首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary In a udic chromusterts the transformation of an initial application of15N-urea @ 80 kg N ha–1 to rice (Oryza sativa L.) in rice-wheat (R-W) and to wheat (Triticum aestivum L.) in wheat-rice (W-R) rotations was followed in 6 successive crops in each rotation. All rice crops were grown in irrigated wetland and wheat in irrigated upland conditions.The first wheat crop in W-R rotation utilized 22 kg fertilizer N ha–1 as compared to 19 kg by the corresponding rice crop in R-W rotation. But the latter absorbed more soil N than the former. About 69% of the total N uptake in rice was derived from mineralization of soil organic N as compared to 61% in wheat.The succeeding wheat crop in R-W rotation utilized 6.7% of the residual fertilizer N in the soil but the corresponding rice crop in W-R rotation only 2.2%. The higher utilization appeared to be related to a greater incorporation of labelled fertilizer N in mineral and hexosamine fractions of the soil N. After the second crop in each rotation, the average residual fertilizer N utilization in the next 4 crops ranged between 3 and 4%.The total recovery of15N-urea in all crops amounted to 21.7 and 24.3 kg N ha–1 in R-W and W-R rotation, respectively. At the end of the experiment, about 9 to 10 kg ha–1 of the applied labelled N was found in soil upto 60 cm depth. Most of the labelled soil N (69–76%) was located in the upper 0–20 cm soil layer indicating little movement to lower depths despite intensive cropping for 4 years.  相似文献   

2.
轮作模式对植烟土壤酶活性及真菌群落的影响   总被引:9,自引:0,他引:9  
陈丹梅  段玉琪  杨宇虹  晋艳  袁玲 《生态学报》2016,36(8):2373-2381
种植模式显著影响土壤理化生物学性质,并与作物土传真菌病害的发生密切相关。试验选择云南省具有代表性的红壤,设置烤烟-休闲-玉米(T-B-M)、烤烟-油菜-玉米(T-C-M)、烤烟-油菜-水稻(T-C-R)和烤烟-苕子-水稻(T-V-R)等4种轮作模式,利用化学、酶学分析及454高通量测序技术,研究了土壤养分、酶活性及真菌群落结构,旨在为烤烟的合理轮作提供科学依据。经16a的不同轮作种植后,土壤p H变化于5.6—6.4之间,仍然适合种植水稻、玉米、油菜和烤烟等多种作物。在T-V-R处理的土壤中,烤烟产量、烟叶产值和上中等烟比例最高,有机质比原初提高45.11%,碱解氮、有效磷和微生物量碳氮显著增加,蔗糖酶、脱氢酶、脲酶、磷酸酶和过氧化氢酶活性也显著高于其它轮作模式,说明T-V-R改善了土壤生态环境,促进了微生物繁衍,数量增加,活性增强。土壤真菌的18S r DNA读数依次为13097(T-B-M)、11345(T-C-M)、12939(T-C-R)和13763(T-V-R),分别代表530、378、395和581种(类)的真菌,由子囊菌门、担子菌门、接合菌门、壶菌门和尚待鉴定的真菌等构成,其中尚待鉴定的真菌属种和子囊菌门占绝大部分。在不同轮作处理的土壤中,前15种优势真菌的丰富度变化于29.46%—62.86%之间,优势菌株的相似性极低,说明土壤真菌的种群结构因轮作模式不同而异。T-V-R处理土壤中的真菌多样性指数最高,优势度指数最低,说明T-V-R轮作的土壤适合多种真菌的繁殖生长,种群数量增加。多种真菌共同存在,互相制约,可防止病原真菌过度繁殖,降低作物发生真菌病害几率。从作物产量和产值、土壤有机质、养分和真菌种群结构看,T-V-R优于其它3种轮作模式,值得推广应用。  相似文献   

3.
The novel cultivation of paddy rice in aerobic soil reveals the great potential not only for water-saving agriculture, but also for rice intercropping with legumes and both are important for the development of sustainable agriculture. A two-year field experiment was carried out to investigate the yield advantage of intercropping peanut (Arachis hypogaea L., Zhenyuanza 9102) and rice (Oryza sativa L., Wuyujing 99-15) in aerobic soil, and its effect on soil nitrogen (N) fertility. A pot experiment was also conducted to examine the N2-fixation by peanut and N transfer from peanut to rice at three N fertilizer application rates, i.e., 15, 75 and 150 kg N ha–1 using a 15N isotope dilution method. The results showed that the relative advantage of intercropping, expressed as land equivalent ratio (LER), was 1.41 in 2001 and 1.36 in 2002. Both area-adjusted yield and N content of rice were significantly increased in the intercropping system while those of peanut were not significantly different between intercropping and monocropping systems. The yields of rice grain and peanut, for example, were increased by 29–37% and 4–7% in the intercropping system when compared to the crop grown in the monocropping system. The intercropping advantage was mainly due to the sparing effect of soil inorganic N contributed by the peanut. This result was proved by the higher soil mineral N concentration under peanut monocropping and intercropping than under the rice monocropping system.%Ndfa (nitrogen derived from atmosphere) by peanut was 72.8, 56.5 and 35.4% under monocropping and 76.1, 53.3 and 50.7% under the intercropping system at N fertilizer application rates of 15, 75 and 150 kg ha–1, respectively. The 15N-based estimates of N transfer from peanut (%NTFL) was 12.2, 9.2 and 6.2% at the three N fertilizer application rates. N transferred from peanut accounted for 11.9, 6.4 and 5.5% of the total N accumulated in the rice plants in intercropping at the same three N fertilizer application rates, suggesting that the transferred N from peanut in the intercropping system made a contribution to the N nutrition of rice, especially in low-N soil.  相似文献   

4.
A long-term fertilized paddy field under rice/rape rotation in the Taihu Lake Region was selected to investigate the dynamics of soil weed seed diversity. Four fertilizer treatments were performed, including non-fertilizer (NF), chemical fertilizer only (CF), chemical fertilizer combined with pig manure (CMF) and chemical fertilizer plus crop stalk (CSF). We recorded the seed numbers and crop yields, estimated the weed seed bank density and identified the kinds of weed seeds in the topsoil (0–15 cm) in the study area using a stereomicroscope. Based on the records, we analyzed the effect of long-term fertilization on soil weed seed bank diversity and the relationship between weed seed diversity and crop yields. Comparing the four treatments, it was found that in the cultivating seasons of both rice and rape, the density of soil weed seed bank was the lowest with the treatment of chemical fertilizer plus crop stalk. Whereas, the total number of species and the weed seed bank diversity was the highest. Furthermore, the crop yields were at maximum and kept constant with this treatment. There was a definite correlation between fertilizer treatment and soil weed seed bank diversity and crop yields. It was concluded that balancing the fertilizer management was helpful in maintaining soil weed seed bank diversity, increasing crop yields and alleviating crop yield fluctuation. Therefore, among the four fertilizer treatments, chemical fertilizer plus rice crop stalk treatment was the best one to stimulate the productivity of agricultural ecosystems and simultaneously protect biodiversity. __________ Translated from Biodiversity Science, 2006, 14(6): 461–469 [译自:生物多样性]  相似文献   

5.
This work aims to investigate how livestock wastewater irrigation affects the quality and agricultural potential of soil. The experiments took place in 2019 on a research station with an area of 10 ha (Moscow region, Russian Federation), divided into two even sites of 5 ha (control, experimental). Eleven germination experiments were carried out to determine the influence of livestock wastewater irrigation on radish seeds (1 – control; 10 – irrigation with liquid and solid phases of wastewater samples mixed with pure water). The experimental and control plots appeared to differ in terms of the bulk density of soil. Changes occurred in all horizons (p ≤ 0.05) but a soil layer with a depth of 0.2–0.4 m. Soil horizons in the experiment plots all exhibited lower porosity (p ≤ 0.05) except for the topsoil, and the water capacity was higher in the topsoil (p ≤ 0.05) and near-surface layer (p ≤ 0.05). The experiment showed higher concentrations of hummus (p ≤ 0.01) and phosphorus (p ≤ 0.01). As for nitrogen, significant changes only occurred in the topsoil (p ≤ 0.01). In the germination experiments, more than 90% of radish seeds germinated. Besides, their root length was higher compared to the control (p ≤ 0.05). The results of the study suggest that livestock wastewater can benefit crop cultivation after preliminary treatment. Finally, the experiments revealed a reduced soil salt accumulation.  相似文献   

6.
《Fungal biology》2021,125(10):826-833
Agaricus bisporus cultivation is based on a selective substrate prepared by a meticulous composting process where thermophilic and/or thermotolerant fungi might play an important role in straw biomass depolymerization. Since fungi have physiological limitations to survive and grow in high-temperature environments, we set out different pasteurization regimes (57 °C/6 h, 60 °C/2 h, and 68 °C/2 h) to evaluate the impact on the fungal community assembly. The fungal community profile generated by high-throughput sequencing showed shifts in community diversity and composition under different pasteurization regimes. Most of the recovered sequences belong to the Ascomycota phylum. Among 73 species detected, Mycothermus thermophilus, Talaromyces thermophilus, and Thermomyces lanuginosus were the most abundant. In the current study, we outlined that pasteurization regimes can reshape the fungal community in compost which can potentially impact the A. bisporus development.  相似文献   

7.
The present cross-sectional study aims to understand the fungal community composition of the nasopharyngeal region of SARS-CoV-2 infected individuals and how the infection influences the mycobiome therein. The infection significantly (p < 0.05) influenced the alpha diversity. Interestingly, a higher abundance of Cladosporium and Alternaria was noted in the infected individuals and inter-individual variation in mycobiome composition was well supported by beta dispersion analysis (p < 0.05). Moreover, decrease in Aspergillus abundance was observed in infected patients across the four age groups. This study provides insight into the alteration in mycobiome during the viral disease progression and demands continuous investigation to monitor fungal infections.  相似文献   

8.
Root‐associated fungi (RAF) are an important factor affecting the host's growth, and their contribution to Pinus sylvestris var. mongolica plantation decline is substantial. Therefore, we selected three age groups of P. sylvestris plantations (26, 33, and 43 years), in the Mu Us Desert, to characterize the community structure and functional groups of RAF, identified by Illumina high‐throughput sequencing and FUNGuild platform, respectively. The effects of soil properties and enzyme activities on fungal diversity and functional groups were also examined. The results indicated that (a) 805 operational taxonomic units of RAF associated with P. sylvestris belonged to six phyla and 163 genera. Diversity and richness were not significantly different in the three age groups, but community composition showed significant differences. Ascomycota and Basidiomycota dominated the fungal community, while Rhizopogon dominated in each plot. (b) The proportion of pathotrophs decreased with increasing age, while that of symbiotrophs increased sharply, which were mainly represented by ectomycorrhizal fungi. (c) Stand age and soil enzyme activity had a greater influence on fungal community composition than did soil properties, whereas environmental variables were not significantly correlated with fungal diversity and richness. Dynamics of fungal community composition and functional groups with the aging plantations reflected the growth state of P. sylvestris and were related to plantation degradation.  相似文献   

9.
纳帕海高原湿地真菌群落多样性和组成的分布   总被引:1,自引:0,他引:1  
【背景】位于滇西北的纳帕海高原湿地,是我国唯一的低纬度、高海拔、季节性半封闭型高原湿地。真菌在湿地生态系统的维持和稳定中发挥着特殊作用,然而关于纳帕海高原湿地真菌群落多样性和组成的研究目前仍无报道。【目的】对纳帕海高原湿地不同季节和土壤类型真菌群落多样性和组成及与环境因子的关系开展系统研究分析,促进对高原湿地微生物多样性的深入认识。【方法】采用荧光定量PCR和高通量测序技术,分析了纳帕海高原湿地不同季节和土壤类型中真菌的数量、群落多样性和组成及其与环境因子的关系。【结果】真菌数量级的变化对于人为干扰下的湿地土壤退化是敏感的响应指标。在真菌群落组成中,约有60%以上未确定的分类信息,40%有确定分类信息的包括6个门17个纲37个目53个科63个属,大部分分类信息集中在Ascomycota门,相对优势属为Gibberella。通过分类水平、OTU水平和β多样性分析比较,在纳帕海高原湿地整体真菌群落多样性和组成受季节变化影响不显著,但不同土壤类型的变化呈显著差异,推测是由于不同采样区植物根际效应和种类的影响。CCA (Canonical correlation analysis)分析表明,在不同采样区受不同土壤理化因子的影响。【结论】揭示了纳帕海高原湿地土壤真菌群落多样性和组成的区域特征,从微生物学角度进一步提出了对纳帕海高原湿地环境保护和恢复的重要性。  相似文献   

10.
Fungal communities and diversity in the rhizosphere soil of Argentina (syn. Potentilla) anserina were investigated by high-throughput sequencing. Soil fungal communities changed seasonally; nitrogen, phosphorus, and potassium contents in the soil were highly correlated with specific fungal groups and distributions. At the class level, the fungal community of A. anserina rhizosphere was mainly composed of Sordariomycetes, Pezizomycetes, Dothideomycetes, and Leotiomycetes. Moreover, rhizosphere soil was dominated by Ascomycota and characterized by a relatively high percentage of saprotrophic, parasitic, endophytic, and arbuscular mycorrhizal fungi: Mortierella (3.95 %), Fusarium (3.11 %), Cadophora (2.19 %), Phoma (2.01 %), Preussia (1.18 %) and Glomerales (0.37 %). FUNGuild analysis revealed different fungal ecotypes in rhizosphere soil, including symbiotic, saprotrophic, and pathogenic fungi. The structure and quantity of different ecotypes of fungi showed dynamic changes and may have different functions in the agro-ecosystem. These results provide a theoretical framework for further development and utilization of microbial resources to improve sustainable management strategies.  相似文献   

11.
Maiti D  Toppo NN  Variar M 《Mycorrhiza》2011,21(8):659-667
Upland rice (Oryza sativa L.) is a major crop of Eastern India grown during the wet season (June/July to September/October). Aerobic soils of the upland rice system, which are acidic and inherently phosphorus (P) limiting, support native arbuscular mycorrhizal (AM) activity. Attempts were made to improve P nutrition of upland rice by exploiting this natural situation through different crop rotations and application of AM fungal (AMF) inoculum. The effect of a 2-year crop rotation of maize (Zea mays L.) followed by horse gram (Dolichos biflorus L.) in the first year and upland rice in the second year on native AM activity was compared to three existing systems, with and without application of a soil–root-based inoculum. Integration of AM fungal inoculation with the maize–horse gram rotation had synergistic/additive effects in terms of AMF colonization (+22.7 to +42.7%), plant P acquisition (+11.2 to +23.7%), and grain yield of rice variety Vandana (+25.7 to +34.3%).  相似文献   

12.
The objective of this research is to solve the current medical problems of a high incidence of fungal infections in the lungs, high misdiagnosis rate, and high mortality. In this study, firstly, the logistic regression model was used to conduct. Risk factors of pulmonary fungal infection in respiratory department were analyzed. Then a model of pulmonary fungal infection in mice was constructed, and the expression difference of Progranulin (PGRN) in serum was detected by enzyme-linked immuno sorbent assay (ELISA). The expression of PGRN in lung tissues of mice infected by pulmonary fungi was detected by Western bolt method and quantitative polymerase chain reaction (PCR). The PGRN protein and mRNA expression in the lung epithelial cells of mice were detected after the infection. Results logistic regression model was used to analyze the main risk factors affecting pulmonary infection in mice. The risk factors of pulmonary fungal infection were indent catheter, hypoproteinemia, long-term use of glucocorticoid and long-term use of antibiotics. The PGRN content in serum was obviously higher than that before pulmonary fungal infection (P < 0.01). The expression of PGRN mRNA and protein in lung tissue was obviously higher than that before infection (P < 0.01). The expression of PGRN mRNA and protein in lung tissues of the infected group was obviously higher than that of the non-infected group (P < 0.01). The expression of PGRN protein in the lung epithelial cells of mice was obviously higher at 24 h after infection than before infection (P < 0.01), and the expression of PGRN mRNA was obviously higher at 12 h after infection than before infection (P < 0.01), indicating that PGRN is highly expressed in fungal pulmonary infection and is involved in disease progression. Therefore, this study provides a new idea for the diagnosis and treatment of fungal pulmonary infection in the later stage and has a good guiding significance for the diagnosis and treatment of fungal pulmonary infection.  相似文献   

13.
With this study, we explored the identity and chemistry of fungal endophytes from the roots of yerba mansa [Anemopsis californica (Nutt.) Hook. & Arn. (Saururaceae)], a botanical traditionally used to treat infection. We compared the diversity of fungal endophytes isolated from a wild-harvested A. californica population, and those from plants cultivated for one year in a greenhouse environment. The wild-harvested population yielded thirteen fungal strains (eleven unique genotypes). Of the extracts prepared from these fungi, four inhibited growth of Staphylococcus aureus by >25% at 20 μg/mL, and three inhibited growth of Pseudomonas aeruginosa by ≥20% at 200 μg/mL. By comparison, A. californica roots after one year of cultivation in the greenhouse produced only two unique genotypes, neither of which displayed significant antimicrobial activity. The fungus Chaetomium cupreum isolated from wild-harvested A. californica yielded a new antimicrobial spirolactone, chaetocuprum (1). An additional 14 known compounds were identified using LC–MS dereplication of the various fungal endophytes. This study provides new insights into the identity and chemistry of A. californica fungal endophytes, and demonstrates the importance of considering growing conditions when pursuing natural product drug discovery from endophytic fungi.  相似文献   

14.
Global rice agriculture will be increasingly challenged by water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from double‐rice cropping to the introduction of upland crops in the dry season. For a comprehensive assessment of greenhouse gas (GHG) balances, we measured methane (CH4)/nitrous oxide (N2O) emissions and agronomic parameters over 2.5 years in double‐rice cropping (R‐R) and paddy rice rotations diversified with either maize (R‐M) or aerobic rice (R‐A) in upland cultivation. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66–81% and 95–99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54–60%. Although annual N2O emissions increased two‐ to threefold in the diversified systems, the strong reduction in CH4 led to a significantly lower (P < 0.05) annual GWP (CH4 + N2O) as compared to the traditional double‐rice cropping system. Measurements of soil organic carbon (SOC) contents before and 3 years after the introduction of upland crop rotations indicated a SOC loss for the R‐M system, while for the other systems SOC stocks were unaffected. This trend for R‐M systems needs to be followed as it has significant consequences not only for the GWP balance but also with regard to soil fertility. Economic assessment showed a similar gross profit span for R‐M and R‐R, while gross profits for R‐A were reduced as a consequence of lower productivity. Nevertheless, regarding a future increase in water scarcity, it can be expected that mixed lowland–upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops.  相似文献   

15.
《Fungal biology》2020,124(3-4):219-227
Fungal fragments are abundant immunoreactive bioaerosols that may outnumber the concentrations of intact spores in the air. To investigate the importance of Alternaria fragments as sources of allergens compared to Alternaria spores, we determined the levels of Alternaria spores and Alt a 1 (the major allergen in Alternaria alternata spores) collected on filters within three fractions of particulate matter (PM) of different aerodynamic diameter: (1) PM>10, (diameter>10 μm); (2) PM2.5-10 (2.5–10μm); (3) PM2.5 (0.12–2.5 μm). The airborne particles were collected using a three stage high-volume ChemVol cascade impactor during the Alternaria sporulation season in Poznań, Poland (30 d between 6 July and 22 September 2016). The quantification of Alt a 1 was performed using the enzyme-linked immunosorbent assay. High concentrations of Alt a 1 were recorded during warm and dry d characterized by high sunshine duration, lack of clouds and high dew point values. Atmospheric concentrations of Alternaria spores correlated significantly (r = 0.930, p < 0.001) with Alt a 1 levels. The highest Alt a 1 was recorded in PM2.5-10 (66.8 % of total Alt a 1), while the lowest in PM2.5 (<1.0 %). Significantly more Alt a 1 per spore (>30 %) was observed in PM2.5-10 than in PM>10. This Alt a 1 excess may be derived from sources other than spores, e.g. hyphal fragments. Overall, in outdoor air the major source of Alt a 1 are intact Alternaria spores, but the impact of other fungal fragments (hyphal parts, broken spores, conidiophores) cannot be neglected, as they may increase the total atmospheric Alt a 1 concentration.  相似文献   

16.
陈海生  刘守平  梁国钱 《菌物学报》2021,40(9):2254-2265
本研究比较轮作和连作下滨海滩涂地绿花椰菜根际土壤真菌群落结构和多样性的变化特征,以探索不同轮作方式减缓绿花椰菜连作田连作障碍的效果。采用Illumina Miseq高通量测序技术,分析单季稻-绿花椰菜水旱轮作、南瓜-绿花椰菜旱旱轮作和绿花椰菜连作3种耕作方式对绿花椰菜根际土壤真菌群落结构和多样性的影响。结果表明,在浙江省台州湾滨海滩涂地绿花椰菜种植区,水旱轮作、旱旱轮作和连作绿花椰菜根际土壤共获得11门、27纲、52目、94科、155属真菌。在门水平上相对丰度较高的为子囊菌门Ascomycota、油壶菌门Olpidiomycota、担子菌门Basidiomycota、接合菌门Zygomycota、壶菌门Chytridiomycota。与连作相比,轮作显著提高了绿花椰菜根际土壤中子囊菌门、壶菌门菌群的相对丰度,而以水旱轮作对其相对丰度的提高幅度更大。轮作显著降低了绿花椰菜根际土壤中油壶菌门、接合菌门菌群的相对丰度,而以水旱轮作对这2门菌群相对丰度的降低幅度更大。在属水平上轮作显著降低了绿花椰菜根际土壤中油壶菌属Olpidium、镰刀菌属Fusarium等的相对丰度,显著提高了绿花椰菜根际土壤中格孢腔菌属Pleospora的相对丰度,而水旱轮作更提高了格孢腔菌属的相对丰度,降低了油壶菌属、镰刀菌属的相对丰度。因此,轮作能改善台州湾滨海滩涂地上绿花椰菜根际土壤真菌群落结构,但水旱轮作更能增加绿花椰菜根际土壤真菌有益菌丰度,减少绿花椰菜根际土壤真菌有害菌群丰度,提高根际土壤真菌多样性指数,改良绿花椰菜根际土壤生态环境。  相似文献   

17.
Verticillium wilt is a disastrous disease in cotton-growing regions in China. As a common management method, cotton rotation with cereal crops is used to minimize the loss caused by Verticillium dahliae. However, the correlation between soil microbiome and the control of Verticillium wilt under a crop rotation system is unclear. Therefore, three cropping systems (fallow, cotton continuous cropping, and cotton–maize rotation) were designed and applied for three generations under greenhouse conditions to investigate the different responses of the soil microbial community. The soil used in this study was taken from a long-term cotton continuous cropping field and inoculated with V. dahliae before use. Our results showed that the diversity of the soil bacterial community was increased under cotton–maize rotation, while the diversity of the fungal community was obviously decreased. Meanwhile, the structure and composition of the bacterial communities were similar even under the different cropping systems, but they differed in the soil fungal communities. Through microbial network interaction analysis, we found that Verticillium interacted with 17 bacterial genera, among which Terrabacter had the highest correlation with Verticillium. Furthermore, eight fungal and eight bacterial species were significantly correlated with V. dahliae. Collectively, this work aimed to study the interactions among V. dahliae, the soil microbiome, and plant hosts, and elucidate the relationship between crop rotation and soil microbiome, providing a new theoretical basis to screen the biological agents that may contribute to Verticillium wilt control.  相似文献   

18.
We studied redoximorphic features, field indicators and bacterial communities of soils in hummocks and hollows of a palustrine forested wetland in Virginia. We hypothesized that presence of hydric soils, soil physicochemistry and soil bacterial community structure would differ between hummocks and hollows. We fingerprinted soils collected from different microtopographic locations using Length Heterogeneity Polymerase Chain Reaction (LH-PCR) to study their bacterial community structures. Two hummocks had silty/sandy loam soils with mean chroma values of > 4, showing no indication of ‘hydric soils’ (i.e., wetland soils). Two hollows, however, had clay loam soils with mean chroma values of 2 with gleying and redox concentrations observed, indicative of seasonally inundated wetlands. The soils of hollows also had higher organic matter content and soil moisture compared to the soils of hummocks (P < 0.05). Multidimensional scaling (MDS) and Analysis of similarity (ANOSIM) of the fingerprints revealed differences in soil microbial community structures between hummocks and hollows (Global R = 0.30, P < 0.01). The diversity measures of the fingerprints (Shannon’s H′) were also different by microtopography with higher diversity in hollows relative to hummocks (P < 0.05). LH-PCR proves to be a useful tool in examining bacterial community composition of wetland soils in this study. However, cloning and sequencing of specific community LH-PCR profiles of interest is necessary to fully characterize the community down to genus/species level. With species identities we should be able to not only better explain differences observed in the community profiles, but study their relations to hydrologic and/or physicochemical conditions of wetlands.  相似文献   

19.
PurposeTo assess modulation of neutralizing antibody titers in COVID-19 patients and understand association of variables such as age, presence of comorbidity, BMI and gender with antibody titers.MethodsPatients (n = 100) diagnosed from 20th March 2020 to 17th August 2020 and treated at two large hospitals from Pune, India were included and followed up (clinical and serologic) for varied periods. IgG-anti-SARS-CoV-2 (Spike protein-based ELISA) and neutralizing antibody titers (NAb, PRNT) were determined in all the samples.ResultsOf the 100 patients enrolled initially (median 60 days of diagnosis), follow up samples were collected from 70 patients (median 106 days of diagnosis). Overall, NAb titers reduced significantly (p < 0.001) and as early as 3–4 months. During two visits, 20% and 7.1% patients reported some symptoms. At the first visit, NAb titers were higher in patients with severe disease (p < 0.001), comorbidities (p < 0.005), age <50 years (p < 0.05) and male gender (p < 0.05). Multivariate analysis identified older age (p < 0.001), duration post-diagnosis and female gender as independent variables influencing NAb titers (negative correlation, p < 0.05). During the follow-up, reduction in NAb titers was recorded in patients with comorbidity (p < 0.05), mild disease (p < 0.05), age <50 years (p < 0.05), higher BMI (p < 0.05) and male gender (p < 0.001). Serology identified six cases of asymptomatic reinfections.ConclusionsDecline of NAb titers was associated with age <50 years, mild disease, comorbidities, higher BMI and male gender. At the time of follow up, 8/70 (11.4%) patients lacked neutralizing antibodies. Evidence of 6 probable asymptomatic reinfections suggests waning of immunity, but, probable protection from clinical disease needing hospitalization.  相似文献   

20.
Metagenomic has been explored in investigating microbiome diversity. However, there is limited available information on its application towards securing plant health. Hence, this study adopts the metagenomic approach to unravel the microbiome diversity associated with healthy (LI and MA) and Northern corn leaf blight (NCLB) infected (LID and MAD) maize rhizosphere in the maize growing field at Lichtenburg and Mafikeng, North-West province of South Africa. The extraction of whole DNA from the respective healthy and diseased rhizosphere soils was conducted and sequenced using shotgun metagenomics. A total of 12 bacteria, 4 archaea and 2 fungal phyla were found as predominant across the fields with the use of the SEED subsystem database. The most predominant bacteria phyla included Proteobacteria, Dienococcus-Thermus, Gemmatimonadetes, Chlorobi, Cyanobacteria, Planctomycetes, Verrucomicrobia, Acidobacteria, Firmicutes, Chloroflexi and Bacteroidetes. Archaea consisted of Euryarchaeota, Thaumarchaeota, Crenarchaeota and Korachaeota, while Ascomycota and Basidiomycota were the dominant fungal phyla. Microbial abundance and diversity were higher in the rhizosphere of healthy maize (LI and MA) rhizosphere as compared to the NCLB diseased (LID and MAD), in the order LI > MA > LID > MAD. At phylum and genus level, alpha diversity index showed no significant (p > 0.05) difference in the abundance of the microbial community of healthy and NCLB infected maize rhizosphere, while beta analysis produced a significant (p = 0.01) difference in the microbial diversity in the soil. Taken together, the study revealed that the abundance of microbial diversity in the maize rhizosphere influences the efficacy of the rhizosphere microbiome to modulate microbial functions towards managing and sustaining plant health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号