首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.  相似文献   

2.
Potosensitized formation of 8-hydroxyguanine in DNA by riboflavin was observed. A reaction mechanism involving guanine radical cation and hydration reaction was proposed. This hypothesis was confirmed by the incorporation of [18O]-atom within guanine moiety in isotopic experiments using [18O]-H2O. Photosensitized formation of oh8Gua by riboflavin was also observed in cellular DNA.  相似文献   

3.
GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates the feedback inhibition of GTP cyclohydrolase I activity by (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) through protein complex formation. Since guanine and BH4 have a common pyrimidine ring structure, we examined the inhibitory effect of guanine and its analogs on the enzyme activity. Guanine, 8-hydroxyguanine, 8-methylguanine, and 8-bromoguanine inhibited the enzyme activity in a GFRP-dependent and pH-dependent manner and induced complex formation between GTP cyclohydrolase I and GFRP. The type of inhibition by this group is a mixed type. All these properties were shared with BH4. In striking contrast, inhibition by 8-azaguanine and 8-mercaptoguanine was GFRP-independent and pH-independent. The type of inhibition by 8-azaguanine and 8-mercaptoguanine was a competitive type. The two compounds did not induce complex formation between the enzyme and GFRP. These results demonstrate that guanine compounds of the first group bind to the BH4-binding site of the GTP cyclohydrolase I/GFRP complex, whereas 8-azaguanine and 8-mercaptoguanine bind to the active site of the enzyme. Finally, the possible implications in Lesch-Nyhan syndrome and Parkinson diseases of the inhibition of GTP cyclohydrolase I by guanine and 8-hydroxyguanine are discussed.  相似文献   

4.
Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.  相似文献   

5.
Peroxyacetyl nitrate (PAN) is a common gaseous photochemical compound in polluted air and cigarette smog. The toxicity of PAN has been found to depend on three pathways: (1) its oxidizing property that mimics peroxide or peroxynitrite; (2) its nitrating and hydroxylating properties similar to peroxynitrite; and (3) its acetylating property like acetic anhydride. The present investigations were intended to focus on the reactions of PAN with aromatic amino acids and guanine. When PAN interacted with tyrosine and guanine the major products were 3-nitrotyrosine, 3, 5-dinitrotyrosine, 8-hydroxyguanine and 8-nitroguanine. These compounds have been used as indicators for the presence of peroxynitrite in previous studies. When PAN interacted with phenylalanine, the products were 3-nitrotyrosine, 4-nitrophenylalanine, p-tyrosine, o-tyrosine and m-tyrosine. 5-Hydroxytryptophan is produced from the reaction of PAN with tryptophan. Furthermore, the formation of nitrated tyrosines was also found in the PAN-treated HL-60 cells. A high yield of dityrosine was formed when PAN and peroxynitrite were reacted with tyrosine, probably through free radical oxidation. We also found that peroxynitrite and PAN are similar in their oxidizing activity. From these findings, we suggest that peroxynitrite may be considered as the reactive intermediate of PAN.  相似文献   

6.
We have investigated the complexes formed by oligonucleotides with the general sequence d(T15,Gn), where n = 4-15. Two distinct classes of structures are formed, namely, the four-stranded tetraplex and frayed wires. Frayed wires differ from four-stranded tetraplexes in both strand association stoichiometry and the ability of dimethyl sulfate to methylate the N7 position of guanine. Thus, it appears that these two guanine-rich multistranded assemblies are stabilised by different guanine-guanine interactions. The number of contiguous guanine residues determines which of the complexes is favoured. Based on the stoichiometry of the associated species and the accessibility of the N7 position of guanine to methylation we have found that oligonucleotides with smaller number of contiguous guanines; n = 5-8, form primarily four-stranded tetraplex. Oligonucleotides with larger numbers of contiguous guanines adapt primarily the frayed wire structure. The stability of the complexes formed by this series of oligonucleotides is determined by the number and arrangement of the guanines within the sequences. We propose that the formation of the two types of complex proceed by a parallel reaction pathways that may share common intermediates.  相似文献   

7.
Ras proteins cycle between GDP-bound and GTP-bound states to modulate a diverse array of cellular growth processes. In this study, we have elucidated a mechanism by which nitric oxide, in the presence of oxygen (NO/O2), regulates Ras activity. We show that treatment of Ras with NO/O2 causes conversion of Ras-bound GDP into a free 463.3 Da nucleotide-nitration product. Mass and UV/visible spectroscopic analyses suggest that this nitration product is 5-guanidino-4-nitroimidazole diphosphate (NIm-DP), a degradation product of 5-nitro-GDP. These results indicate that NO/O2 mediates Ras guanine nucleotide exchange (GNE) by conversion of Ras-bound GDP into an unstable 5-nitro-GDP. 5-Nitro-GDP can be produced by radical-based reaction of the GDP guanine base with nitrogen dioxide (*NO2). We also provide evidence that the Ras Phe28 side-chain plays a key role in the formation of a NO/O2-induced Ras 5-nitro-GDP product. We previously proposed a mechanism of NO/O2-mediated Ras GNE, in which *NO2, formed by the reaction of NO with O2, generates a Ras Cys118 thiyl radical (Ras-S118) intermediate. In the present study, we provide evidence for a radical-based mechanism of NO/O2-mediated Ras GNE. According to this mechanism, reaction of NO with O2 produces *NO2. *NO2 then reacts with Ras to produce Ras-S118, which withdraws an electron from the Ras-bound guanine nucleotide base to produce a guanine nucleotide diphosphate cation radical (G(+)-DP) via the Phe28 side-chain. G(+)-DP is subsequently converted to a neutral radical, and can react with another *NO2 to produce 5-nitro-GDP. This radical-based reaction process disrupts key binding interactions between Ras and the guanine base, resulting in release of GDP from Ras and its conversion to free 5-nitro-GDP. This mechanism is likely to be common to other NKCD motif-containing Ras superfamily GTPases, as NO/O2 also facilitates GNE on the redox-active Rap1A and Rab3A GTPases.  相似文献   

8.
Genetic and biochemical evidence demonstrated that Eps8 is involved in the routing of signals from Ras to Rac. This is achieved through the formation of a tricomplex consisting of Eps8-E3b1-Sos-1, which is endowed with Rac guanine nucleotide exchange activity. The catalytic subunit of this complex is represented by Sos-1, a bifunctional molecule capable of catalyzing guanine nucleotide exchange on Ras and Rac. The mechanism by which Sos-1 activity is specifically directed toward Rac remains to be established. Here, by performing a structure-function analysis we show that the Eps8 output function resides in an effector region located within its COOH terminus. This effector region, when separated from the holoprotein, activates Rac and acts as a potent inducer of actin polymerization. In addition, it binds to Sos-1 and is able to induce Rac-specific, Sos-1-dependent guanine nucleotide exchange activity. Finally, the Eps8 effector region mediates a direct interaction of Eps8 with F-actin, dictating Eps8 cellular localization. We propose a model whereby the engagement of Eps8 in a tricomplex with E3b1 and Sos-1 facilitates the interaction of Eps8 with Sos-1 and the consequent activation of an Sos-1 Rac-specific catalytic ability. In this complex, determinants of Eps8 are responsible for the proper localization of the Rac-activating machine to sites of actin remodeling.  相似文献   

9.
《Proteins》2018,86(4):405-413
Rab GTPases and their effectors, activators and guanine nucleotide exchange factors (GEFs) are essential for vesicular transport. Rab8 and its GEF Rabin8 function in formation of the cilium organelle important for developmental signaling and sensory reception. Here, we show by size exclusion chromatography and analytical ultracentrifugation that Rabin8 exists in equilibrium between dimers and tetramers. The crystal structure of tetrameric Rabin8 GEF domain reveals an occluded Rab8 binding site suggesting that this oligomer is enzymatically inactive, a notion we verify experimentally using Rabin8/Rab8 GEF assays. We outline a procedure for the purification of active dimeric Rabin8 GEF‐domain for in vitro activity assays.  相似文献   

10.
Primary cilia are microtubule-based solitary membrane projections on the cell surface that play important roles in signaling and development. Recent studies have demonstrated that polarized vesicular trafficking involving the small GTPase Rab8 and its guanine nucleotide exchange factor Rabin8 is essential for primary ciliogenesis. In this study, we show that a highly conserved region of Rabin8 is pivotal for its activation as a guanine nucleotide exchange factor for Rab8. In addition, in its activated conformation, Rabin8 interacts with Sec15, a subunit of the exocyst and downstream effector of Rab8. Expression of constitutively activated Rab8 promotes the association of Sec15 with Rabin8. Using immunofluorescence microscopy, we found that Sec15 co-localized with Rab8 along the primary cilium. Inhibition of Sec15 function in cells led to defects in primary ciliogenesis. The Rabin8-Rab8-Sec15 interaction may couple the activation of Rab8 to the recruitment of the Rab8 effector and is involved in the regulation of vesicular trafficking for primary cilium formation.  相似文献   

11.
Artemisinin and its derivatives are currently recommended as first-line antimalarials in regions where Plasmodium falciparum is resistant to traditional drugs. The cytotoxic activity of these endoperoxides toward rapidly dividing human carcinoma cells and cell lines has been reported, and it is hypothesized that activation of the endoperoxide bridge by an iron(II) species, to form C-centered radicals, is essential for cytotoxicity. The studies described here have utilized artemisinin derivatives, dihydroartemisinin, 10beta-(p-bromophenoxy)dihydroartemisinin, and 10beta-(p-fluorophenoxy)dihydroartemisinin, to determine the chemistry of endoperoxide bridge activation to reactive intermediates responsible for initiating cell death and to elucidate the molecular mechanism of cell death. These studies have demonstrated the selective cytotoxic activity of the endoperoxides toward leukemia cell lines (HL-60 and Jurkat) over quiescent peripheral blood mononuclear cells. Deoxy-10beta-(p-fluorophenoxy)dihydroartemisinin, which lacks the endoperoxide bridge, was 50- and 130-fold less active in HL-60 and Jurkat cells, respectively, confirming the importance of this functional group for cytotoxicity. We have shown that chemical activation is responsible for cytotoxicity by using liquid chromatography-mass spectrometry analysis to monitor endoperoxide activation by measurement of a stable rearrangement product of endoperoxide-derived radicals, which was formed in sensitive HL-60 cells but not in insensitive peripheral blood mononuclear cells. In HL-60 cells the endoperoxides induce caspase-dependent apoptotic cell death characterized by concentration- and time-dependent mitochondrial membrane depolarization, activation of caspases-3 and -7, sub-G(0)/G(1) DNA formation, and attenuation by benzyloxycarbonyl-VAD-fluoromethyl ketone, a caspase inhibitor. Overall, these results indicate that endoperoxide-induced cell death is a consequence of activation of the endoperoxide bridge to radical species, which triggers caspase-dependent apoptosis.  相似文献   

12.
The reaction pathways of deprotonation versus nucleophilic substitution involving mPGES-2 enzyme catalysis were investigated by ab initio molecular orbital theory calculations for the reaction of methylthiolate with the endoperoxide core of PGH2 and by the combined quantum mechanical molecular mechanical methods. The calculations showed that deprotonation mechanism is energetically more favorable than the nucleophilic substitution pathway.  相似文献   

13.
Understanding the fundamentals of G-quadruplex formation is important both for targeting G-quadruplexes formed by natural sequences and for engineering new G-quadruplexes with desired properties. Using a combination of experimental and computational techniques, we have investigated the effects of site-specific substitution of a guanine with C8-modified guanine derivatives, including 8-bromo-guanine, 8-O-methyl-guanine, 8-amino-guanine, and 8-oxo-guanine, within a well-defined (3 + 1) human telomeric G-quadruplex platform. The effects of substitutions on the stability of the G-quadruplex were found to depend on the type and position of the modification among different guanines in the structure. An interesting modification-dependent NMR chemical-shift effect was observed across basepairing within a guanine tetrad. This effect was reproduced by ab initio quantum mechanical computations, which showed that the observed variation in imino proton chemical shift is largely influenced by changes in hydrogen-bond geometry within the guanine tetrad.  相似文献   

14.
The interaction between small molecules and telomeric quadruplex DNA has received great attention because of its importance in molecular recognition and anticancer drug design. Using UV/vis absorption titration, thermal melting, circular dichroism spectroscopy, and electrospray ionization mass spectrometry, we examined the formation of lead ion induced guanine quadruplexes (Pb-G4) from oligonucleotide AG3(T2AG3)3 and their interaction with a zinc derivative of 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (Zn-TMPyP). The binding of lead ion to the oligonucleotide was found to have an unusually high affinity and followed a 1:1 stoichiometry, and the resultant Pb-G4 structure was stabilized by Zn-TMPyP binding. Owing to the steric hindrance of the axial ligand of zinc and also the relatively rigid structure of Pb-G4, intercalation of Zn-TMPyP between adjacent guanine quartets is precluded, thus allowing the end-stacking binding mode to be characterized exclusively. In conjunction with a big redshift (more than 8 nm) in the absorption spectrum, we demonstrate that a conservative induced circular dichroism is an important signature for end-stacking of porphyrins on guanine quadruplexes.  相似文献   

15.
Telomere shortening is associated with cellular senescence. We investigated whether UVA, which contributes to photoaging, accelerates telomere shortening in human cultured cells. The terminal restriction fragment (TRF) from WI-38 fibroblasts irradiated with UVA (365-nm light) decreased with increasing irradiation dose. Furthermore, UVA irradiation dose-dependently increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in both WI-38 fibroblasts and HL-60 cells. To clarify the mechanism of the acceleration of telomere shortening, we investigated site-specific DNA damage induced by UVA irradiation in the presence of endogenous photosensitizers using (32)P 5'-end-labeled DNA fragments containing the telomeric oligonucleotide (TTAGGG)(4). UVA irradiation with riboflavin induced 8-oxodG formation in the DNA fragments containing telomeric sequence, and Fpg protein treatment led to chain cleavages at the central guanine of 5'-GGG-3' in telomere sequence. The amount of 8-oxodG formation in DNA fragment containing telomere sequence [5'-CGC(TTAGGG)(7)CGC-3'] was approximately 5 times more than that in DNA fragment containing nontelomere sequence [5'-CGC(TGTGAG)(7)CGC-3']. Catalase did not inhibit this oxidative DNA damage, indicating no or little participation of H(2)O(2) in DNA damage. These results indicate that the photoexcited endogenous photosensitizer specifically oxidizes the central guanine of 5'-GGG-3' in telomere sequence to produce 8-oxodG probably through an electron-transfer reaction. It is concluded that the site-specific damage in telomere sequence induced by UVA irradiation may participate in the increase of telomere shortening rate.  相似文献   

16.
The one-electron oxidation of DNA leads to formation of a nucleo-base radical cation that can migrate to a distant site where it is trapped by H2O or O2 to form a "damaged" guanine that is revealed as strand cleavage when the irradiated sample is treated with piperidine. We prepared a series of alkyl-substituted spermine derivatives and assessed their effect on the oxidative reactions of DNA induced by photoexcitation of a covalently linked anthraquinone derivative. The spermine compounds are polycations and bind nonselectively to DNA. When the spermine derivative is substituted with C8 alkyl chains, it shows lipid-like properties. The reaction of the radical cation at guanine is affected by this lipid-like spermine. The distance dependence of the migration process becomes weaker, and the efficiency of strand cleavage is reduced. These results are attributed to the formation of a hydrophobic layer on the DNA that restricts access of H2O to the nucleo-base radical cation.  相似文献   

17.
Chloroethylnitrosoureas (CENUs) are thought to induce cytotoxic DNA interstrand cross-links via an initial reaction at O6-position of guanine, yielding a rearranged intermediate, O6,N1-ethanoguanine. Repair of these adducts by mammalian and bacterial DNA alkyltransferases blocks the formation of cross-links. Human alkyltransferase can form a covalent complex with DNA containing BCNU-induced cross-link precursors, but the nature of the DNA-protein linkage remains unknown. Using E. coli alkyltransferases expressed by the ada and ogt genes, we now demonstrate that both enzymes can form such complexes with CENU-treated DNA. We attribute this reaction to the O6-alkylguanine repair function, because an N-terminal fragment of the ada protein, which has only alkylphosphotriester repair activity, failed to form a similar complex. This result is consistent with the idea that complex formation requires an alkyltransferase reaction with a guanine adduct, such as O6,N1-ethanoguanine. It tends to exclude the possibility that such reactions simply involve alkylation of the enzyme by reactive DNA adducts such as chloroethylphosphate or chloroethylguanine.  相似文献   

18.
S Gopalakrishnan  X Liu  D J Patel 《Biochemistry》1992,31(44):10790-10801
Sterigmatocystin and aflatoxin are potent mutagens that contaminate foodstuffs stored under conditions that permit fungal growth. These food mycotoxins can be metabolically activated to their epoxides, which subsequently form covalent adducts with DNA and can eventually induce tumor development. We have generated the sterigmatocystin-d(A1-A2-T3-G4-C5-A6-T7-T8) covalent adduct (two sterigmatocystins per duplex) by reacting sterigmatocystin-1,2-epoxide with the self-complementary d(A-A-T-G-C-A-T-T) duplex and determined its solution structure by the combined application of two-dimensional NMR experiments and molecular dynamics calculations. The self-complementary duplex retains its 2-fold symmetry following covalent adduct formation of sterigmatocystin at the N7 position of G4 residues on each strand of the duplex. The H8 proton of [ST]G4 exchanges rapidly with water and resonates at 9.58 ppm due to the presence of the positive charge on the guanine ring following adduct formation. We have assigned the exchangeable and nonexchangeable proton resonances of sterigmatocystin and the duplex in the covalent adduct and identified the intermolecular proton-proton NOEs that define the orientation and mode of binding of the mutagen to duplex DNA. The analysis was aided by intermolecular NOEs between the sterigmatocystin protons with both the major groove and minor groove protons of the DNA. The molecular dynamics calculations were aided by 180 intramolecular nucleic acid constraints, 16 intramolecular sterigmatocystin constraints, and 56 intermolecular distance constraints between sterigmatocystin and the nucleic acid protons in the adduct. The sterigmatocystin chromophore intercalates between the [ST]G4.C5 and T3.A6 base pairs and stacks predominantly over the modified guanine ring in the adduct duplex. The overall conformation of the DNA remains right-handed on adduct formation with unwinding of the helix, as well as widening of the minor groove. Parallel NMR studies on the sterigmatocystin-d(A1-A2-A3-G4-C5-T6-T7-T8) covalent adduct (two sterigmatocystins per duplex) provide supportive evidence that the mutagen covalently adducts the N7 position of G4 and its chromophore intercalates to the 5' side of the guanine and stacks over it. The present NMR-molecular dynamics studies that define a detailed structure for the sterigmatocystin-DNA adduct support key structural conclusions proposed previously on the basis of a qualitative analysis of NMR parameters for the adduct formed by the related food mutagen aflatoxin B1 and DNA [Gopalakrishnan, S., Harris, T. M., & Stone, M. P. (1990) Biochemistry 29, 10438-10448].  相似文献   

19.
In living tissues under inflammatory conditions, superoxide radicals (O(2)*)) are generated and are known to cause oxidative DNA damage. However, the mechanisms of action are poorly understood. It is shown here that the combination of O(2)* with guanine neutral radicals, G(-H)* in single- or double-stranded oligodeoxyribonucleotides (rate constant of 4.7 +/- 1.0 x 10(8) m(-1) s(-1) in both cases), culminates in the formation of oxidatively modified guanine bases (major product, imidazolone; minor product, 8-oxo-7,8-dihydroguanine). The G(-H)* and O(2)* radicals were generated by intense 308 nm excimer laser pulses resulting in the one-electron oxidation and deprotonation of guanine in the 5'-d(CC[2AP]-TCGCTACC) strands and the trapping of the ejected electrons by molecular oxygen (Shafirovich, V., Dourandin, A., Huang, W., Luneva, N. P., and Geacintov, N. E. (2000) Phys. Chem. Chem. Phys. 2, 4399-4408). The addition of Cu,Zn-superoxide dismutase, known to react rapidly with superoxide, dramatically enhances the life-times of guanine radicals from 4 to 7 ms to 0.2-0.6 s in the presence of 5 microm superoxide dismutase. Oxygen-18 isotope labeling experiments reveal two pathways of 8-oxo-7,8-dihydroguanine formation including either addition of O(2)* to the C-8 position of G(-H)* (in the presence of oxygen), or the hydration of G(-H)* (in the absence of oxygen). The formation of the guanine lesions via combination of guanine and superoxide radicals is greatly reduced in the presence of typical antioxidants such as trolox and catechol that rapidly regenerate guanine by the reductive "repair" of G(-H)* radicals. The mechanistic aspects of the radical reactions that either regenerate undamaged guanine in DNA or lead to oxidatively modified guanine bases are discussed.  相似文献   

20.
Hydroxyl radical is one of the major reactive oxygen species (ROS) formed from γ-radiolysis of water or Fenton reaction, and it can abstract one hydrogen atom from the methyl carbon atom of thymine and 5-methylcytosine to give the 5-methyl radical of the pyrimidine bases. The latter radical can also be induced from Type-I photo-oxidation process. Here, we examined the reactivity of the independently generated 5-(2′-deoxycytidyl)methyl radical (I) in single- and double-stranded oligodeoxyribonucleotides (ODNs). It was found that an intrastrand cross-link lesion, in which the methyl carbon atom of 5-methylcytosine and the C8 carbon atom of guanine are covalently bonded, could be formed from the independently generated radical at both GmC and mCG sites, with the yield being much higher at the former site. We also showed by LC-MS/MS that the same cross-link lesions were formed in mC-containing duplex ODNs upon γ irradiation under both aerobic and anaerobic conditions, and the yield was ~10-fold higher under the latter conditions. The independently generated radical allows for the availability of pure, sufficient and well-characterized intrastrand cross-link lesion-bearing ODN substrates for future biochemical and biophysical characterizations. This was also the first demonstration that the coupling of radical I with its 5′ neighboring guanine can occur in the presence of molecular oxygen, suggesting that the formation of this and other types of intrastrand cross-link lesions might have important implications in the cytotoxic effects of ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号