV and bacterial sialidases have been shown to increase the infectivity of HIV in vitro. There are 8 different biotypes of G. vaginalis. Biotypes 1–4 produce lipase and were reported to be associated with BV and the association of these biotypes with BV is under dispute. Other studies have demonstrated that G. vaginalis biotype 1 can stimulate HIV-1 production. Because of the discrepancies in the literature we compared the methods used to biotype G. vaginalis and investigated the relationship of biotype and sialidase production.  相似文献   

3.
Bacterial vaginosis (BV) is a dysbiosis of the vaginal flora characterized by a shift from a Lactobacillus-dominant environment to a polymicrobial mixture including Actinobacteria and Gram-negative bacilli. BV is a common vaginal condition in women and is associated with increased risk of sexually transmitted infection and adverse pregnancy outcomes such as preterm birth. Gardnerella vaginalis is one of the most frequently isolated bacterial species in BV. However, there has been much debate in the literature concerning the contribution of G. vaginalis to the etiology of BV, since it is also present in a significant proportion of healthy women. Here we present a new murine vaginal infection model with a clinical isolate of G. vaginalis. Our data demonstrate that this model displays key features used clinically to diagnose BV, including the presence of sialidase activity and exfoliated epithelial cells with adherent bacteria (reminiscent of clue cells). G. vaginalis was capable of ascending uterine infection, which correlated with the degree of vaginal infection and level of vaginal sialidase activity. The host response to G. vaginalis infection was characterized by robust vaginal epithelial cell exfoliation in the absence of histological inflammation. Our analyses of clinical specimens from women with BV revealed a measureable epithelial exfoliation response compared to women with normal flora, a phenotype that, to our knowledge, is measured here for the first time. The results of this study demonstrate that G. vaginalis is sufficient to cause BV phenotypes and suggest that this organism may contribute to BV etiology and associated complications. This is the first time vaginal infection by a BV associated bacterium in an animal has been shown to parallel the human disease with regard to clinical diagnostic features. Future studies with this model should facilitate investigation of important questions regarding BV etiology, pathogenesis and associated complications.  相似文献   

4.
Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA) led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass) and 61% (viability). Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV.  相似文献   

5.
The vaginal microbiota is important in women’s reproductive and overall health. However, the relationships between the structure, function and dynamics of this complex microbial community and health outcomes remain elusive. The objective of this study was to determine the phylogenetic range and abundance of prokaryotes in the vaginal microbiota of healthy, non-pregnant, ethnically diverse, reproductive-aged Canadian women. Socio-demographic, behavioural and clinical data were collected and vaginal swabs were analyzed from 310 women. Detailed profiles of their vaginal microbiomes were generated by pyrosequencing of the chaperonin-60 universal target. Six community state types (CST) were delineated by hierarchical clustering, including three Lactobacillus-dominated CST (L. crispatus, L. iners, L. jensenii), two Gardnerella-dominated (subgroups A and C) and an “intermediate” CST which included a small number of women with microbiomes dominated by seven other species or with no dominant species but minority populations of Streptococcus, Staphylococcus, Peptoniphilus, E. coli and various Proteobacteria in co-dominant communities. The striking correspondence between Nugent score and deep sequencing CST continues to reinforce the basic premise provided by the simpler Gram stain method, while additional analyses reveal detailed cpn60-based phylogeny and estimated abundance in microbial communities from vaginal samples. Ethnicity was the only demographic or clinical characteristic predicting CST, with differences in Asian and White women (p = 0.05). In conclusion, this study confirms previous work describing four cpn60-based subgroups of Gardnerella, revealing previously undescribed CST. The data describe the range of bacterial communities seen in Canadian women presenting with no specific vaginal health concerns, and provides an important baseline for future investigations of clinically important cohorts.  相似文献   

6.

Background

Gardnerella vaginalis is described as a common vaginal bacterial species whose presence correlates strongly with bacterial vaginosis (BV). Here we report the genome sequencing and comparative analyses of three strains of G. vaginalis. Strains 317 (ATCC 14019) and 594 (ATCC 14018) were isolated from the vaginal tracts of women with symptomatic BV, while Strain 409-05 was isolated from a healthy, asymptomatic individual with a Nugent score of 9.

Principal Findings

Substantial genomic rearrangement and heterogeneity were observed that appeared to have resulted from both mobile elements and substantial lateral gene transfer. These genomic differences translated to differences in metabolic potential. All strains are equipped with significant virulence potential, including genes encoding the previously described vaginolysin, pili for cytoadhesion, EPS biosynthetic genes for biofilm formation, and antimicrobial resistance systems, We also observed systems promoting multi-drug and lantibiotic extrusion. All G. vaginalis strains possess a large number of genes that may enhance their ability to compete with and exclude other vaginal colonists. These include up to six toxin-antitoxin systems and up to nine additional antitoxins lacking cognate toxins, several of which are clustered within each genome. All strains encode bacteriocidal toxins, including two lysozyme-like toxins produced uniquely by strain 409-05. Interestingly, the BV isolates encode numerous proteins not found in strain 409-05 that likely increase their pathogenic potential. These include enzymes enabling mucin degradation, a trait previously described to strongly correlate with BV, although commonly attributed to non-G. vaginalis species.

Conclusions

Collectively, our results indicate that all three strains are able to thrive in vaginal environments, and therein the BV isolates are capable of occupying a niche that is unique from 409-05. Each strain has significant virulence potential, although genomic and metabolic differences, such as the ability to degrade mucin, indicate that the detection of G. vaginalis in the vaginal tract provides only partial information on the physiological potential of the organism.  相似文献   

7.
The mechanism(s) by which bacterial communities impact susceptibility to infectious diseases, such as HIV, and maintain female genital tract (FGT) health are poorly understood. Evaluation of FGT bacteria has predominantly been limited to studies of species abundance, but not bacterial function. We therefore sought to examine the relationship of bacterial community composition and function with mucosal epithelial barrier health in the context of bacterial vaginosis (BV) using metaproteomic, metagenomic, and in vitro approaches. We found highly diverse bacterial communities dominated by Gardnerella vaginalis associated with host epithelial barrier disruption and enhanced immune activation, and low diversity communities dominated by Lactobacillus species that associated with lower Nugent scores, reduced pH, and expression of host mucosal proteins important for maintaining epithelial integrity. Importantly, proteomic signatures of disrupted epithelial integrity associated with G. vaginalis-dominated communities in the absence of clinical BV diagnosis. Because traditional clinical assessments did not capture this, it likely represents a larger underrepresented phenomenon in populations with high prevalence of G. vaginalis. We finally demonstrated that soluble products derived from G. vaginalis inhibited wound healing, while those derived from L. iners did not, providing insight into functional mechanisms by which FGT bacterial communities affect epithelial barrier integrity.  相似文献   

8.
Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis.  相似文献   

9.

Background

Bacterial vaginosis (BV) is an enigmatic disease of unknown origin that affects a large percentage of women. The vaginal microbiota of women with BV is associated with serious sequelae, including abnormal pregnancies. The etiology of BV is not fully understood, however, it has been suggested that it is transmissible, and that G. vaginalis may be an etiological agent. Studies using enzymatic assays to define G. vaginalis biotypes, as well as more recent genomic comparisons of G. vaginalis isolates from symptomatic and asymptomatic women, suggest that particular G. vaginalis strains may play a key role in the pathogenesis of BV.

Methodology/Principal Findings

To explore G. vaginalis diversity, distribution and sexual transmission, we developed a Shannon entropy-based method to analyze low-level sequence variation in 65,710 G. vaginalis 16S rRNA gene segments that were PCR-amplified from vaginal samples of 53 monogamous women and from urethral and penile skin samples of their male partners. We observed a high degree of low-level diversity among G. vaginalis sequences with a total of 46 unique sequence variants (oligotypes), and also found strong correlations of these oligotypes between sexual partners. Even though Gram stain-defined normal and some Gram stain-defined intermediate oligotype profiles clustered together in UniFrac analysis, no single G. vaginalis oligotype was found to be specific to BV or normal vaginal samples.

Conclusions

This study describes a novel method for investigating G. vaginalis diversity at a low level of taxonomic discrimination. The findings support cultivation-based studies that indicate sexual partners harbor the same strains of G. vaginalis. This study also highlights the fact that a few, reproducible nucleotide variations within the 16S rRNA gene can reveal clinical or epidemiological associations that would be missed by genus-level or species-level categorization of 16S rRNA data.  相似文献   

10.

Background and Objective

Bacterial vaginosis (BV) is the most common vaginal disorder, characterized by depletion of the normal lactobacillus-dominant microbiota and overgrowth of commensal anaerobic bacteria. This study aimed to investigate the composition of the vaginal microbiota in women of reproductive age (healthy women and women with BV), with the view of developing molecular criteria for BV diagnosis.

Materials and Methods

Vaginal samples from 163 women (79 control, 73 BV and 11 intermediate (Lactobacillary grade II flora) cases) were analyzed using 454 pyrosequencing of the hypervariable regions V3–V4 of the 16S rRNA gene and 16 quantitative bacterial species/genus-specific real-time PCR assays. Sensitivities and specificities of potential BV markers were computed using the Amsel criteria as reference standard for BV. The use of quantitative thresholds for prediction of BV, determined for both relative abundance measured with 454 pyrosequencing and bacterial load measured with qPCR, was evaluated.

Results

Relative to the healthy women, the BV patients had in their vaginal microbiota significantly higher prevalence, loads and relative abundances of the majority of BV associated bacteria. However, only Gardnerella vaginalis, Atopobium vaginae, Eggerthella, Prevotella, BVAB2 and Megasphaera type 1 detected at or above optimal thresholds were highly predictable for BV, with the best diagnostic accuracy shown for A. vaginae. The depletion of Lactobacillus species combined with the presence of either G. vaginalis or A. vaginae at diagnostic levels was a highly accurate BV predictor.

Conclusions

Quantitative determination of the presence of G. vaginalis, A. vaginae, Eggerthella, Prevotella, BVAB2 and Megasphaera type 1 as well as the depletion of Lactobacillus was highly accurate for BV diagnosis. Measurements of abundance of normal and BV microbiota relative to total bacteria in vaginal fluid may provide more accurate BV diagnosis, and be used for test-of-cure, rather than qualitative detection or absolute counts of BV related microorganisms.  相似文献   

11.
D.R. Zeigler determined that the sequence identity of bacterial genomes can be predicted accurately using the sequence identities of a corresponding set of genes that meet certain criteria [32]. This three-gene model for comparing bacterial genome pairs requires the determination of the sequence identities for recN, thdF, and rpoA. This involves the generation of approximately 4.2 kb of genomic DNA sequence from each organism to be compared, and also normally requires that oligonucleotide primers be designed for amplification and sequencing based on the sequences of closely related organisms. However, we have developed an analogous mathematical model for predicting the sequence identity of whole genomes based on the sequence identity of the 542-567 base pair chaperonin-60 universal target (cpn60 UT). The cpn60 UT is accessible in nearly all bacterial genomes with a single set of universal primers, and its length is such that it can be completely sequenced in one pair of overlapping sequencing reads via di-deoxy sequencing. These mathematical models were applied to a set of Thermoanaerobacter isolates from a wood chip compost pile and it was shown that both the one-gene cpn60 UT-based model and the three-gene model based on recN, rpoA, and thdF predicted that these isolates could be classified as Thermoanaerobacter thermohydrosulfuricus. Furthermore, it was found that the genomic prediction model using cpn60 UT gave similar results to whole-genome sequence alignments over a broad range of taxa, suggesting that this method may have general utility for screening isolates and predicting their taxonomic affiliations.  相似文献   

12.

Backround

Vaginitis is among the most common conditions women are seeking medical care for. Although these infections can easily be treated, the relapse rate is high. This may be due to inadequate use of the diagnostic potential.

Methods

We evaluated the misjudgement rate of the aetiology of vaginal complaints. A total of 220 vaginal samples from women with a vaginal complaint were obtained and analysed for numbers of total lactobacilli, H2O2-producing lactobacilli, total aerobic cell counts and total anaerobic cell counts including bifidobacteria, Bacteroides spp., Prevotella spp. Additionally, the presence of Atopobium vaginae, Gardnerella vaginalis, Candida spp. and Trichomonas vaginalis was evaluated by DNA-hybridisation using the PCR and Affirm VPIII Microbial Identification Test, respectively.

Results

The participating physicians diagnosed Bacterial vaginosis (BV) as origin of discomfort in 80 cases, candidiasis in 109 cases and mixed infections in 8 cases. However, a present BV, defined as lack of H2O2-lactobacilli, presence of marker organisms, such as G. vaginalis, Bacteroides spp. or Atopobium vaginae, and an elevated pH were identified in only 45 cases of the women examined. Candida spp. were detected in 46 cases. Interestingly, an elevated pH corresponded solely to the presence of Atopobium vaginae, which was detected in 11 cases.

Conclusion

Errors in the diagnosis of BV and candida vulvovaginitis (CV) were high. Interestingly, the cases of misjudgement of CV (77%) were more numerous than that of BV (61%). The use of Amsel criteria or microscopy did not reduce the number of misinterpretations. The study reveals that the misdiagnosis of vaginal complaints is rather high.  相似文献   

13.

Background

To obtain more detailed understanding of the causes of disturbance of the vaginal microflora (VMF), a longitudinal study was carried out for 17 women during two menstrual cycles.

Methods

Vaginal swabs were obtained daily from 17 non-pregnant, menarchal volunteers. For each woman, Gram stains were scored, the quantitative changes of 5 key vaginal species, i.e. Atopobium vaginae, Lactobacillus crispatus, L. iners, (sialidase positive) Gardnerella vaginalis and Prevotella bivia were quantified with qPCR and hydrogen-peroxide production was assessed on TMB+ agar.

Results

Women could be divided in 9 subjects with predominantly normal VMF (grades Ia, Ib and Iab, group N) and 8 with predominantly disturbed VMF (grades I-like, II, III and IV, group D).VMF was variable between women, but overall stable for most of the women. Menses were the strongest disturbing factor of the VMF. L. crispatus was present at log7–9 cells/ml in grade Ia, Iab and II VMF, but concentrations declined 100-fold during menses. L. crispatus below log7 cells/ml corresponded with poor H2O2-production. L. iners was present at log 10 cells/ml in grade Ib, II and III VMF. Sialidase negative G. vaginalis strains (average log5 cells/ml) were detected in grade I, I-like and IV VMF. In grade II VMF, predominantly a mixture of both sialidase negative and positive G. vaginalis strains (average log9 cells/ml) were present, and predominantly sialidase positive strains in grade III VMF. The presence of A. vaginae (average log9 cells/ml) coincided with grade II and III VMF. P. bivia (log4–8 cells/ml) was mostly present in grade III vaginal microflora. L. iners, G. vaginalis, A. vaginae and P. bivia all increased around menses for group N women, and as such L. iners was considered a member of disturbed VMF.

Conclusions

This qPCR-based study confirms largely the results of previous culture-based, microscopy-based and pyrosequencing-based studies.  相似文献   

14.
Background:Trichomonas vaginalis (T. vaginalis) is a sexually transmitted protozoan parasite and the causative agent of trichomoniasis. The genetic characterization of T. vaginalis isolates shows notable genetic variation in this parasite. In the present study, we aimed to identify the T. vaginalis genotypes based on analyzing of actin gene in women specimens referred to health centers of Ilam city, southwest Iran.Methods:A total of 1765 female samples were collected from gynecology clinics in the city of Ilam. DNA was extracted from positive samples and nested polymerase chain reaction (Nested PCR) was used to amplify the actin gene. Then, partial sequencing and genotyping of the actin gene was performed. A phylogenetic tree was drawn using the detected genotypes of T. vaginalis and reference sequences.Results:Twenty-one of the 1765 urine and vaginal samples were positive for T. vaginalis. All infected individuals were married and their age in years was between 25 to 34. Further, the majority of infected women had cervical lesions, patchy erythema, and white color discharge. According to sequencing analysis, the isolates were identified as genotype G (n= 8) and genotype E (n= 2).Conclusion:From the collected samples, we were able to distinguish at least two genotypes (G and E) of T. vaginalis. However, lesser is known about these genotypes in the city of Ilam. Further studies with a higher number of isolates should be performed in order to understand the implications of these results in this region.Key Words: Actin gene, Genotypes, Ilam, Iran, Trichomonas vaginalis  相似文献   

15.

Background

Little is known about short-term bacterial fluctuations in the human vagina. This study used PCR to assess the variability in concentrations of key vaginal bacteria in healthy women and the immediate response to antibiotic treatment in women with bacterial vaginosis (BV).

Methodology/Principal Findings

Twenty-two women assessed for BV using Amsel''s criteria were evaluated daily for 7 or 14 days, then at 2, 3 and 4 weeks, using a panel of 11 bacterium-specific quantitative PCR assays. Participants with BV were treated with 5 days of intravaginal metronidazole. Participants without BV had vaginal biotas dominated by lactobacilli, whose levels fluctuated with menses. With onset of menstruation, quantities of Lactobacillus jensenii and Lactobacillus crispatus decreased and were found to be inversely related to Gardnerella vaginalis concentrations (p<0.001). Women with BV had a variety of fastidious bacteria whose concentrations dropped below detection thresholds 1–5 days after starting metronidazole. Recurrent BV was characterized by initial profound decreases of BV-associated bacteria after treatment followed by subsequent increases at relapse.

Conclusions/Significance

The microbiota of the human vagina can be highly dynamic. Healthy women are colonized with Lactobacillus species, but levels can change dramatically over a month. Marked increases in G. vaginalis were observed during menses. Participants with BV have diverse communities of fastidious bacteria that are depleted by vaginal metronidazole therapy. Women with recurrent BV initially respond to antibiotic treatment with steep declines in bacterial concentrations, but these bacteria later reemerge, suggesting that antibiotic resistance in these bacteria is not an important factor mediating BV recurrence.  相似文献   

16.
Bacterial vaginosis (BV) is a commonly occurring vaginal infection that is associated with a variety of serious risks related to the reproductive health of women. Conventional antibiotic treatment for this condition is frequently ineffective because the antibiotics tend to inhibit healthy vaginal microflora along with the pathogens. Lactocin 160, a bacteriocin produced by healthy vaginal lactobacilli, is a promising alternative to antibiotics; this compound specifically inhibits the BV-associated vaginal pathogens such as Gardnerella vaginalis and Prevotella bivia without affecting the healthy microflora. This study investigates the molecular mechanism of action for lactocin 160 and reveals that this compound targets the cytoplasmic membrane of G. vaginalis, causing the efflux of ATP molecules and dissipation of the proton motive force.  相似文献   

17.
Resistance to HIV infection in a cohort of commercial sex workers living in Nairobi, Kenya, is linked to mucosal and antiinflammatory factors that may be influenced by the vaginal microbiota. Since bacterial vaginosis (BV), a polymicrobial dysbiosis characterized by low levels of protective Lactobacillus organisms, is an established risk factor for HIV infection, we investigated whether vaginal microbiology was associated with HIV-exposed seronegative (HESN) or HIV-seropositive (HIV(+)) status in this cohort. A subset of 44 individuals was selected for deep-sequencing analysis based on the chaperonin 60 (cpn60) universal target (UT), including HESN individuals (n = 16), other HIV-seronegative controls (HIV-N, n = 16), and HIV(+) individuals (n = 12). Our findings indicate exceptionally high phylogenetic resolution of the cpn60 UT using reads as short as 200 bp, with 54 species in 29 genera detected in this group. Contrary to our initial hypothesis, few differences between HESN and HIV-N women were observed. Several HIV(+) women had distinct profiles dominated by Escherichia coli. The deep-sequencing phylogenetic profile of the vaginal microbiota corresponds closely to BV(+) and BV(-) diagnoses by microscopy, elucidating BV at the molecular level. A cluster of samples with intermediate abundance of Lactobacillus and dominant Gardnerella was identified, defining a distinct BV phenotype that may represent a transitional stage between BV(+) and BV(-). Several alpha- and betaproteobacteria, including the recently described species Variovorax paradoxus, were found to correlate positively with increased Lactobacillus levels that define the BV(-) ("normal") phenotype. We conclude that cpn60 UT is ideally suited to next-generation sequencing technologies for further investigation of microbial community dynamics and mucosal immunity underlying HIV resistance in this cohort.  相似文献   

18.
Trichomonas vaginalis is a common protozoan parasite, which causes trichomoniasis associated with severe adverse reproductive outcomes. However, the underlying pathogenesis has not been fully understood. As the first line of defense against invading pathogens, the vaginal epithelial cells are highly responsive to environmental stimuli and contribute to the formation of the optimal luminal fluid microenvironment. The cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel widely distributed at the apical membrane of epithelial cells, plays a crucial role in mediating the secretion of Cl and HCO3. In this study, we investigated the effect of T. vaginalis on vaginal epithelial ion transport elicited by prostaglandin E2 (PGE2), a major prostaglandin in the semen. Luminal administration of PGE2 triggered a remarkable and sustained increase of short-circuit current (ISC) in rat vaginal epithelium, which was mainly due to Cl and HCO3 secretion mediated by the cAMP-activated CFTR. However, T. vaginalis infection significantly abrogated the ISC response evoked by PGE2, indicating impaired transepithelial anion transport via CFTR. Using a primary cell culture system of rat vaginal epithelium and a human vaginal epithelial cell line, we demonstrated that the expression of CFTR was significantly down-regulated after T. vaginalis infection. In addition, defective Cl transport function of CFTR was observed in T. vaginalis-infected cells by measuring intracellular Cl signals. Conclusively, T. vaginalis restrained exogenous PGE2-induced anion secretion through down-regulation of CFTR in vaginal epithelium. These results provide novel insights into the intervention of reproductive complications associated with T. vaginalis infection such as infertility and disequilibrium in vaginal fluid microenvironment.  相似文献   

19.

Background

In recent years several new fastidious bacteria have been identified that display a high specificity for BV; however no previous studies have comprehensively assessed the behavioural risk associations of these bacterial vaginosis-candidate organisms (BV-COs).

Methods

We examined the associations between 8 key previously described BV-COs and BV status established by Nugent''s score (NS). We also examined the sexual practices associated with each BV-CO. We incorporated 2 study populations: 193 from a sexually-inexperienced university population and 146 from a highly sexually-active clinic population. Detailed behavioural data was collected by questionnaire and vaginal smears were scored by the Nugent method. Stored samples were tested by quantitative PCR assays for the 8 BV-COs: Atopobium vaginae, Gardnerella vaginalis, Leptotrichia spp., Megasphaera type I, Sneathia spp., and the Clostridia-like bacteria BVAB1, BVAB2 and BVAB3. Associations between BV-COs and BV and behaviours were examined by univariate and multivariable analyses.

Results

On univariate analysis, all BV-COs were more common in BV compared to normal flora. However, only Megasphaera type I, BVAB2, A. vaginae and G. vaginalis were significantly independently associated with BV by multivariable analysis. Six of the eight BV-COs (Megasphaera type I, BVAB2, BVAB3, Sneathia, Leptotrichia and G. vaginalis) were rare or absent in sexually-unexposed women, and demonstrated increasing odds of detection with increasing levels of sexual activity and/or numbers of lifetime sexual partners. Only G. vaginalis and A. vaginae were commonly detected in sexually-unexposed women. Megasphaera type I was independently associated with women-who-have-sex-with women (WSW) and lifetime sexual partner numbers, while unprotected penile-vaginal-sex was associated with BVAB2 detection by multivariate analysis.

Conclusions

Four of eight key BV-COs were significantly associated with BV after adjusting for the presence of other BV-COs. The majority of BV-COs were absent or rare in sexually-unexposed women, and associated with increasing sexual exposure, suggesting potential sexual transmission of BV-COs.  相似文献   

20.
Phytoplasmas (‘Candidatus Phytoplasma’ spp.) are insect-vectored bacteria that infect a wide variety of plants, including many agriculturally important species. The infections can cause devastating yield losses by inducing morphological changes that dramatically alter inflorescence development. Detection of phytoplasma infection typically utilizes sequences located within the 16S–23S rRNA-encoding locus, and these sequences are necessary for strain identification by currently accepted standards for phytoplasma classification. However, these methods can generate PCR products >1400 bp that are less divergent in sequence than protein-encoding genes, limiting strain resolution in certain cases. We describe a method for accessing the chaperonin-60 (cpn60) gene sequence from a diverse array of ‘Ca.Phytoplasma’ spp. Two degenerate primer sets were designed based on the known sequence diversity of cpn60 from ‘Ca.Phytoplasma’ spp. and used to amplify cpn60 gene fragments from various reference samples and infected plant tissues. Forty three cpn60 sequences were thereby determined. The cpn60 PCR-gel electrophoresis method was highly sensitive compared to 16S-23S-targeted PCR-gel electrophoresis. The topology of a phylogenetic tree generated using cpn60 sequences was congruent with that reported for 16S rRNA-encoding genes. The cpn60 sequences were used to design a hybridization array using oligonucleotide-coupled fluorescent microspheres, providing rapid diagnosis and typing of phytoplasma infections. The oligonucleotide-coupled fluorescent microsphere assay revealed samples that were infected simultaneously with two subtypes of phytoplasma. These tools were applied to show that two host plants, Brassica napus and Camelina sativa, displayed different phytoplasma infection patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号