首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Epidemiological studies have demonstrated that co-infections of herpes simplex virus type 2 (HSV-2) and Chlamydia trachomatis occur in vivo. Data from a tissue culture model of C. trachomatis/HSV-2 co-infection indicate that viral co-infection stimulates the formation of persistent chlamydiae. Transmission electron microscopic (TEM) analyses demonstrated that in both HeLa and HEC-1B cells, co-infection caused developing chlamydiae to exhibit swollen, aberrantly shaped reticulate bodies (RBs), characteristically observed in persistence. Additionally, HSV-2 co-infection suppressed production of infectious chlamydial elementary bodies (EBs) in both host cell types. Co-infection with HSV type 1 (HSV-1) produced similar morphologic alterations and abrogated infectious EB production. These data indicate that virus-induced chlamydial persistence was neither host cell- nor virus strain-specific. Purification of crude HSV-2 stocks demonstrated that viral particles were required for coinfection-induced chlamydial persistence to occur. Finally, co-infection with either UV-inactivated, replication-incompetent virus or replication-competent HSV-2 in the presence of cyclohexamide reduced chlamydial infectivity without altering chlamydial genomic DNA accumulation. These data demonstrate that productive viral replication is not required for the induction of chlamydial persistence and suggest that HSV attachment and entry can provide the necessary stimulus to alter C. trachomatis development.  相似文献   

2.
Both human herpes viruses and Chlamydia are highly prevalent in the human population and are detected together in different human disorders. Here, we demonstrate that co-infection with human herpes virus 6 (HHV6) interferes with the developmental cycle of C. trachomatis and induces persistence. Induction of chlamydial persistence by HHV6 is independent of productive virus infection, but requires the interaction and uptake of the virus by the host cell. On the other hand, viral uptake is strongly promoted under co-infection conditions. Host cell glutathione reductase activity was suppressed by HHV6 causing NADPH accumulation, decreased formation of reduced glutathione and increased oxidative stress. Prevention of oxidative stress restored infectivity of Chlamydia after HHV6-induced persistence. We show that co-infection with Herpes simplex virus 1 or human Cytomegalovirus also induces chlamydial persistence by a similar mechanism suggesting that Chlamydia -human herpes virus co-infections are evolutionary shaped interactions with a thus far unrecognized broad significance.  相似文献   

3.
4.
Chlamydia grows inside a cytosolic vacuole (the inclusion) that is supplied with nutrients by the host through vesicular and non-vesicular transport. It is unclear in many respects how Chlamydia organizes this transport. One model posits that the Chlamydia-induced fragmentation of the Golgi-apparatus is required for normal transport processes to the inclusion and for chlamydial development, and the chlamydial protease CPAF has been controversially implicated in Golgi-fragmentation. We here use a model of penicillin-induced persistence of infection with Chlamydia trachomatis to test this link. Under penicillin-treatment the inclusion grew in size for the first 24 h but after that growth was severely reduced. Penicillin did not reduce the number of infected cells with fragmented Golgi-apparatus, and normal Golgi-fragmentation was found in a CPAF-deficient mutant. Surprisingly, sphingomyelin transport into the inclusion and into the bacteria, as measured by fluorescence accumulation upon addition of labelled ceramide, was not reduced during penicillin-treatment. Thus, both Golgi-fragmentation and transport of sphingomyelin to C. trachomatis still occurred in this model of persistence. The portion of cells in which CPAF was detected in the cytosol, either by immunofluorescence or by immune-electron microscopy, was drastically reduced in cells cultured in the presence of penicillin. These data argue against an essential role of cytosolic CPAF for Golgi-fragmentation or for sphingomyelin transport in chlamydial infection.  相似文献   

5.
Chlamydia trachomatis is an obligate intracellular bacterium that causes severe infections, which can lead to infertility and ectopic pregnancy. Although both innate and adaptive immune responses are elicited during chlamydial infection the bacterium succeeds to evade host defense mechanisms establishing chronic infections. Thus, studying the host–pathogen interaction during chlamydial infection is of importance to understand how C. trachomatis can cause chronic infections. Both the complement system and monocytes play essential roles in anti-bacterial defense, and, therefore, we investigated the interaction between the complement system and the human pathogens C. trachomatis D and L2.Complement competent serum facilitated rapid uptake of both chlamydial serovars into monocytes. Using immunoelectron microscopy, we showed that products of complement C3 were loosely deposited on the bacterial surface in complement competent serum and further characterization demonstrated that the deposited C3 product was the opsonin iC3b. Using C3-depleted serum we confirmed that complement C3 facilitates rapid uptake of chlamydiae into monocytes in complement competent serum. Complement facilitated uptake did not influence intracellular survival of C. trachomatis or C. trachomatis-induced cytokine secretion. Hence, C. trachomatis D and L2 activate the complement system leading to chlamydial opsonization by iC3b and subsequent phagocytosis, activation and bacterial elimination by human monocytes.  相似文献   

6.
Chlamydia are Gram negative, obligate intracellular bacterial organisms with different species causing a multitude of infections in both humans and animals. Chlamydia trachomatis is the causative agent of the sexually transmitted infection (STI) Chlamydia, the most commonly acquired bacterial STI in the United States. Chlamydial infections have also been epidemiologically linked to cervical cancer in women co-infected with the human papillomavirus (HPV). We have previously shown chlamydial infection results in centrosome amplification and multipolar spindle formation leading to chromosomal instability. Many studies indicate that centrosome abnormalities, spindle defects, and chromosome segregation errors can lead to cell transformation. We hypothesize that the presence of these defects within infected dividing cells identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation. Here we demonstrate that infection with Chlamydia trachomatis is able to transform 3T3 cells in soft agar resulting in anchorage independence and increased colony formation. Additionally, we show for the first time Chlamydia infects actively replicating cells in vivo. Infection of mice with Chlamydia results in significantly increased cell proliferation within the cervix, and in evidence of cervical dysplasia. Confocal examination of these infected tissues also revealed elements of chlamydial induced chromosome instability. These results contribute to a growing body of data implicating a role for Chlamydia in cervical cancer development and suggest a possible molecular mechanism for this effect.  相似文献   

7.
Identification of the HtrA inhibitor JO146 previously enabled us to demonstrate an essential function for HtrA during the mid-replicative phase of the Chlamydia trachomatis developmental cycle. Here we extend our investigations to other members of the Chlamydia genus. C. trachomatis isolates with distinct replicative phase growth kinetics showed significant loss of viable infectious progeny after HtrA was inhibited during the replicative phase. Mid-replicative phase addition of JO146 was also significantly detrimental to Chlamydia pecorum, Chlamydia suis and Chlamydia cavie. These data combined indicate that HtrA has a conserved critical role during the replicative phase of the chlamydial developmental cycle.  相似文献   

8.

Background

Intracellular pathogens have developed elaborate strategies for silent infection of preferred host cells. Chlamydia pneumoniae is a common pathogen in acute infections of the respiratory tract (e.g. pneumonia) and associated with chronic lung sequelae in adults and children. Within the lung, alveolar macrophages and polymorph nuclear neutrophils (PMN) are the first line of defense against bacteria, but also preferred host phagocytes of chlamydiae.

Methodology/Principal Findings

We could show that C. pneumoniae easily infect and hide inside neutrophil granulocytes until these cells become apoptotic and are subsequently taken up by macrophages. C. pneumoniae infection of macrophages via apoptotic PMN results in enhanced replicative activity of chlamydiae when compared to direct infection of macrophages, which results in persistence of the pathogen. Inhibition of the apoptotic recognition of C. pneumoniae infected PMN using PS- masking Annexin A5 significantly lowered the transmission of chlamydial infection to macrophages. Transfer of apoptotic C. pneumoniae infected PMN to macrophages resulted in an increased TGF-ß production, whereas direct infection of macrophages with chlamydiae was characterized by an enhanced TNF-α response.

Conclusions/Significance

Taken together, our data suggest that C. pneumoniae uses neutrophil granulocytes to be silently taken up by long-lived macrophages, which allows for efficient propagation and immune protection within the human host.  相似文献   

9.
10.
Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative) at time of initial vaccination, or infected (C. pecorum positive) at either urogenital (UGT) and/or ocular sites (Oc), but with no clinical signs of chlamydial disease. All koalas were vaccinated / sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking), results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting.  相似文献   

11.
The antimicrobial activity of T cell-derived cytokines, especially interferon (IFN)-γ, against intracellular pathogens, such as Chlamydia trachomatis, involves the induction of 3 major biochemical processes: tryptophan catabolism, nitric oxide (NO) induction and intracellular iron (Fe) deprivation. Since the epithelial cell is the natural target of chlamydial infection, the presence of these antimicrobial systems in the cell would suggest that they may be involved in T cell control of intracellular multiplication of Chlamydia. However, the controversy over whether these 3 antimicrobial processes are present in both mice and humans has precluded the assessment of the relative contribution of each of the 3 mechanisms to chlamydial inhibition in the same epithelial cell from either mice or humans. In the present study, we identified a Chlamydia-susceptible human epithelial cell line, RT4, that possesses the 3 antimicrobial systems, and we examined the role of nitric oxide (NO) induction, and deprivation of tryptophan or Fe in cytokine-induced inhibition of chlamydiae. It was found that the 3 antimicrobial systems contributed to cytokine-mediated inhibition of the intracellular growth of Chlamydia. NO induction accounted for ~20% of the growth inhibition; tryptophan catabolism contributed approximately 30%; iron deprivation was least effective; but the combination of the 3 systems accounted for greater than 60% of the inhibition observed. These results indicate that immune control of chlamydial growth in human epithelial cells may involve multiple mechanisms that include NO induction, tryptophan catabolism and Fe deprivation.  相似文献   

12.
Chlamydia trachomatis is an obligate intracellular bacterium that alternates between two metabolically different developmental forms. We performed fluorescence lifetime imaging (FLIM) of the metabolic coenzymes, reduced nicotinamide adenine dinucleotides [NAD(P)H], by two-photon microscopy for separate analysis of host and pathogen metabolism during intracellular chlamydial infections. NAD(P)H autofluorescence was detected inside the chlamydial inclusion and showed enhanced signal intensity on the inclusion membrane as demonstrated by the co-localization with the 14-3-3β host cell protein. An increase of the fluorescence lifetime of protein-bound NAD(P)H [τ2-NAD(P)H] inside the chlamydial inclusion strongly correlated with enhanced metabolic activity of chlamydial reticulate bodies during the mid-phase of infection. Inhibition of host cell metabolism that resulted in aberrant intracellular chlamydial inclusion morphology completely abrogated the τ2-NAD(P)H increase inside the chlamydial inclusion. τ2-NAD(P)H also decreased inside chlamydial inclusions when the cells were treated with IFNγ reflecting the reduced metabolism of persistent chlamydiae. Furthermore, a significant increase in τ2-NAD(P)H and a decrease in the relative amount of free NAD(P)H inside the host cell nucleus indicated cellular starvation during intracellular chlamydial infection. Using FLIM analysis by two-photon microscopy we could visualize for the first time metabolic pathogen-host interactions during intracellular Chlamydia trachomatis infections with high spatial and temporal resolution in living cells. Our findings suggest that intracellular chlamydial metabolism is directly linked to cellular NAD(P)H signaling pathways that are involved in host cell survival and longevity.  相似文献   

13.
Chlamydia spp. utilize multiple secretion systems, including the type III secretion system (T3SS), to deploy host-interactive effector proteins into infected host cells. Elucidation of secreted proteins has traditionally required ectopic expression in a surrogate T3SS followed by immunolocalization of endogenous candidate effectors to confirm secretion by chlamydiae. The ability to transform Chlamydia and achieve stable expression of recombinant gene products has enabled a more direct assessment of secretion. We adapted TEM-1 β-lactamase as a reporter system for assessment of chlamydial protein secretion. We provide evidence that this system facilitates visualization of secretion in the context of infection. Specifically, our findings provide definitive evidence that C. trachomatis CT695 is secreted during infection. Follow-up indirect immunofluorescence studies confirmed CT695 secretion and indicate that this effector can be secreted at multiple points during the chlamydial developmental cycle. Our results indicate that the BlaM-fusion reporter assay will allow efficacious identification of novel secreted proteins. Moreover, this approach can easily be adapted to enable more sophisticated studies of the secretion process in Chlamydia.  相似文献   

14.
15.
The original electron microscopic identification by other investigators in 1977 of chlamydiae in the gut tissues of the Chesapeake Bay hard clam (Mercenaria mercenaria) is corroborated and further supported by evidence ofChlamydia-specific immunofluorescence (IF). Our electron microscopy demonstrated that gut tissue cells were heavily infected with chlamydiae in all stages of development but the intrachlamydial phage-like particles reported in 1977 were not seen. Tissue sections stained with IF reagents were strongly positive, and IF was blocked in varying degrees with chlamydial antisera produced in a goat and a turkey. The IF-positive tissue sections contained intracytoplasmic inclusions that stained darkly with Lugol's iodine (indicating the presence of glycogen) while IF-negative tissues had little if any iodinestaining material. Furthermore, electron micrographs of chlamydiae-containing phagosomes showed numerous rosettes of electron-dense particles typical of glycogen. The presence of iodine-positive phagosomes with electron dense rosettes suggests that the organisms are glycogen-producing chlamydiae biochemically related toChlamydia trachomatis. Repeated attempts to cultivate chlamydiae from the clam tissues in cell cultures and laboratory animals failed.  相似文献   

16.
In culture, exposure to penicillin and other stressors induce chlamydiae to enter a non-infectious but viable state termed persistence. Chlamydiae may reenter their normal developmental cycle after stressor removal. Though aberrant RB similar to those present in culture models of persistence have been observed within infected tissues, the existence of persistent chlamydiae has not been definitively demonstrated in vivo. As a result, the role of persistent organisms in pathogenesis is undefined. In order to establish an experimentally tractable model of in vivo persistence, Chlamydia muridarum vaginally-infected mice were gavaged with either water or amoxicillin (amox). Vaginal swabs were collected for chlamydial titration and RNA isolated for quantification of pre-16s rRNA. Uterine tissue was analyzed by transmission electron microscopy (TEM). Although amox-treatment reduced vaginal shedding by >99%, C. muridarum pre-16s rRNA accumulation was unchanged by treatment. These data indicate that the amox-exposed organisms were viable but not infectious. Furthermore, TEM analyses demonstrated that inclusions in amox-treated animals contained primarily large, aberrant RB, but those observed in untreated control animals were normal. Collectively, these data suggest that amoxicillin treatment induces C. muridarum to enter the persistent state in vivo. This model also represents the first experimentally tractable animal model of chlamydial persistence.  相似文献   

17.
Intracellular Chlamydia (C.) bacteria cause in cattle some acute but rare diseases such as abortion, sporadic bovine encephalomyelitis, kerato-conjunctivitis, pneumonia, enteritis and polyarthritis. More frequent, essentially ubiquitous worldwide, are low-level, asymptomatic chlamydial infections in cattle. We investigated the impact of these naturally acquired infections in a cohort of 51 female Holstein and Jersey calves from birth to 15 weeks of age. In biweekly sampling, we measured blood/plasma markers of health and infection and analyzed their association with clinical appearance and growth in dependence of chlamydial infection intensity as determined by mucosal chlamydial burden or contemporaneous anti-chlamydial plasma IgM. Chlamydia 23S rRNA gene PCR and ompA genotyping identified only C. pecorum (strains 1710S, Maeda, and novel strain Smith3v8) in conjunctival and vaginal swabs. All calves acquired the infection but remained clinically asymptomatic. High chlamydial infection associated with reduction of body weight gains by up to 48% and increased conjunctival reddening (P<10−4). Simultaneously decreased plasma albumin and increased globulin (P<10−4) suggested liver injury by inflammatory mediators as mechanisms for the growth inhibition. This was confirmed by the reduction of plasma insulin like growth factor-1 at high chlamydial infection intensity (P<10−4). High anti-C. pecorum IgM associated eight weeks later with 66% increased growth (P = 0.027), indicating a potential for immune protection from C. pecorum-mediated growth depression. The worldwide prevalence of chlamydiae in livestock and their high susceptibility to common feed-additive antibiotics suggests the possibility that suppression of chlamydial infections may be a major contributor to the growth promoting effect of feed-additive antibiotics.  相似文献   

18.
The obligate intracellular bacterium Chlamydia elicits a great burden on global public health. C. trachomatis is the leading bacterial cause of sexually transmitted infection and also the primary cause of preventable blindness in the world. An essential determinant for successful infection of host cells by Chlamydia is the bacterium''s ability to manipulate host cell signaling from within a novel, vacuolar compartment called the inclusion. From within the inclusion, Chlamydia acquire nutrients required for their 2-3 day developmental growth, and they additionally secrete a panel of effector proteins onto the cytosolic face of the vacuole membrane and into the host cytosol. Gaps in our understanding of Chlamydia biology, however, present significant challenges for visualizing and analyzing this intracellular compartment. Recently, a reverse-imaging strategy for visualizing the inclusion using GFP expressing host cells was described. This approach rationally exploits the intrinsic impermeability of the inclusion membrane to large molecules such as GFP. In this work, we describe how GFP- or mCherry-expressing host cells are generated for subsequent visualization of chlamydial inclusions. Furthermore, this method is shown to effectively substitute for costly antibody-based enumeration methods, can be used in tandem with other fluorescent labels, such as GFP-expressing Chlamydia, and can be exploited to derive key quantitative data about inclusion membrane growth from a range of Chlamydia species and strains.  相似文献   

19.
Du K  Zheng Q  Zhou M  Zhu L  Ai B  Zhou L 《Current microbiology》2011,63(4):341-346
Chlamydiae are obligate intracellular bacteria that cause variety of human diseases. Chlamydia-infected host cells are profoundly resistant to apoptosis induced by many different apoptotic stimuli. The inhibition of apoptosis is thought to be an important immune escape mechanism allowing chlamydiae to productively complete their obligate intracellular growth cycle. Infection with chlamydiae can activate the Raf/MEK/ERK pathway. Because the survival pathway can modulate apoptosis, we used MEK-specific inhibitor U0126 and Raf-specific inhibitor GW5074 to examine the role of Raf/MEK/ERK pathway in chlamydial antiapoptotic activity. Apoptosis was induced by staurosporine (STS) and detected by morphology, DNA fragmentation, caspase-3 activation, and poly (ADP-ribose) polymerase cleavage. Inhibition of the pathway sensitized Chlamydia-infected cells to STS-mediated cell apoptosis. The data indicate that chlamydial antiapoptotic activity involves activation of the Raf/MEK/ERK survival pathway.  相似文献   

20.
The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号