首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our main objective is probing the effect of methylation of CLEC14A on its expression and lung adenocarcinoma (LUAD) progression. Microarray analysis was utilized to screen out differentially downregulated genes with hypermethylation in LUAD tissues. The CLEC14A expression level was measured by western blot analysis and qRT-PCR. Methylation-specific-PCR was performed to evaluate methylation status of CLEC14A. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromid (MTT) assay was used to check the relation between CLEC14A expression and cell proliferation. Cell cycle, cell apoptosis, migration, and invasion were respectively detected by the flow cytometry assay, wound healing assay, and transwell assay. Tumor xenograft models were established for investigating the effect of CLEC14A on tumor formation. CLEC14A expression in LUAD tissues was impaired compared with that in adjacent tissues, and CLEC14A promoter was highly methylated in LUAD. Overexpressing CLEC14A or inhibiting the methylation level of CLEC14A in A549 and LTEP-a-2 cells impeded the duplication of LUAD cells, promoted apoptosis, attenuated cell migration, and invasion ability, and arrested cell cycle at the G0/G1 phase. Overexpression of CLEC14A inhibited tumorigenesis of LUAD cells in nude mice. The promoter of CLEC14A is methylated in LUAD, leading to downregulation of CLEC14A in LUAD. CLEC14A acts as an antitumor role in LUAD by suppressing cell proliferation, migration, invasion, promoting cell apoptosis, and reducing tumorigenicity in nude mice. Thus, the inhibition of CLEC14A methylation is a novel strategy for the clinic treatment of LUAD.  相似文献   

2.
BackgroundLung cancer is responsible for the majority of cancer deaths in the world. We found a significant increase of STAMBPL1 expression in lung adenocarcinoma (LUAD) tissues and cells. However, its mechanism has not been clarified.MethodsLUAD tissues and adjacent normal tissues were collected from 62 patients treated in the First Affiliated Hospital of Wenzhou Medical University from August 2018 to August 2021. In vivo, the clinical data and STAMBPL1 expression of 62 patients with LUAD were analyzed by qPCR. In vitro, cell experiments were carried out after STAMBPL1 knockdown in A549 and H1299 cells to determine cell growth, migration rate, evasiveness, colony-forming ability, and apoptosis. Gene sequencing was used to explore the expression of various genes in A549 and H1299 cells to verify that DHRS2 was up-regulated after STAMBPL1 knockdown; cell experiments further detected the role of the DHRS2 gene after DHRS2 overexpression in A549 and H1299 cells. A rescue experiment was conducted to certify that STAMBPL1 promotes NSCLC progression by regulating DHRS2 expression.ResultsAfter STAMBPL1 knockdown by siRNA. Migration, invasion, colony formation, and proliferation of siRNA groups were suppressed than those of NC groups in A549 and H1299 cells, while the cell apoptosis rate of siRNA groups increased significantly. By using gene-sequence analysis, we found that the expression level of the DHRS2 gene was up-regulated in STAMBPL1 siRNA groups, compared with STAMBPL1 NC (negative control) groups in A549 and H1299, which was verified by qPCR and WB. Further experiments showed that the DHRS2 OE group was suppressed in cell proliferation, migration, and invasion in the A549 and H1299 cell lines compared to the DHRS2 NC group, while DHRS2 OE group was significantly enhanced in the cell apoptosis in the A549 and H1299 cell lines. According to the rescue experiment, cell proliferation, migration, and invasion of the STAMBPL1 SI+DHRS2 SI group were enhanced compared with the STAMBPL1 SI+DHRS2 NC group in A549 and H1299 cells, while the STAMBPL1 SI+DHRS2 OE group were further decreased.ConclusionsThe expression of STAMBPL1 mRNA is significantly up-regulated in LUAD, promoting the progression of LUAD by down-regulating the expression of DHRS2 and acting as a potential biomarker of LUAD.  相似文献   

3.
Background: Lung adenocarcinoma (LUAD) is the most frequent histological type of lung cancer, and its incidence has displayed an upward trend in recent years. Nevertheless, little is known regarding effective biomarkers for LUAD.Methods: The robust rank aggregation method was used to mine differentially expressed genes (DEGs) from the gene expression omnibus (GEO) datasets. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to extract hub genes from the protein–protein interaction (PPI) network. The expression of the hub genes was validated using expression profiles from TCGA and Oncomine databases and was verified by real-time quantitative PCR (qRT-PCR). The module and survival analyses of the hub genes were determined using Cytoscape and Kaplan–Meier curves. The function of KIF4A as a hub gene was investigated in LUAD cell lines.Results: The PPI analysis identified seven DEGs including BIRC5, DLGAP5, CENPF, KIF4A, TOP2A, AURKA, and CCNA2, which were significantly upregulated in Oncomine and TCGA LUAD datasets, and were verified by qRT-PCR in our clinical samples. We determined the overall and disease-free survival analysis of the seven hub genes using GEPIA. We further found that CENPF, DLGAP5, and KIF4A expressions were positively correlated with clinical stage. In LUAD cell lines, proliferation and migration were inhibited and apoptosis was promoted by knocking down KIF4A expression.Conclusion: We have identified new DEGs and functional pathways involved in LUAD. KIF4A, as a hub gene, promoted the progression of LUAD and might represent a potential therapeutic target for molecular cancer therapy.  相似文献   

4.
5.
Paired related homeobox 1 (PRRX1) is a marker of limb bud mesenchymal cells, and deficiency of p53 or Rb in Prrx1-positive cells induces osteosarcoma in several mouse models. However, the regulatory roles of PRRX1 in human osteosarcoma have not been defined. In this study, we performed PRRX1 immunostaining on 35 human osteosarcoma specimens to assess the correlation between PRRX1 level and overall survival. In patients with osteosarcoma, the expression level of PRRX1 positively correlated with poor prognosis or the ratio of lung metastasis. Additionally, we found PRRX1 expression on in 143B cells, a human osteosarcoma line with a high metastatic capacity. Downregulation of PRRX1 not only suppressed proliferation and invasion but also increased the sensitivity to cisplatin and doxorubicin. When 143B cells were subcutaneously transplanted into nude mice, PRRX1 knockdown decreased tumor sizes and rates of lung metastasis. Interestingly, forskolin, a chemical compound identified by Connectivity Map analysis using RNA expression signatures during PRRX1 knockdown, decreased tumor proliferation and cell migration to the same degree as PRRX1 knockdown. These results demonstrate that PRRX1 promotes tumor malignancy in human osteosarcoma.  相似文献   

6.
Lung adenocarcinoma (LUAD) is usually found at the metastatic stage. Circular RNA dihydrouridine synthase 2-like (DUS2L) (circDUS2L) has been discovered to be upregulated in LUAD. Nevertheless, the function of circDUS2L in LUAD has not been verified. Levels of circDUS2L, microRNA-590-5p (miR-590-5p), and phosphoglycerate mutase 1 (PGAM1) mRNA were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, metastasis, and invasion were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), colony formation, 5-ethynyl-2′-deoxyuridine (Edu), flow cytometry, and transwell assays. Protein levels were detected by western blotting. Cell glycolysis was analyzed by measuring cell glucose consumption, lactate production, and extracellular acidification rate (ECAR). The regulatory mechanism of circDUS2L in LUAD cells was analyzed by bioinformatics analysis, dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. Xenograft assay was conducted to confirm the function of circDUS2L in vivo. CircDUS2L was highly expressed in LUAD tissues and cells. CircDUS2L silencing constrained xenograft tumor growth in vivo. CircDUS2L knockdown induced apoptosis, repressed viability, colony formation, proliferation, metastasis, invasion, and glycolysis of LUAD cells in vitro by releasing miR-590-5p via functioning as a miR-590-5p sponge. MiR-590-5p was lowly expressed in LUAD tissues and cells, and miR-590-5p mimic curbed malignant behaviors and glycolysis of LUAD cells by targeting PGAM1. PGAM1 was overexpressed in LUAD tissues and cells, and circDUS2L sponged miR-590-5p to regulate PGAM1 expression. CircDUS2L elevated PGAM1 expression through functioning as a miR-590-5p sponge, thus driving malignant behaviors and glycolysis of LUAD cells.  相似文献   

7.
8.
BackgroundINHA expression has been correlated with the development, growth, and progression of multiple cancer types. However, the biological role of INHA has not been investigated in patients with lung adenocarcinoma (LUAD). Here, we performed a comprehensive bioinformatics analysis of the LUAD dataset to determine the mechanisms underlying the regulation of tumorigenesis by INHA.Materials and methodsINHA expression and clinical information of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA) database. Protein levels in LUAD cell lines and human lung epithelial cells were examined by western blotting. Next, the prognostic value of INHA in LUAD was assessed using Cox regression analysis, while the potential biological functions and the impact on the immune microenvironment of INHA were investigated using gene set enrichment analysis (GSEA) and single sample GSEA (ssGSEA). Finally, the effect of INHA on LUAD cell proliferation and invasion was determined in vitro and in vivo.ResultsWe found significantly high mRNA and protein expression levels of INHA in LUAD tissues and cell lines. Additionally, a higher expression of INHA was linked to a shorter overall survival (OS) and a worse pathological stage, while INHA expression was associated with immune cell infiltration and immune-related markers in the LUAD tumor microenvironment. LUAD with high INHA expression tends to be a cold tumor. Furthermore, GO and KEGG enrichment analysis indicated that INHA-related genes were enriched in the cell adhesion and immune signaling pathways of LUAD. INHA promoted LUAD cell proliferation and invasion, in vitro and in vivo, by inducing the EGFR pathway.ConclusionOur findings revealed that INHA is overexpressed in LUAD and is linked to a poor prognosis. Our study demonstrates the potential of INHA as an immunotherapeutic and predictive biomarker in LUAD.  相似文献   

9.
《Genomics》2022,114(6):110520
BackgroundRecent studies have emphasized the close relationship between macrophages and tumor immunity, and the prognosis of lung adenocarcinoma (LUAD) patients is intimately linked to this. Nonetheless, the prognostic signature and classification of different immune patterns in LUAD patients based on the macrophages is largely unexplored.MethodsTwo sc-RNAseq datasets of LUAD patients were collected and reprocessed. The differentially expressed genes (DEGs) related to macrophages between LUAD tissues and normal lung tissues were then identified. Based upon the above genes, three distinct immune patterns in the TCGA-LUAD cohort were identified. The ssGSEA and CIBERSORT were applied for immune profiling and characterization of different subtypes. A four-gene prognostic signature for LUAD patients was established based on the DEGs between the subtypes using stepwise multi-Cox regression. TCGA-LUAD cohort was used as training set. Five GEO-LUAD datasets and an independent cohort containing 112 LUAD samples were used for validation. TIDE (tumor immune dysfunction and exclusion) and drug sensitivity analyses were also performed.ResultsMacrophage-related differentially expressed genes were found out using the publicly available scRNA-seq data of LUAD. Three different immune patterns which were proved to have distinct immune infiltration characteristics in the TCGA-LUAD cohort were recognized based on the above macrophage-related genes. Thereafter, 174 DEGs among the above three different immune patterns were figured out; on the basis of this, a four-gene prognostic signature was constructed. This signature distinguished the prognosis of LUAD patients well in various GSE datasets as well as our independent cohort. Further analyses revealed that patients which had a higher risk score also accompanied with a lower immune infiltration level and a worse response to several immunotherapy biomarkers.ConclusionThis study highlighted that macrophage were significantly associated with TME diversity and complexity. The four-gene prognostic signature could be used for predicting outcomes and immune landscapes for patients with LUAD.  相似文献   

10.
11.
Ubiquitination, a crucial post-translational modification, controls substrate degradation and can be reversed by deubiquitinases (DUBs). An increasing number of studies are showing that DUBs regulate the malignant behavior and chemotherapy resistance of gastric cancer (GC) by stabilizing various proteins. However, the expression level and biological function of the DUB, proteasome 26S subunit, non-ATPase 7 (PSMD7), in GC remains unknown. Herein, we report for the first time that PSMD7 is frequently overexpressed in GC tissues. Elevated levels of PSMD7 were also detected in GC cell lines. Notably, the upregulation of PSMD7 closely correlated with malignant clinical parameters and reduced the survival of GC patients. Functionally, we found that PSMD7 knockdown consistently suppressed the proliferation, migration, and invasion of AGS and SGC-7901 cells. Ectopic expression of PSMD7 facilitated GC cell proliferation and mobility. Based on protein-protein interaction prediction, RAD23 homolog B (RAD23B) protein was identified as a candidate substrate of PSMD7. PSMD7 positively regulated the abundance of RAD23B and xeroderma pigmentosum, complementation group C (XPC) protein in GC cells. The interaction between PSMD7 and RAD23B was confirmed using protein immunoprecipitation. PSMD7 knockdown enhanced the ubiquitination and degradation of RAD23B protein in GC cells. PSMD7 promoted cell viability, apoptosis resistance, and DNA damage repair in GC cells upon cisplatin (DDP) treatment. Moreover, PSMD7 silencing inhibited tumor growth and enhanced the sensitivity of GC cells to DDP treatment in mice. In summary, PSMD7 was highly expressed in GC and contributed to the malignant behavior and DDP resistance of tumor cells by stabilizing RAD23B.  相似文献   

12.
摘要 目的:探讨非小细胞肺癌(NSCLC)组织配对相关同源框蛋白1(PRRX1)、血管抑制蛋白1(VASH-1)与微血管密度(MVD)、临床病理参数和预后的关系。方法:选择2018年1月至2020年1月辽宁省金秋医院行手术切除的156例NSCLC患者的癌组织及癌旁正常组织标本。应用免疫组织化学染色法检测癌组织及癌旁组织PRRX1、VASH-1的阳性表达率,并进行MVD计数。比较PRRX1阳性表达组/阴性表达组、VASH-1阳性表达组/阴性表达组MVD计数。分析PRRX1、VASH-1与NSCLC患者病理参数的关系。随访3年,应用Kaplan-Meier生存曲线分析PRRX1、VASH-1阳性/阴性表达与NSCLC患者预后的关系。结果:与癌旁组织相比,NSCLC患者癌组织PRRX1阳性表达率降低,VASH-1阳性表达率升高(P<0.05)。与PRRX1阴性NSCLC患者相比,PRRX1阳性NSCLC患者癌组织MVD降低,与VASH-1阴性NSCLC患者相比,VASH-1阳性NSCLC患者癌组织MVD升高(P<0.05)。与TNM I~II期、无淋巴结转移NSCLC患者的癌组织相比,TNM Ⅲ A期、淋巴结转移NSCLC患者的癌组织中PRRX1阳性表达率降低,VASH-1阳性表达率升高(P<0.05)。Kaplan-Meier法分析显示,PRRX1阳性组3年总体生存率(OS)、3年无病生存率(DFS)高于PRRX1阴性组(P<0.05),VASH-1阴性组3年OS、3年DFS高于VASH-1阳性组(P<0.05)。结论:NSCLC患者的癌组织中PRRX1阳性表达率降低,VASH-1阳性表达率升高,与淋巴结转移、TNM分期及不良预后有关。  相似文献   

13.
目的探讨miR-652-3p靶向同源异型核基因1(PRRX1)对血管紧张素Ⅱ(AngⅡ)诱导的心肌细胞凋亡的影响。 方法大鼠心肌细胞H9c2细胞采用正常培养基培养为对照组细胞,用含1 μmol/L AngⅡ的培养基培养为AngⅡ组细胞;分别转染miR-652-3p阳性对照序列(NC)和转染miR-652-3p mimics后用含1 μmol/L AngⅡ的培养基培养为AngⅡ+NC组和AngⅡ+miR-652-3p组细胞;将miR-652-3p mimics分别与PRRX1阳性对照质粒和PRRX1过表达质粒转染至H9c2细胞中用含1 μmol/L AngⅡ的培养基培养,分别为AngⅡ+miR-652-3p+ Vctor组和AngⅡ+miR-652-3p+PRRX1组细胞。实时荧光定量PCR (RT-qPCR)检测H9c2细胞中miR-652-3p表达水平,流式细胞术检测细胞凋亡,用Western blot检测细胞中PRRX1、Bax和Bcl-2蛋白表达水平。双荧光素酶报告基因实验验证H9c2细胞中miR-652-3p与PRRX1调控关系。两组间比较采用独立样本t检验,多组间比较采用单因素方差分析,组间两两比较采用SNK-q检验。 结果与对照组比较,AngⅡ组H9c2细胞中miR-652-3p水平(1.00±0.08比0.21±0.05)、Bcl-2蛋白水平(0.83±0.08比0.40±0.04)均较低,而PRRX1蛋白水平(0.06±0.01比0.41±0.04)、凋亡率(5.02﹪±1.41﹪比25.33﹪±3.75﹪)、Bax蛋白水平(0.46±0.05比0.96±0.10)均较高,差异具有统计学意义(P均< 0.05)。与AngⅡ+NC组比较,AngⅡ+miR-652-3p组H9c2细胞中miR-652-3p的表达水平(0.24±0.06比0.98±0.07)、Bcl-2蛋白水平(0.38±0.04比0.72±0.07)均较高,而PRRX1蛋白水平(0.39±0.04比0.13±0.01)、凋亡率(27.02﹪±4.11﹪比12.19﹪±1.63﹪)、Bax蛋白水平(0.95±0.09比0.53±0.05)均较低,差异具有统计学意义(P均< 0.05)。与AngⅡ+miR-652-3p+Vctor组比较,AngⅡ+miR-652-3p+PRRX1组H9c2细胞凋亡率(12.88﹪±1.84﹪比25.45﹪±3.58﹪)、PRRX1蛋白水平(0.13±0.01比0.35±0.04)和Bax蛋白水平(0.54±0.05比0.82±0.08)均较高,差异具有统计学意义(P均< 0.05),而Bcl-2蛋白表达水平(0.72±0.07比0.46±0.05)降低,差异具有统计学意义(P < 0.05)。 结论AngⅡ能够下调心肌细胞中miR-652-3p的表达,上调miR-652-3p可通过靶向抑制PRRX1的表达减少AngⅡ诱导的H9c2细胞凋亡。  相似文献   

14.
Lung cancer has been proved to be one of the most common kinds of cancers around the globe. Meanwhile, as the predominant type of lung cancer, lung adenocarcinoma (LUAD) has received increasing attention in cancer research. Long noncoding RNAs (lncRNAs) are known to be associated with oncogenesis and progression of various cancers. However, many lncRNAs have not been thoroughly detected in LUAD. In this study, through bioinformatics analysis we found that zinc finger protein multitype 2 antisense RNA 1 (ZFPM2-AS1) was associated with poor prognosis of LUAD patients. Also, ZFPM2-AS1 was detected to be overexpressed in LUAD tissues and cells. Furthermore, ZFPM2-AS1 could promote the proliferation of LUAD cells. Next, miR-18b-5p was found to bind with and negatively regulated by ZFPM2-AS1. VMA21, target gene of miR-18b-5p, could bind with and be negatively regulated by miR-18b-5p. More importantly, both ZFPM2-AS1 and VMA21 were found to be attached to the RNA-induced silencing complex constructed from miR-18b-5p and Ago2. Also, ZFPM2-AS1 could regulate the expression of VMA21. Therefore, ZFPM2-AS1 were confirmed to regulate VMA21 by competitively binding with miR-18b-5p. Finally, rescue assays confirmed that ZFPM2-AS1 could regulate LUAD cell proliferation via miR-18b-5p/VMA21 axis.  相似文献   

15.
《Genomics》2022,114(4):110425
BackgroundLung adenocarcinoma (LUAD) is the most common malignant lung tumor. Metabolic pathway reprogramming is an important hallmark of physiologic changes in cancers. However, the mechanisms through which these metabolic genes and pathways function in LUAD as well as their prognostic values have not been fully established.MethodsFour publicly available datasets from GEO and TCGA were used to identify differentially expressed genes (DEGs) in LUAD, which were then subjected to GO and KEGG pathway enrichment analysis. Associations between metabolic gene expressions with overall survival, tumor stage, TP53 mutation status, and infiltrated immune cells were investigated. Protein-protein interactions were evaluated using GeneMANIA and Metascape.ResultsBy integrating four public datasets, 247 DEGs were identified in LUAD. These DEGs were significantly enriched in regulation of chromosome segregation, centromeric region, and histone kinase activity GO terms, as well as in cell cycle, p53 signaling pathway, metabolic pathways, and other KEGG pathways. Elevated expressions of ten metabolic genes in LUAD were significantly associated with poor survival outcomes. These metabolic genes were highly expressed in more advanced tumor stage and TP53 mutated patients. Moreover, expression levels were significantly correlated with tumor-infiltrating immune cells. PPI interaction analysis revealed that the top 20 genes interacting with each metabolic gene were significantly enriched in DNA replication, response to radiation, and central carbon metabolism in cancer.ConclusionThis study elucidates on molecular changes in metabolic genes in LUAD, which may inform the development of genetically oriented diagnostic approaches and effective treatment options.  相似文献   

16.
《Genomics》2023,115(5):110684
This study aims to elucidate the effect of ARHGAP9 on lung adenocarcinoma (LUAD) metastasis, and preliminarily explore its molecular mechanism. As a result, we found that ARHGAP9 was downregulated and correlated with poor prognosis of LUAD. ARHGAP9 knockdown promoted LUAD cell proliferation, migration and invasion, inhibited cell apoptosis and reduced G0G1 cell cycle arrest, in contrast to the results of ARHGAP9 overexpression. Further RNA sequencing analysis demonstrated that ARHGAP9 knockdown in H1299 cells significantly reduced DKK2 (dickkopf related protein 2) expression. Silencing ARHGAP9 in H1299 cells while overexpressing DKK2, DKK2 reversed the promoted effects of ARHGAP9 knockdown on LUAD cell proliferation, migration and invasion. Meanwhile, the activity of Wnt/β-catenin signaling pathway was also reduced. Taken together, these data indicated that ARHGAP9 knockdown promoted LUAD metastasis by activating Wnt/β-catenin signaling pathway via suppressing DKK2. This may provide a new strategy for LUAD treatment.  相似文献   

17.
Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related deaths worldwide. YTHDF2 is a reader of N6-methyladenosine (m6A) on RNA and plays a critical role in the initiation and propagation of myeloid leukemia; however, whether YTHDF2 controls the development of LUAD remains to be explored. Here, we found that YTHDF2 was significantly upregulated in LUAD compared with paracancerous normal tissues, and YTHDF2 knockdown drastically inhibited, while its overexpression promoted, cell growth, colony formation and migration of LUAD cells in vitro. In addition, YTHDF2 knockdown significantly inhibited tumorigenesis in a murine tumor xenograft model. Through the integrative analysis of RNA-seq, m6A-seq, CLIP-seq, and RIP-seq datasets, we identified a set of potential direct targets of YTHDF2 in LUAD, among which we confirmed AXIN1, which encodes a negative regulator of the Wnt/β-catenin signaling, as a direct target of YTHDF2. YTHDF2 promoted AXIN1 mRNA decay and subsequently activated the Wnt/β-catenin signaling. Knockout of AXIN1 sufficiently rescued the inhibitory effect of YTHDF2 depletion on lung cancer cell proliferation, colony-formation, and migration. These results revealed YTHDF2 to be a contributor of LUAD development acting through the upregulation of the AXIN1/Wnt/β-catenin signaling, which can be a potential therapeutic target for LUAD.Subject terms: DNA methylation, Non-small-cell lung cancer  相似文献   

18.
We tried to identify the function of LINC01614 in lung adenocarcinoma (LUAD) and reveal its underlying mechanisms. qRT‐PCR was applied to assess the expression of LINC016014 in LUAD tissues, noncancerous tissues and cells. Through colony formation assay, MTT assay and apoptosis analysis, we examined the variation of cell proliferation and apoptosis ability after silencing LINC01614. Moreover, the targeting interactions among LINC01614, miR‐217 and FOXP1 were validated via luciferase reporter assay, and then, we regulated the expression of miR‐217 and FOXP1 to ascertain their importance in cell proliferation and apoptosis. LINC01614 and FOXP1 were found to be up‐regulated in LUAD tumours and cells, whereas miR‐217 was down‐regulated. The experiment showed that target‐specific selectivity exists between LINC01614‐miR‐217 and miR‐217‐FOXP1 3′UTR. Furthermore, we disclosed that inhibition of LINC01614 could activate miR‐217, which subsequently restrained FOXP1. It was proved that LINC01614 promoted FOXP1 by inhibiting miR‐217, which ultimately stimulated the development of LUAD.  相似文献   

19.
ObjectivesAPOC1 has been reported to promote tumor progression. Nevertheless, its impact on cell proliferation and glycolysis in gastric cancer (GC) remains to be probed. Hence, this study explored the related impacts and mechanisms.MethodsDLEU1, SMYD2, and APOC1 expression was detected in GC cells. Afterward, ectopic expression and knockdown experiments were conducted in GC cells, followed by measurement of cell proliferation, glucose uptake capability, lactic acid production, ATP content, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), and GLUT1, HK2, and LDHA expression. In addition, interactions between DLEU1 and SMYD2 were analyzed with RIP and RNA pull down assays, and the binding of SMYD2 to APOC1 promoter and the methylation modification of SMYD2 in H3K4me3 were assessed with a ChIP assay. The ectopic tumor formation experiment in nude mice was conducted for in vivo validation.ResultsDLEU1, SMYD2, and APOC1 were highly expressed in GC cells. The downregulation of DLEU1 or APOC1 inhibited glucose uptake capability, lactic acid production, ECAR, the expression of GLUT1, HK2, and LDHA, ATP contents, and proliferation but augmented OCR in GC cells, which was also verified in animal experiments. Mechanistically, DLEU1 interacted with SMYD2 and recruited SMYD2 to APOC1 promoter to promote H3K4me3 modification, thus facilitating APOC1 expression. Furthermore, the effects of DLEU1 silencing on GC cell proliferation and glycolysis were negated by overexpressing SMYD2 or APOC1.ConclusionLncRNA DLEU1 recruited SMYD2 to upregulate APOC1 expression, thus boosting GC cell proliferation and glycolysis.  相似文献   

20.
Background: We investigated the roles of breast cancer anti-estrogen resistance 1 (BCAR1/p130Cas) in the formation and immunoevasion of invasive circulating tumor cells (CTCs) in lung adenocarcinoma (LUAD).Methods: Biomarkers of CTCs including BCAR1 and CD274, were evaluated by the CanPatrol method. Proteomics analysis of LUAD cells and exosomes after BCAR1 overexpression (BCAR1-OE) was performed by mass spectrometry. Cell functions and relevant signaling pathways were investigated after BCAR1 knockdown (BCAR1-KO) or BCAR1-OE in LUAD cells. Lastly, in vitro and in vivo experiments were performed to confirm the roles of BCAR1 in the formation and immunoevasion of CTCs.Results:High expression of BCAR1 by CTCs correlated with CD274 expression and epithelial-to-mesenchymal transition (EMT). RAC1, together with BCAR1, was found to play an important role in the carcinogenesis of LUAD. RAC1 functioned with BCAR1 to induce EMT and to enhance cell proliferation, colony formation, cell invasion and migration, and anoikis resistance in LUAD cells. BCAR1 up-regulated CD274 expression probably by shuttling the short isoform of BRD4 (BRD4-S) into the nucleus. CTCs, as well as tumor formation, were prohibited in nude mice xenografted with BCAR1-KO cells. The co-expression of BCAR1/RAC1 and BCAR1/CD274 was confirmed in LUAD. BCAR1 expression in LUAD is an indicator of poor prognosis, and it associates with immunoevasion.Conclusion:BCAR1, as a new target for the treatment of LUAD, plays roles in the formation and immunoevasion of invasive CTCs. The mechanism includes triggering EMT via RAC1 signaling and up-regulating CD274 expression by shuttling BRD4-S into the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号