首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The introduction of affordable, consumer-oriented 3-D printers is a milestone in the current “maker movement,” which has been heralded as the next industrial revolution. Combined with free and open sharing of detailed design blueprints and accessible development tools, rapid prototypes of complex products can now be assembled in one’s own garage—a game-changer reminiscent of the early days of personal computing. At the same time, 3-D printing has also allowed the scientific and engineering community to build the “little things” that help a lab get up and running much faster and easier than ever before.Applications of 3-D printing technologies (Fig. 1A, Box 1) have become as diverse as the types of materials that can be used for printing. Replacement parts at the International Space Station may be printed in orbit from durable plastics or metals, while back on Earth the food industry is starting to explore the same basic technology to fold strings of chocolate into custom-shaped confectionary. Also, consumer-oriented laser-cutting technology makes it very easy to cut raw materials such as sheets of plywood, acrylic, or aluminum into complex shapes within seconds. The range of possibilities comes to light when those mechanical parts are combined with off-the-shelf electronics, low-cost microcontrollers like Arduino boards [1], and single-board computers such as a Beagleboard [2] or a Raspberry Pi [3]. After an initial investment of typically less than a thousand dollars (e.g., to set-up a 3-D printer), the only other materials needed to build virtually anything include a few hundred grams of plastic (approximately US$30/kg), cables, and basic electronic components [4,5].Open in a separate windowFig 1Examples of open 3-D printed laboratory tools. A 1, Components for laboratory tools, such as the base for a micromanipulator [18] shown here, can be rapidly prototyped using 3-D printing. A 2, The printed parts can be easily combined with an off-the-shelf continuous rotation servo-motor (bottom) to motorize the main axis. B 1, A 3-D printable micropipette [8], designed in OpenSCAD [19], shown in full (left) and cross-section (right). B 2, The pipette consists of the printed parts (blue), two biro fillings with the spring, an off-the-shelf piece of tubing to fit the tip, and one screw used as a spacer. B 3, Assembly is complete with a laboratory glove or balloon spanned between the two main printed parts and sealed with tape to create an airtight bottom chamber continuous with the pipette tip. Accuracy is ±2–10 μl depending on printer precision, and total capacity of the system is easily adjusted using two variables listed in the source code, or accessed via the “Customizer” plugin on the thingiverse link [8]. See also the first table.

Box 1. Glossary

Open source

A collective license that defines terms of free availability and redistribution of published source material. Terms include free and unrestricted distribution, as well as full access to source code/blueprints/circuit board designs and derived works. For details, see http://opensource.org.

Maker movement

Technology-oriented extension of the traditional “Do-it-Yourself (DIY)” movement, typically denoting specific pursuits in electronics, CNC (computer numerical control) tools such as mills and laser cutters, as well as 3-D printing and related technologies.

3-D printing

Technology to generate three-dimensional objects from raw materials based on computer models. Most consumer-oriented 3-D printers print in plastic by locally melting a strand of raw material at the tip (“hot-end”) and “drawing” a 3-D object in layers. Plastic materials include Acrylnitrile butadiene styrene (ABS) and Polylactic acid (PLA). Many variations of 3-D printers exist, including those based on laser-polymerization or fusion of resins or powdered raw materials (e.g., metal or ceramic printers).

Arduino boards

Inexpensive and consumer-oriented microcontroller boards built around simple processors. These boards offer a variety of interfaces (serial ports, I2C and CAN bus, etc.), μs-timers, and multiple general-purpose input-output (GPIO) pins suitable for running simple, time-precise programs to control custom-built electronics.

Single board computers

Inexpensive single-board computers capable of running a mature operating system with graphical-user interface, such as Linux. Like microcontroller boards, they offer a variety of hardware interfaces and GPIO pins to control custom-built electronics.It therefore comes as no surprise that these technologies are also routinely used by research scientists and, especially, educators aiming to customize existing lab equipment or even build sophisticated lab equipment from scratch for a mere fraction of what commercial alternatives cost [6]. Designs for such “Open Labware” include simple mechanical adaptors [7], micropipettes (Fig. 1B) [8], and an egg-whisk–based centrifuge [9] as well as more sophisticated equipment such as an extracellular amplifier for neurophysiological experiments [10], a thermocycler for PCR [11], or a two-photon microscope [12]. At the same time, conceptually related approaches are also being pursued in chemistry [1315] and material sciences [16,17]. See also
AreaProjectSource
MicroscopySmartphone Microscope http://www.instructables.com/id/10-Smartphone-to-digital-microscope-conversion
iPad Microscope http://www.thingiverse.com/thing:31632
Raspberry Pi Microscope http://www.thingiverse.com/thing:385308
Foldscope http://www.foldscope.com/
Molecular BiologyThermocycler (PCR) http://openpcr.org/
Water bath http://blog.labfab.cc/?p=47
Centrifuge http://www.thingiverse.com/thing:151406
Dremelfuge http://www.thingiverse.com/thing:1483
Colorometer http://www.thingiverse.com/thing:73910
Micropipette http://www.thingiverse.com/thing:255519
Gel Comb http://www.thingiverse.com/thing:352873
Hot Plate http://www.instructables.com/id/Programmable-Temperature-Controller-Hot-Plate/
Magnetic Stirrer http://www.instructables.com/id/How-to-Build-a-Magnetic-Stirrer/
ElectrophysiologyWaveform Generator http://www.instructables.com/id/Arduino-Waveform-Generator/
Open EEG https://www.olimex.com/Products/EEG/OpenEEG/
Mobile ECG http://mobilecg.hu/
Extracellular amplifier https://backyardbrains.com/products/spikerBox
Micromanipulator http://www.thingiverse.com/thing:239105
Open Ephys http://open-ephys.org/
OtherSyringe pump http://www.thingiverse.com/thing:210756
Translational Stage http://www.thingiverse.com/thing:144838
Vacuum pump http://www.instructables.com/id/The-simplest-vacuum-pump-in-the-world/
Skinner Box http://www.kscottz.com/open-skinner-box-pycon-2014/
Open in a separate windowSee also S1 Data.  相似文献   

2.
Announcing the JCB DataViewer,a browser-based application for viewing original image files     
Emma Hill 《The Journal of cell biology》2008,183(6):969-970
  相似文献   

3.
Intrinsic Disorder in Pathogen Effectors: Protein Flexibility as an Evolutionary Hallmark in a Molecular Arms Race     
Macarena Marín  Vladimir N. Uversky  Thomas Ott 《The Plant cell》2013,25(9):3153-3157
Effector proteins represent a refined mechanism of bacterial pathogens to overcome plants’ innate immune systems. These modular proteins often manipulate host physiology by directly interfering with immune signaling of plant cells. Even if host cells have developed efficient strategies to perceive the presence of pathogenic microbes and to recognize intracellular effector activity, it remains an open question why only few effectors are recognized directly by plant resistance proteins. Based on in-silico genome-wide surveys and a reevaluation of published structural data, we estimated that bacterial effectors of phytopathogens are highly enriched in long-disordered regions (>50 residues). These structurally flexible segments have no secondary structure under physiological conditions but can fold in a stimulus-dependent manner (e.g., during protein–protein interactions). The high abundance of intrinsic disorder in effectors strongly suggests positive evolutionary selection of this structural feature and highlights the dynamic nature of these proteins. We postulate that such structural flexibility may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. The study of these dynamical regions will greatly complement current structural approaches to understand the molecular mechanisms of these proteins and may help in the prediction of new effectors.Plants and pathogens are entangled in a continual arms race. While host organisms have developed complex and dynamic immune systems able to recognize a wide range of pathogens and to discriminate them from beneficial microbes (Jones and Dangl, 2006; Medzhitov, 2007), bacterial pathogens have evolved refined adaptation strategies to overcome the plant’s innate immune system. Among these ingenious adaptations are effector proteins. Most of these proteins are secreted via the type III secretion system (TTSS) into the host cytoplasm, where they manipulate the immune signaling and the physiology of plant cells and thereby improve bacterial fitness within the host (Dean, 2011).Plant–pathogen interactions are highly dynamic processes, both from the evolutionary and the physiological point of view. Here, we postulate that they are equally dynamic at the protein-structure level. This is based on our finding that numerous effector proteins are predicted to be intrinsically disordered (ID) and that this feature may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. Intrinsic disorder has so far been postulated to preferentially occur in eukaryotic proteins. While on average ∼20% of the eukaryotic proteome harbors long (>50 residues) ID segments, these regions are only predicted at low abundance (8% on average) in bacterial proteomes (Dunker et al., 2000). The most likely reason for this discrepancy is the lack of efficient mechanisms to protect unfolded proteins from degradation (Ward et al., 2004). However, when surveying genomes of pathogenic bacteria with the widely used PONDR VL-XT program (Romero et al., 2001), we observed that not only the average percentage of sequence disorder, but most strikingly long (>50 residues) stretches of intrinsic disorder are highly overrepresented in secreted effectors, with especially high levels in phytopathogenic bacteria (Pseudomonas syringae, ∼39%; Ralstonia solanacearum, ∼70%; Xanthomonas spp, ∼77%) (Supplemental Table 1 online). This striking enrichment of unstructured regions strongly suggests positive evolutionary selection of intrinsic disorder in effector proteins and highlights their dynamic nature.

Table 1.

Predictions of Intrinsic Disorder in Effectors and Whole Proteomes of Different Bacterial Species
OrganismAverage Percentage of Disordered Residues
Percentage of Proteins Harboring ID Regions >50 Residues
All ProteinsTTSS EffectorsAll ProteinsTTSS Effectors
P. syringae38.635.6
phaseolicola 1448A26.142.010.152.4
syringae B728a26.241.410.757.1
tomato DC300026.439.710.234.4
R. solanacearum42.669.6
 GMI100029.243.511.966.7
Xanthomonas sp49.275.7
 X. campestris pv vesicatoria 85-1029.650.913.569.6
 X. oryzae pv oryzae KACC1033129.746.312.582.3
 X. campestris pv campestris ATCC 3391329.144.613.368.9
S. enterica22.118.5
enterica ser. typhimurium LT223.021.57.019.2
Open in a separate windowDisorder parameters of representative effectors (see Supplemental Table 1 online) were calculated per species (highlighted in bold) and were compared to the values calculated for the proteomes from which the majority of the effectors were extracted. For completeness, effectors belonging to protein families absent in these strains were extracted from closely related strains (see Supplemental Table 1 online). Proteomes of P. syringae pv phaseolicola (strain 1448A; 5170 proteins), P. syringae pv syringae (strain B728a; 5088 proteins), P. syringae pv tomato (strain DC3000; 5618 proteins), R. solanacearum (strain GMI1000; 5108 proteins), X. campestris pv vesicatoria (strain 85-10; 4726 proteins), X. oryzae pv oryzae (strain KACC10331; 4065 proteins), X. campestris pv campestris (strain ATCC 33913; 4178 proteins), and S. typhimurium (strain LT2 ; 4555 proteins) were downloaded from the National Center for Biotechnology Information server (http://www.ncbi.nlm.nih.gov/genome/). Additionally, parameters were individually calculated for the different strains. Intrinsic disorder predictions were calculated with the PONDR VL-XT program (Romero et al., 2001). Here, scores below and above 0.5 indicate residues predicted to be ordered and disordered, respectively. The average percentage of sequence disordered was calculated as the mean value of the percentage of disordered residues (PONDR score > 0.5) per protein from all proteins. The percentage of long ID regions was calculated as the percentage of proteins harboring ID regions >50 residues.  相似文献   

4.
On the Extent of Tyrosine Phosphorylation in Chloroplasts     
Qintao Lu  Stefan Helm  Anja R?diger  Sacha Baginsky 《Plant physiology》2015,169(2):996-1000
Reanalysis of published mass spectrometry data on Tyr-phosphorylated chloroplast proteins indicates that the majority of peptide spectrum matches reporting Tyr phosphorylation are ambiguous.Tyr phosphorylation is a controversial issue in plant phosphoproteomics, ever since early analyses reported up to 5% Tyr phosphorylation in Arabidopsis (Arabidopsis thaliana), despite the lack of a classical Tyr kinase in the Arabidopsis genome (Sugiyama et al., 2008; de la Fuente van Bentem and Hirt, 2009). The same controversy extends to the phosphorylation of chloroplast proteins. In the past 20 years, several indications for Tyr phosphorylation in chloroplasts were reported, and Rubisco is annotated as Tyr phosphorylated protein (www.arabidopsis.org). Initially, Tullberg et al. (1998) found the protein Tyr kinase inhibitor genistein to inhibit the phosphorylation of thylakoid membrane proteins. Supported by the observed stability of some thylakoid phosphoproteins against acid and base hydrolysis, a characteristic property of phospho-Tyr, the authors argue that Tyr phosphorylation of thylakoid membrane proteins is vital for short-term acclimation responses. Similar biochemical properties were observed for autophosphorylation of the chloroplast sensor kinase CSK (Puthiyaveetil et al., 2008). Support for Tyr phosphorylation came from the cross-reactivity of thylakoid membrane proteins and Calvin cycle enzymes (e.g. Rubisco) with phospho-Tyr-specific antibodies (Forsberg and Allen, 2001; Fedina et al., 2008; Ghelis et al., 2008). With the same set of methods, no Tyr phosphorylation was observed in mitochondrial proteins (Forsberg and Allen, 2001).The above reported data are indirect hints for Tyr phosphorylation, and none of the applied methods is sufficiently specific to serve as solid evidence. For example, all phospho-Tyr-specific antibodies have significant cross reactivity with phospho-Ser and phospho-Thr when these have an aromatic amino acid in the +1 position (Zerweck et al., 2009). Using phospho-Tyr-specific antibodies, Forsberg and Allen (2001) found genistein inhibition of light-harvesting complex II phosphorylation with a 50% inhibition of initial activity of around 15 µm. Surprisingly, the same inhibition kinetics were observed with phospho-Thr-specific antibodies, suggesting a lack of specificity of either genistein or the phospho-amino acid antibodies, or both. So far, direct proof for Tyr phosphorylation in chloroplasts by phospho-amino acid analyses is missing. However, mass spectrometry-based phosphoproteomics experiments with plant cell extracts reported phospho-Tyr-containing peptides in chloroplasts but surprisingly not in abundant thylakoid membrane proteins or Calvin cycle enzymes. A recent meta-analysis collated data from 27 published studies and several internal data sets, resulting in a cumulative data set with 5% Tyr-phosphorylated peptides in the entire data set and 12% to 19% in the mitochondria (van Wijk et al., 2014). In this data set, almost 30% of the plastid phosphoproteins are flagged as Tyr phosphorylated (90 proteins from around 300; see supplemental table 5B in van Wijk et al., 2014), standing in stark contrast to dedicated plastid phosphoproteome analyses that identified less than 1% Tyr phosphorylation in the cellular phosphoproteome and none in chloroplast proteins (Reiland et al., 2009).Many of the phospho-Tyr-containing peptides were identified in analyses that applied multistage activation to elevate fragment ion intensity in spectra dominated by the neutral loss of phosphoric acid from phospho-Ser and/or phospho-Thr, sometimes in combination with searches for the phospho-Tyr-specific immonium ion at mass-to-charge ratio 216.0426 (see table 1 in van Wijk et al., 2014). In one instance, phospho-Tyr-specific antibodies were used to enrich Tyr phosphorylated proteins from Arabidopsis full cell extracts (Mithoe et al., 2012). Remarkably, there is almost no overlap in phospho-Tyr peptide identification between the different studies (Mithoe et al., 2012; Wu et al., 2013; van Wijk et al., 2014). Although this could be the result of diverse acquisition methods, enrichment strategies, and data interpretation software in different analyses (Bodenmiller et al., 2007), the low reproducibility and the discrepancies in phospho-Tyr detection among different analyses require further attention, because both are characteristic for incorrect peptide spectrum matches. This is a specific problem here, because false discovery rates (FDRs) accumulate in cumulated data sets.Therefore, we decided to assess the quality of matches to Tyr phosphorylated peptides by a dedicated reanalysis of the original data and benchmarked the robustness of peptide identification by using different software tools for spectra interpretation. Different tools use different scoring schemes to calculate identification probabilities from the fragment ion spectrum; however, they all use basic rules for spectrum matching, such as consecutive b- or y-ion series, matching of the highest intensity peaks to peptide fragments, and identification of matches to plausible derivatives of the major fragments such as losses of ammonia or water. Because of the differences in scoring the identified fragment ions, software tools may interpret spectra differently. However, since the basic rules for peptide matching apply to all identifications, it is clear that robust and reliable identifications are made by different tools that agree on the same interpretation for a spectrum. A specific aspect in the interpretation of phosphopeptide spectra is the assignment of the exact modification site. Common database matching software is usually unsuitable to distinguish modifications at closely spaced amino acids, and it is insufficiently explicit when spectra do not allow distinguishing between alternatives. To circumvent this problem, specialized software tools were developed that score spectra for alternative phosphorylation sites within the peptide sequence by searching for specific fragment ions supporting one or another phosphorylation site (MacLean et al., 2008; Martin et al., 2010).We extracted from the different data sets Tyr-phosphorylated chloroplast proteins and extracted the spectrum information in the form of a MASCOT generic file (mgf) from either PhosphAT (van Wijk et al., 2014) or PRIDE (Mithoe et al., 2012). This resulted in 139 spectra identifying 53 unique peptides representing putative Tyr phosphorylation sites in 53 chloroplast proteins (Supplemental Table S1A; Supplemental Data Set S1). This set of spectra was reanalyzed with MASCOT to assess the significance of the identifications and two alternative software tools established for database searches: PEAKS, a database matching software with a de novo sequencing option (Ma et al., 2003); and Proteome Discoverer with the search engine SEQUEST (Thermo Scientific). With the original search parameters of dynamic phosphorylation of Ser, Thr, and Tyr, dynamic oxidation of Met, fixed carbamidomethylation of Cys, and maximum of two missed cleavages at mass tolerances for precursor and fragment ion matching of 20 ppm/0.5 D (Wu et al., 2013), 50 ppm/0.8 D (internal data sets in van Wijk et al., 2014), and 10 ppm/0.9 D (Mithoe et al., 2012), 11 out of 53 unique peptides were identified with the reported amino acid sequence above the MASCOT significance threshold of P < 0.05, while 42 mgf matchings were reported as insignificant or gave rise to an unrelated peptide identification (www.matrixscience.com; Supplemental Table S1B). The lack of significance correlates with the relaxed search parameters and the many degrees of freedom allowed for peptide matching. With a variation of the above mass tolerance settings, PEAKS identified five (9%) and Proteome Discoverer identified 11 (21%) out of 53 peptides from the data set at a fully relaxed FDR, of which three (6%) identifications by PEAKS and one (2%) by Proteome Discoverer were significant (van Wijk et al., 2014)Presented are those peptides that were identified at least once with one of the alternative tools at one of the indicated mass tolerance settings: precursor tolerance/tandem mass spectrometry/ion match tolerance 50 ppm/0.8 D, 20 ppm/0.5 D, or 10 ppm/0.9 D. We reported all identifications irrespective of the score. Identifications considered significant are labeled with asterisks. Provided is the FDR at which the identification was made. Proteome Discoverer has two FDR settings: below 1% (stringent) or below 5% (relaxed). All matches above a 5% FDR threshold are considered insignificant. The PEAKS FDR is calculated individually for every peptide. Dashes indicate that the peptide was not identified.
PeptidePEAKS
Proteome Discoverer
50 ppm/0.8 D20 ppm/0.5 D10 ppm/0.9 D50 ppm/0.8 D20 ppm/0.5 D10 ppm/0.9 D
VIYELIDDVR0%*
SLKPFDLYTIGNSVK>5%
RSSVLYPASLK>5%
RSFNVYYEDK>5%
RRSMEPSNVYVASNSTEMEIGSHDIVK>5%>5%
LDESTGIVDYDMLEK0%*0%*0%*
IMESISVGGEAGGAGGAYSYNALKR>5%
GTFYGKTEEKEPSK>5%>5%>5%
GSRYVPAAFLTGLLDPVSSR>5%
GLAYDTSDDQQDITR0%*<1%*<1%*<1%*
ETYQEEQLK>5%
EAYLDLVKKIR100%
YKIMGGVPVSHFNIYK19.20%68.80%>5%<1%*<1%*
YIDWEVLK>5%>5%
Open in a separate windowThe small overlap in the identification of phosphopeptides between different software tools from the same spectra is uncommon (Kapp et al., 2005) and specific for the data set assembled here. This is illustrated by two control sets comprising either 114 randomly chosen phosphopeptides from PhosphAT (set A) or 295 mgf files from Wu et al. (2013; set B, without acetylated and pY-containing peptides). PEAKS identified 42 (37%) peptides from set A and 158 (54%) peptides from set B with the reported amino acid sequence. Proteome Discoverer identified 36 (32%) peptides from set A and 81 (27%) peptides from set B, while 27 (24%) peptides in set A and 67 (23%) peptides in set B were identified by both software tools (Supplemental Table S2). This suggests that there is no major identification problem of different software tools with the mgf compressed files, except for a small detection bias of Proteome Discoverer (see below). However, since we cannot exclude that some spectra were incorrectly matched because of compression artifacts, we next assessed the detection rate of Tyr phosphorylated peptides with uncompressed files. To this end, we downloaded the original raw files that resulted in the reporting of 27 unique Tyr phosphorylated peptides in 27 chloroplast proteins (van Wijk et al., 2014; Supplemental Table S1A). At FDRs of 2% and 5%, respectively, neither PEAKS nor Proteome Discoverer identified any of the 27 phospho-Tyr-containing peptides in chloroplast proteins, suggesting that the detection problem highlighted above is a property of poor spectrum quality (i.e. a small number of fragment ions and a weak signal-to-noise separation). Under these circumstances, ambiguous matches are reported as exemplified in Figure 1 for the spectrum that gave rise to the reported sequence pYRAANAEPK (http://phosphat.uni-hohenheim.de). In this example, all three software tools rated the match as not significant, because the quality of the spectrum is insufficient for an unambiguous match, suggesting that the original assignment was ambiguous.Open in a separate windowFigure 1.Different interpretations for the spectrum that gave rise to the reported sequence pYRAANAEPK. The reported sequence was retrieved from MASCOT (top). PEAKS also identifies a phosphorylated Tyr within the sequence but assigns the spectrum to a different peptide (YEYSSENK) in a nonchloroplast protein (middle; At4g24430). The best Proteome Discoverer match identified carbamidomethylated Cys and phosphorylated Ser within the sequence IELGLVCSE (bottom). There is a greater diversity of possible assignments in large search spaces (many degrees of freedom; see text); thus, care must be taken in the definition of search parameters and in the significance settings of the different identification softwares. Note that none of the identifications shown here is considered significant by the software used for the matching.Fourteen peptides from the original data set were identified as Tyr phosphorylated with at least one alternative software tool, but the identification scores for 10 of these are connected with high FDRs (Supplemental Fig. S1). For example, the fragment ion spectrum of RRSMEPSNVYVASNSTEMEIGSHDIVK contains few matches, unassigned high peaks, and no consecutive row of b- or y-ions, and the phosphorylation site is assigned to Ser-13 instead of Tyr-10 by PhosCalc (MacLean et al., 2008; Supplemental Fig. S1; Supplemental Table S3). Similarly, the spectrum quality for ETYQEEQLK is poor by the above standards (Supplemental Fig. S1), and PhosCalc is unable to distinguish between phosphorylation at Tyr-3 or Thr-2 (Supplemental Table S3). The same ambiguity exists for the singly phosphorylated peptide GLAYDTSDDQQDITR and the amino acids Tyr-4 and Thr-6 (Supplemental Table S3). This peptide from Rubisco activase was previously identified as Ser/Thr phosphorylated by the characteristic dominant neutral loss peak of phosphoric acid in the fragment spectrum generated by collision-induced dissociation (Reiland et al., 2009; Thingholm et al., 2009). The only significant PEAKS and PhosCalc match was obtained for the phosphorylation of LDESTGIVDYDMLEK at Tyr-10 and with relaxed PhosCalc parameters for VIYELIDDVR at Tyr-3 (Supplemental Table S3; serine hydroxymethyltransferase3 [SHM3; AT4G32520] and translation initiation factor-2 [IF-2; AT1G17220]). The mgf files for both spectra were not recognized by Proteome Discoverer because they are highly compressed and contain only matching peaks (Supplemental Fig. S1).We started the analysis here with the goal to identify high-confidence peptide spectrum matches to phospho-Tyr-containing peptides in chloroplast proteins. However, after critical scrutiny with different software tools, de novo sequencing, and cross comparison with information in the literature, we have to conclude that the analyzed 139 spectra do not unambiguously identify phospho-Tyr in chloroplast proteins, with the possible exception of LDESTGIVDYDMLEK in SHM3 and VIYELIDDVR in IF-2. It is clear that our analysis is not suitable to prove individual reported peptide spectrum matches wrong, because spectrum assignment is often a matter of interpretation (for an example, see Fig. 1). However, our analysis illustrates that the evidence for Tyr phosphorylation in chloroplasts is weak and that the identifications of Tyr phosphorylated chloroplast proteins are uncertain, as illustrated by insignificant and contradicting peptide spectrum matches obtained with three established software tools. This shows that Tyr phosphorylation remains a rare posttranslational modification in this organelle, which is supported by low reproducibility of phospho-Tyr detection between different laboratories. From the collated data sets reporting chloroplast Tyr phosphorylated proteins (see above; Supplemental Table S1A), 77 out of 79 unique peptides were identified exclusively in one laboratory, and only two peptides (i.e. MGLVNESDSEDSSEHDKDVDDEKYWSE and YAGTEVEFNDVK) were identified by different laboratories (http://phosphat.uni-hohenheim.de).Although we were unsuccessful in unambiguously identifying phospho-Tyr in chloroplast proteins, we do not claim by any means that it does not occur. In fact, there is no reason why chloroplasts should not use the phosphorylation of Tyr residues in signaling and why a Tyr-specific protein kinase should be absent from this organelle. Recent years uncovered that even bacterial systems utilize Tyr phosphorylation as an important part of their signaling, and Rubisco is clearly Tyr phosphorylated in Rhodomicrobium vannielii (Mann and Turner, 1988). In prokaryotes, Tyr phosphorylation is catalyzed by different kinases that have no homologs in eukaryotes (the bacterial tyrosine kinases and the odd Tyr kinases) but also by Hanks-type kinases that resemble eukaryotic dual-specificity kinases (Chao et al., 2014). Similarly, Tyr phosphorylation was also reported for cyanobacteria (Warner and Bullerjahn, 1994), and a dual-specificity kinase was identified in tobacco (Nicotiana tabacum) chloroplasts (Cho et al., 2001). Thus, there are several reasons why it is possible or even likely that chloroplasts use Tyr phosphorylation in their signaling; however, our search for clear-cut evidence for Arabidopsis chloroplast proteins was unsuccessful, and the putative targets for Tyr phosphorylation remain elusive.

Supplemental Data

The following supplemental materials are available.  相似文献   

5.
The Russian invasion of Ukraine: a humanitarian tragedy and a tragedy for science     
Halyna R Shcherbata 《EMBO reports》2022,23(5)
The Invasion of Ukraine prompts us to support our Ukranian colleagues but also to keep open communication with the Russian scientists who oppose the war.

In the eyes of the civilized world, Russia has already lost the war: politically, it is becoming ever more isolated; economically as the sanctions take an enormous toll; militarily as the losses of the Russian army mount. In contrast, the courage of Ukrainian people fighting for their independence has united the Western world that is providing enormous support for those Ukrainians who fight the Russian invasion and those who have fled their war‐torn country. Once this war is over, Ukraine will have to heal the wounds of war, reunite families, restore its economy, reestablish infrastructure, and rebuild science and education. Russia will have to restore its dignity and overcome its self‐inflicted isolation.Europe’s unity in condemning Russia’s war of aggression and showing its solidarity with Ukraine has been impressive. This includes not the least welcoming and accommodating millions of refugees. We, the scientific community in Europe, have a moral obligation to help Ukrainian students and colleagues by providing safe space to study and to continue their research. First, European research organizations and funding agencies should develop strategies to support them in the years to come. Second, efforts by EMBO, research funders, universities, and research institutions to support Ukrainian students and scientists are necessary. As a first priority, dedicated and unbureaucratic short‐term scholarship and grant programs are required to accommodate Ukrainian scientists; such programs have been already initiated by many organizations, for example, by EMBO, Volkswagen Stiftung, Max Planck Society, and the ERC among others. These help Ukrainian scientists to stay connected to research and become integrated into the European research landscape. In the long‐term and after the war, this aid should be complemented by funding for research centers of excellence in Ukraine, to which scientists could then return.Even though the priority must be to help Ukrainians, we must also think of students and colleagues in Russia who oppose the war and are affected by the sanctions. As the Iron Curtain closes again, we have to think differently about our ongoing and future collaborations. Although freezing most, if not all, research collaborations with official Russian organizations is justified, it would be a mistake to extend these sanctions to all scientists and students. There is already an exodus of Russian and Belarusian scholars, which will only accelerate in the next months and years, and accepting scientists who ask for political asylum will be beneficial for Europe.The fraction of Russian society in open opposition to the war is, unfortunately, smaller than that officially in support of it. At the beginning of the war, a number of Russian scientists published an open letter on the internet, in which they condemn this war (https://t‐invariant.org/2022/02/we‐are‐against‐war/). They clearly state that "The responsibility for unleashing a new war in Europe lies entirely with Russia. There is no rational justification for this war”, and “demand an immediate halt to all military operations directed against Ukraine". At the same time, other prominent Russian science and education officials signed the “Statement of the Russian Union of University Rectors (Provosts)”, which expressed unwavering support for Russia, its president and its Army and their goal to “to achieve demilitarization and denazification of Ukraine and thus to defend ourselves from the ever‐growing military threat” (https://www.rsr‐online.ru/news/2022‐god/obrashchenie‐rossiyskogo‐soyuza‐rektorov1/).Inevitably, Russian scientists must decide themselves how to live and continue their scientific work under the increasingly tight surveillance of the Kremlin regime. History is repeating itself. Not long ago, during the Cold War, Soviet scientists were largely isolated from the international research community and worked in government‐controlled research. In some fields, no one knew what they were working on or where. However, even in those dark times, courageous individuals such as Andrei Sakharov spoke out against the regime and tried to educate the next generation about the importance of free will. Many Soviet geneticists had been arrested under Stalin’s regime of terror and as a result of Lysenkoism and were executed or sent to the Gulag or had to emigrate, such as Nikolaj Timofeev‐Resovskij, one of the great geneticists of his time and an opponent of communism. As a result of sending dissident scientists to Siberia, great educational institutions were created in the region, which trained many famous scientists. History tells us that it is impossible to kill free will and the search for truth.The Russian invasion of Ukraine is a major humanitarian tragedy and a tragedy for science at many levels. Our hope is that the European science community, policymakers, and funders will be prepared to continue and expand support for our colleagues from Ukraine and eventually help to rebuild the bridges with Russian science that have been torn down.This commentary has been endorsed and signed by the EMBO Young Investigators and former Young Investigators listed below.

All signatories are current and former EMBO Young Investigators and endorse the statements in this article.
Igor AdameykoKarolinska Institut, Stockholm, Sweden
Bungo AkiyoshiUniversity of Oxford, United Kingdom
Leila AkkariNetherlands Cancer Institute, Amsterdam, Netherlands
Panagiotis AlexiouMasaryk University, Brno, Czech Republic
Hilary AsheFaculty of Life Sciences, University of Manchester, United Kingdom
Michalis AverofInstitut de Génomique Fonctionnelle de Lyon (IGFL), France
Katarzyna BandyraUniversity of Warsaw, Poland
Cyril BarinkaInstitute of Biotechnology AS CR, Prague, Czech Republic
Frédéric BergerGregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
Vitezslav BryjaInstitute of Experimental Biology, Masaryk University, Brno, Czech Republic
Janusz BujnickiInternational Institute of Molecular and Cell Biology, Warsaw, Poland
Björn BurmannUniversity Gothenburg, Sweden
Andrew CarterMRC Laboratory of Molecular Biology, Cambridge, United Kingdom
Pedro CarvalhoSir William Dunn School of Pathology University of Oxford, United Kingdom
Ayse Koca CaydasiKoç University, Istanbul, Turkey
Hsu‐Wen ChaoMedical University, Taipei, Taiwan
Jeffrey ChaoFriedrich Miescher Institute, Basel, Switzerland
Alan CheungUniversity of Bristol, United Kingdom
Tim ClausenResearch Institute for Molecular Pathology (IMP), Vienna, Austria
Maria Luisa CochellaThe Johns Hopkins University School of Medicine, USA
Francisco CubillosSantiago de Chile, University, Chile
Uri Ben‐DavidTel Aviv University, Tel Aviv, Israel
Sebastian DeindlUppsala University, Sweden
Pierre‐Marc DelauxLaboratoire de Recherche en Sciences Végétales, Castanet‐Tolosan, France
Christophe DessimozUniversity, Lausanne, Switzerland
Maria DominguezInstitute of Neuroscience, CSIC ‐ University Miguel Hernandez, Alicante, Spain
Anne DonaldsonInstitute of Medical Sciences, University of Aberdeen, United Kingdom
Peter DraberBIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
Xiaoqi FengJohn Innes Centre, Norwich, United Kingdom
Luisa FigueiredoInstitute of Molecular Medicine, Lisbon, Portugal
Reto GassmannInstitute for Molecular and Cell Biology, Porto, Portugal
Kinga Kamieniarz‐GdulaAdam Mickiewicz University in Poznań, Poland
Roger GeigerInstitute for Research in Biomedicine, Bellinzona, Switzerland
Niko GeldnerUniversity of Lausanne, Switzerland
Holger GerhardtMax Delbrück Center for Molecular Medicine, Berlin, Germany
Daniel Wolfram GerlichInstitute of Molecular Biotechnology (IMBA), Vienna, Austria
Jesus GilMRC Clinical Sciences Centre, Imperial College London, United Kingdom
Sebastian GlattMalopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
Edgar GomesInstitute of Molecular Medicine, Lisbon, Portugal
Pierre GönczySwiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Maria GornaUniversity of Warsaw, Poland
Mina GoutiMax‐Delbrück‐Centrum, Berlin, Germany
Jerome GrosInstitut Pasteur, Paris, France
Anja GrothBiotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
Annika GuseCentre for Organismal Studies, Heidelberg, Germany
Ricardo HenriquesInstituto Gulbenkian de Ciência, Oeiras, Portugal
Eva HoffmannCenter for Chromosome Stability, University of Copenhagen, Denmark
Thorsten HoppeCECAD at the Institute for Genetics, University of Cologne, Germany
Yen‐Ping HsuehAcademia Sinica, Taipei, Taiwan
Pablo HuertasAndalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
Matteo IannaconeIRCCS San Raffaele Scientific Institute, Milan, Italy
Alvaro Rada‐IglesiasInstitue of Biomedicine and Biotechnology of Cantabria (IBBTEC)
University of Cantabria, Santander, Spain
Axel InnisInstitut Européen de Chimie et Biologie (IECB), Pessac, France
Nicola IovinoMPI für Immunbiologie und Epigenetik, Freiburg, Germany
Carsten JankeInstitut Curie, France
Ralf JansenInterfaculty Institute for Biochemistry, Eberhard‐Karls‐University Tübingen, Germany
Sebastian JessbergerHiFo / Brain Research Institute, University of Zurich, Switzerland
Martin JinekUniversity of Zurich, Switzerland
Simon Bekker‐JensenUniversity, Copenhagen, Denmark
Nicole JollerUniversity of Zurich, Switzerland
Luca JovineDepartment of Biosciences and Nutrition & Center for
Biosciences, Karolinska Institutet, Stockholm, Sweden
Jan Philipp JunkerMax‐Delbrück‐Centrum, Berlin, Germany
Anna KarnkowskaUniversity, Warsaw, Poland
Zuzana KeckesovaInstitute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
René KettingInstitute of Molecular Biology (IMB), Mainz, Germany
Bruno KlaholzInstitute of Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, Illkirch, France
Jürgen KnoblichInstitute of Molecular Biotechnology (IMBA), Vienna, Austria
Taco KooijCentre for Molecular Life Sciences, Nijmegen, Netherlands
Romain KoszulInstitut Pasteur, Paris, France
Claudine KraftInstitute for Biochemistry and Molecular Biology, Universität Freiburg, Germany
Alena KrejciFaculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
Lumir KrejciNational Centre for Biomolecular Research (NCBR), Masaryk University, Brno, Czech Republic
Arnold KristjuhanInstitute of Molecular and Cell Biology, University of Tartu, Estonia
Yogesh KulathuMRC Protein Phosphorylation & Ubiquitylation Unit, University of Dundee, United Kingdom
Edmund KunjiMRC Mitochondrial Biology Unit, Cambridge, United Kingdom
Karim LabibMRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom
Thomas LecuitDevelopmental Biology Institute of Marseilles ‐ Luminy (IBDML), France
Gaëlle LegubeCenter for Integrative Biology in Toulouse, Paul Sabatier University, France
Suewei LinAcademia Sinica, Taipei, Taiwan
Ming‐Jung LiuAcademia Sinica, Taipei, Taiwan
Malcolm LoganRandall Division of Cell and Molecular Biophysics, King’s College London, United Kingdom
Massimo LopesUniversity of Zurich, Switzerland
Jan LöweStructural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
Martijn LuijsterburgUniversity Medical Centre, Leiden, Netherlands
Taija MakinenUppsala University, Sweden
Sandrine Etienne‐MannevilleInstitut Pasteur, Paris, France
Miguel ManzanaresSpanish National Center for Cardiovascular Research (CNIC), Madrid, Spain
Jean‐Christophe MarineCenter for Biology of Disease, Laboratory for Molecular Cancer Biology, VIB & KU Leuven, Belgium
Sascha MartensMax F. Perutz Laboratories, University of Vienna, Austria
Elvira MassUniversität Bonn, Germany
Olivier MathieuClermont Université, Aubière, France
Ivan MaticMax Planck Institute for Biology of Ageing, Cologne, Germany
Joao MatosMax Perutz Laboratories, Vienna, Austria
Nicholas McGranahanUniversity College London, United Kingdom
Hind MedyoufGeorg‐Speyer‐Haus, Frankfurt, Germany
Patrick MeraldiUniversity of Geneva, Switzerland
Marco MilánICREA & Institute for Research in Biomedicine (IRB), Barcelona, Spain
Eric MiskaWellcome Trust/Cancer Research UK Gurdon Institute,
University of Cambridge, United Kingdom
Nuria MontserratInstitut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain
Nuno Barbosa‐MoraisInstitute of Molecular Medicine, Lisbon, Portugal
Antonin MorillonInstitut Curie, Paris, France
Rafal MostowyJagiellonian University, Krakow, Poland
Patrick MüllerUniversity of Konstanz, Konstanz, Germany
Miratul MuqitUniversity of Dundee, United Kigdom
Poul NissenCentre for Structural Biology, Aarhus University, Denmark
Ellen NollenEuropean Research Institute for the Biology of Ageing, University of Groningen, Netherlands
Marcin NowotnyInternational Institute of Molecular and Cell Biology, Warsaw, Poland
John O''NeillMRC Laboratory of Molecular Biology, Cambridge, United Kigdom
Tamer ÖnderKoc University School of Medicine, Istanbul, Turkey
Elin OrgUniversity of Tartu, Estonia
Nurhan ÖzlüKoç University, Istanbul, Turkey
Bjørn Panyella PedersenAarhus University, Denmark
Vladimir PenaLondon, The Institute of Cancer Research, United Kingdom
Camilo PerezBiozentrum, University of Basel, Switzerland
Antoine PetersFriedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
Clemens PlaschkaIMP, Vienna, Austria
Pavel PlevkaCEITEC, Masaryk University, Brno, Czech Republic
Hendrik PoeckTechnische Universität, München, , Germany
Sophie PoloUniversité Diderot (Paris 7), Paris, France
Simona PoloIFOM ‐ The FIRC Institute of Molecular Oncology, Milan, Italy
Magdalini PolymenidouUniversity of Zurich, Switzerland
Freddy RadtkeSwiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Markus RalserInstitute of Biochemistry Charité, Berlin, Germany & MRC National Institute for Medical Research, London, United Kingdom
Jan RehwinkelJohn Radcliffe Hospital, Oxford, United Kingdom
Maria RescignoEuropean Institute of Oncology (IEO), Milan, Italy
Katerina RohlenovaPrague, Institute of Biotechnology, Czech Republic
Guadalupe SabioCentro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
Ana Jesus Garcia SaezUniversity of Cologne, CECAD Research Center, Germany
Iris SaleckerInstitut de Biologie de l''Ecole Normale Supérieure (IBENS), Paris, France
Peter SarkiesUniversity of Oxford, United Kingdom
Frédéric SaudouGrenoble Institute of Neuroscience, France
Timothy SaundersCentre for Mechanochemical Cell Biology, Interdisciplinary Biomedical Research Building, Warwick Medical School, Coventry, United Kingdom
Orlando D. SchärerIBS Center for Genomic Integrity, Ulsan, South Korea
Arp SchnittgerBiozentrum Klein Flottbek, University of Hamburg, Germnay
Frank SchnorrerAix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
Maya SchuldinerDepartment of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
Schraga SchwartzWeizmann Institute of Science, Rehovot, Israel
Martin SchwarzerInstitute of Microbiology, Academy of Sciences of the Czech Republic
Claus MariaInstituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa, Portugal
Hayley SharpeThe Babraham Institute, United Kingdom
Halyna ShcherbataInstitute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
Eric SoDepartment of Haematological Medicine, King''s College London, United Kingdom
Victor SourjikMax Planck Institute for Terrestrial Microbiology, Marburg, Germany
Anne SpangBiozentrum, University of Basel, Switzerland
Irina StanchevaInstitute of Cell Biology, University of Edinburgh, United Kingdom
Bas van SteenselDepartment of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, Netherlands
Richard SteflCEITEC, Masaryk University, Brno, Czech Republic
Yonatan StelzerWeizmann Institute of Science, Rehovot, Israel
Julian StingeleLudwig‐Maximilians‐Universität, München, Germany
Katja SträßerInstitute for Biochemistry, University of Giessen, Germany
Kvido StrisovskyInstitute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
Joanna SulkowskaUniversity, Warsaw, Poland
Grzegorz SumaraNencki Institute of Experimental Biology, Warsaw, Poland
Karolina SzczepanowskaInternational Institute Molecular Mechanisms & Machines PAS, Warsaw, Poland
Luca TamagnoneInstitute for Cancer Research and Treatment, University of Torino Medical School, Italy
Meng How TanSingapore, Nanyang Technological University, Singapore
Nicolas TaponCancer Research UK London Research Institute, United Kingdom
Nicholas M. I. TaylorUniversity, Copenhagen, Denmark
Sven Van TeeffelenUniversité de Montréal, Canada
Maria Teresa TeixeiraLaboratory of Molecular and Cellular Biology of Eukaryotes, IBPC, Paris, France
Aurelio TelemanGerman Cancer Research Center (DKFZ), Heidelberg, Germany
Pascal TherondInstitute Valrose Biology, University of Nice‐Sophia Antipolis, France
Pavel TolarUniversity College London, United Kingdom
Isheng Jason TsaiAcademia Sinica, Taipei, Taiwan
Helle UlrichInstitute of Molecular Biology (IMB), Mainz, Germany
Stepanka VanacovaCentral European Institute of Technology, Masaryk University, Brno, Czech Republic
Henrique Veiga‐FernandesChampalimaud Center for the Unknown, Lisboa, Portugal
Marc VeldhoenInstituto de Medicina Molecular, Lisbon, Portugal
Louis VermeulenAcademic Medical Centre, Amsterdam, Netherlands
Uwe VinkemeierUniversity of Nottingham Medical School, United Kingdom
Helen WaldenMRC Protein Phosphorylation & Ubiquitylation Unit, University of Dundee, United Kingdom
Michal WandelInstitute of Biochemistry and Biophysics, PAS, Warsaw, Poland
Julie WelburnWellcome Trust Centre, Edinburgh, United Kingdom
Ervin WelkerInstitute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
Gerhard WingenderIzmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
Thomas WollertInstitute Pasteur, Membrane Biochemistry and Transport, Centre François Jacob, Paris, France
Hyun YoukUniversity of Massachusetts Medical School, USA
Christoph ZechnerMPI für molekulare Zellbiologie und Genetik, Dresden, Germany
Philip ZegermanWellcome Trust / Cancer Research UK Gurdon Institute, University of Cambridge, United Kingdom
Alena ZikováInstitute of Parasitology, Biology Centre AS CR, Ceske Budejovice, Czech Republic
Piotr ZiolkowskiAdam Mickiewicz University, Poznan, Poland
David ZwickerMPI für Dynamik und Selbstorganisation, Göttingen, Germany
Open in a separate window  相似文献   

6.
Vast (but avoidable) underestimation of global biodiversity     
John J. Wiens 《PLoS biology》2021,19(8)
The number of species on Earth is highly uncertain. A recent study has suggested that there are less than 2 million prokaryotic species on Earth; this Formal Comment suggests instead that there are more likely hundreds of millions or billions of species, and that the majority of these are bacteria associated with insects and other animals.

The number of species on Earth is a fundamental number in science. Yet, estimates of global biodiversity have been highly uncertain. There are presently approximately 1.9 million described species [1]. Estimates of the actual number (both described and undescribed) have ranged from the low millions into the trillions [2,3]. Furthermore, described species richness [1] is dominated by animals (1.3 million; 68%), not bacteria (approximately 10,000 species; 0.5%). Larsen and colleagues [2] summarized evidence suggesting that the majority of species on Earth may be bacteria associated with insect hosts and that bacterial richness may push global biodiversity into the hundreds of millions of species or even low billions.Louca and colleagues [4] (LEA hereafter) have claimed instead that there are only 40,100 host-associated bacterial species among all animal species and 0.8 to 1.6 million prokaryotic species overall (see their “Author summary”). Strangely, they excluded bacterial species associated with animal hosts from their estimates of total prokaryotic diversity and justified this by claiming that the estimates of Larsen and colleagues [2] were “mathematically flawed.” Here, I examine their claims and present new estimates of global biodiversity.Remarkably, all projections by LEA for host-associated bacterial richness were based on an estimate from one ant genus (Cephalotes), an estimate that is demonstrably incorrect by orders of magnitude (S1 Text). Without examining the underlying data [5], LEA estimated only 40 bacterial species among all 130 ant species in this genus. Yet, simply counting the bacterial species among the 25 sampled ant species in that genus reveals 616 unique bacterial species, of which 539 appear to be unique to the genus and 369 each unique to a single ant species (using the standard 97% cutoff for 16S divergence and data from [5]). Thus, there were >500 bacterial species among 25 ant species, not 40 bacterial species among 130 ant species. This mistake was further exacerbated by inexplicably ignoring data from the other 2 insect genera analyzed by Larsen and colleagues [2], thus maximizing the impact of their incorrect estimate for this genus.Their overall estimate of bacterial richness was also strongly influenced by their questionable assumption that all animal genera can share bacterial species (i.e., reducing their estimate of 3 million host-associated bacterial species to only 40,100). They assumed “a conservative overlap of only 0.1% between any two randomly chosen genera” for the number of bacterial species shared between animal genera. No justification was given for this value of 0.1%, nor were any alternative values explored. Furthermore, they implicitly assumed that any bacterial species can be shared between any pair of animal genera, regardless of their phylogeny, habitat, or geographic range. So, for example, a bacterial species that is a gut endosymbiont of a terrestrial herbivorous insect species endemic to Madagascar could somehow be shared with a deep-sea worm in the northern Pacific Ocean. This is ridiculous: there must be a reason why bacterial species are shared among host species and genera (e.g., shared phylogeny, location, diet). For example, broad-scale studies show that sharing of bacteria among insect hosts is associated with both host phylogeny and diet [6].LEA stated “it is known that substantial overlap exists between the microbiota of different host genera and even of distantly related animal taxa.” However, they provided no numbers to justify this “substantial overlap.” In fact, none of the papers they cited as supporting this assumption actually do (S2 Text). For example, one study [7] found 5 bacterial species shared among 5 insect genera utilizing the same type of host plant (cycads). However, LEA do not mention that this study found 1,789 unique bacterial species among just these 5 insect species (or 177 after filtering). This seems inconsistent with their estimate of only 40,100 bacterial species across all animals. In summary, rather than estimating the overlap of bacterial species among host genera, LEA simply made a number up and combined this with unrealistic, unsupported assumptions about overlap. If LEA had considered Cephalotes (which all their estimates were based on), a survey of this genus and related genera [5] found 1,019 bacterial species, with only 77 of the 616 bacterial species in Cephalotes shared with other sampled genera, and the sharing of bacterial species among hosts strongly related to host phylogeny.Numerous surveys of bacterial diversity in insects strongly suggest that there are far more than 40,100 bacterial species among all animals (8] found roughly twice as many bacterial species as those of approximately 30 insect species [5,9], and the study of 218 insect species [6] found >3.5 times as many as the study of 62 insect species. The simple fact that a study found 9,301 bacterial species among only 218 sampled insect species strongly suggests that there are more than 40,100 bacteria among all animals.Table 1Surveys of bacterial diversity among insect species.LEA incorrectly estimated that a genus of 130 ant species (Cephalotes) hosts only 40 bacterial species and subsequently assumed that all animal genera have the same low number of bacterial species. These broad surveys of bacterial species among insects suggest that many insects (including Cephalotes) host much larger numbers of bacterial species.
Insect group sampledInsect species sampledUnique bacterial species foundReferences
Ants (Cephalotes and 3 related genera)291,019Sanders and colleagues [5]
Lycaenid butterflies311,156Whitaker and colleagues [9]
Native Hawaiian insects (beetles, flies, true bugs)131,094Poff and colleagues [10]
Various insect orders622,073Colman and colleagues [8]
21 insect orders2189,301Yun and colleagues [6]
Open in a separate windowGiven these problems with the estimate of LEA, what is the actual number of bacterial species on Earth? LEA were correct that Larsen and colleagues [2] only estimated the number of species-specific bacteria per insect host species, and those estimates could be wrong. I therefore recalculated those estimates based on more direct counts of species-specific bacteria from the original studies (S3 Text). In 2]. Specifically, Larsen and colleagues [2] projected 0.209 to 5.8 billion species on Earth, of which 66% to 91% are bacteria, whereas I project 0.183 to 4.2 billion, with 58% to 88% bacteria (2] and are explained below. For each scenario, the projected number of species for each group is shown, along with the percentage of the total number of species belonging to that group (note that plants are <0.5% and are rounded down to 0%). In addition to the 4 scenarios, 4 other assumptions were explored. The first 3 involve different estimated numbers of morphologically cryptic arthropod species per morphology-based insect species (from 6 to 2 to 0; for justification, see [2]). These impact the number of animal species, and all downstream estimates for other groups. The final, fourth set of analyses assumes 6 morphologically cryptic arthropod species and that mites host negligible numbers of nematode species. Scenario 1 assumes that all animal species have a full set of bacterial, protist, and fungal endosymbionts, even if they are parasites, but that microsporidian fungi and apicomplexan protists have little or no host-specific bacterial richness. Scenario 2 assumes that symbionts have limited numbers of symbionts themselves (i.e., nematodes have an average of only one host-specific bacterial species) and that microsporidians and apicomplexans have few or no bacterial species. Scenario 3 assumes that all animal species have a full set of symbiont species and that microsporidians and apicomplexans host (on average) as many bacterial species as animal species do. Scenario 4 is identical to Scenario 1, except that it assumes that mites have reduced species richness relative to other arthropods (0.25 mites∶1 other arthropod species). Note that there is an error in Table 3, Scenario 1 in Larsen and colleagues [2]: There should be 27.2 million animal species, not 20.4. The correct number is used here. Archaean species is considered to be limited overall [2], and so is not treated separately.
Scenario 1Scenario 2Scenario 3Scenario 4
Million species% of totalMillion species% of totalMillion species% of totalMillion species% of total
6 cryptic arthropod species
Animals163.29.4163.213.7163.23.9102.09.4
Plants0.300.300.300.30
Fungi165.69.6165.613.9165.63.9104.69.6
Protists163.29.4163.213.7163.23.9102.09.4
Bacteria1,240.371.6701.858.83,721.088.3775.271.5
Total1,732.71,194.14,213.31,084.1
2 cryptic arthropod species
Animals54.49.454.413.654.43.934.09.4
Plants0.300.300.300.30
Fungi56.89.856.814.256.84.036.410.0
Protists54.49.454.413.654.43.934.09.4
Bacteria413.471.4233.958.51,240.388.2258.471.1
Total579.4399.91,406.3363.1
0 cryptic arthropod species
Animals27.29.327.213.527.23.917.09.3
Plants0.300.300.300.30
Fungi29.610.229.614.729.64.219.410.6
Protists27.29.327.213.527.23.917.09.3
Bacteria206.771.0117.058.1620.288.0129.270.6
Total291.1201.3704.5182.9
Mites host limited nematode richness, 6 cryptic arthropod species
Animals122.49.4122.411.9122.43.991.89.4
Plants0.300.300.300.30
Fungi124.89.6124.812.1124.83.994.29.6
Protists122.49.4122.411.9122.43.991.89.4
Bacteria930.271.5661.064.12,790.788.3697.771.5
Total1,300.21,030.93,160.7975.8
Open in a separate windowIn summary, the conclusions of LEA are based on an initial estimate of bacterial richness for one genus that was clearly incorrect, combined with a made-up number (and unrealistic assumptions) to estimate overlap of bacterial species among host genera. Reanalyses here suggest that bacterial richness (and the diversity of life) is more likely in the hundreds of millions or billions.  相似文献   

7.
Over-represented promoter motifs in abiotic stress-induced DREB genes of rice and sorghum and their probable role in regulation of gene expression     
Amrita Srivastav  Sameet Mehta  Angelica Lindlof  Sujata Bhargava 《Plant signaling & behavior》2010,5(7):775-784
  相似文献   

8.
New Design Strategy for Development of Specific Primer Sets for PCR-Based Detection of Chlorophyceae and Bacillariophyceae in Environmental Samples     
Claire Valiente Moro  Olivier Crouzet  Séréna Rasconi  Antoine Thouvenot  Gérard Coffe  Isabelle Batisson  Jacques Bohatier 《Applied and environmental microbiology》2009,75(17):5729-5733
  相似文献   

9.
The Pre-mRNA Splicing Machinery of Trypanosomes: Complex or Simplified?     
Arthur Günzl 《Eukaryotic cell》2010,9(8):1159-1170
  相似文献   

10.
Big Data: Astronomical or Genomical?     
Zachary D. Stephens  Skylar Y. Lee  Faraz Faghri  Roy H. Campbell  Chengxiang Zhai  Miles J. Efron  Ravishankar Iyer  Michael C. Schatz  Saurabh Sinha  Gene E. Robinson 《PLoS biology》2015,13(7)
Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed beast”—it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the “genomical” challenges of the next decade.We compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Astronomy has faced the challenges of Big Data for over 20 years and continues with ever-more ambitious studies of the universe. YouTube burst on the scene in 2005 and has sparked extraordinary worldwide interest in creating and sharing huge numbers of videos. Twitter, created in 2006, has become the poster child of the burgeoning movement in computational social science [6], with unprecedented opportunities for new insights by mining the enormous and ever-growing amount of textual data [7]. Particle physics also produces massive quantities of raw data, although the footprint is surprisingly limited since the vast majority of data are discarded soon after acquisition using the processing power that is coupled to the sensors [8]. Consequently, we do not include the domain in full detail here, although that model of rapid filtering and analysis will surely play an increasingly important role in genomics as the field matures.To compare these four disparate domains, we considered the four components that comprise the “life cycle” of a dataset: acquisition, storage, distribution, and analysis ( Data Phase Astronomy Twitter YouTube Genomics Acquisition 25 zetta-bytes/year0.5–15 billion tweets/year500–900 million hours/year1 zetta-bases/year Storage 1 EB/year1–17 PB/year1–2 EB/year2–40 EB/year Analysis In situ data reductionTopic and sentiment miningLimited requirementsHeterogeneous data and analysisReal-time processingMetadata analysisVariant calling, ~2 trillion central processing unit (CPU) hoursMassive volumesAll-pairs genome alignments, ~10,000 trillion CPU hours Distribution Dedicated lines from antennae to server (600 TB/s)Small units of distributionMajor component of modern user’s bandwidth (10 MB/s)Many small (10 MB/s) and fewer massive (10 TB/s) data movementOpen in a separate window  相似文献   

11.
Mosaic-Like Sequences Containing Transposon,Phage, and Plasmid Elements among Listeria monocytogenes Plasmids     
Carlos Canchaya  Vanessa Giubellini  Marco Ventura  Clara G. de los Reyes-Gavilán  Abelardo Margolles 《Applied and environmental microbiology》2010,76(14):4851-4857
  相似文献   

12.
Identification of a Polyketide Synthase Coding Sequence Specific for Anatoxin-a-Producing Oscillatoria Cyanobacteria     
Sabrina Cadel-Six  Isabelle Iteman  Caroline Peyraud-Thomas  Stéphane Mann  Olivier Ploux  Annick Méjean 《Applied and environmental microbiology》2009,75(14):4909-4912
  相似文献   

13.
Does an Eye-Hand Coordination Test Have Added Value as Part of Talent Identification in Table Tennis? A Validity and Reproducibility Study     
Irene R. Faber  Frits G. J. Oosterveld  Maria W. G. Nijhuis-Van der Sanden 《PloS one》2014,9(1)
This study investigated the added value, i.e. discriminative and concurrent validity and reproducibility, of an eye-hand coordination test relevant to table tennis as part of talent identification. Forty-three table tennis players (7–12 years) from national (n = 13), regional (n = 11) and local training centres (n = 19) participated. During the eye-hand coordination test, children needed to throw a ball against a vertical positioned table tennis table with one hand and to catch the ball correctly with the other hand as frequently as possible in 30 seconds. Four different test versions were assessed varying the distance to the TotalNationalRegionalLocalTotal43131119Boys268810Girls17539Age (years)10.4±1.410.9±1.510.4±1.510.1±1.47 year olds1--18 year olds51139 year olds3-3-10 year olds1232711 year olds1151512 year olds11443Length (cm)149±11150±12150±12148±10Weight (kg )38±837±737±738±9Right-handed359917Left-handed8422Training (hours*week-1)6 (0–20)11 (7–20)7 (4–11)2 (0–3)Competition (points)173 (−52–430)297 (144–430)188 (72–317)36 (−52–130)Open in a separate windowData are frequencies, except for age, length and weight (years±SD), and training and competition (mean (range)).  相似文献   

14.
Dispersion of Multidrug-Resistant Enterococcus faecium Isolates Belonging to Major Clonal Complexes in Different Portuguese Settings     
Ana R. Freitas  Carla Novais  Patricia Ruiz-Garbajosa  Teresa M. Coque  Luísa Peixe 《Applied and environmental microbiology》2009,75(14):4904-4908
  相似文献   

15.
Vaxar: A Web-Based Database of Laboratory Animal Responses to Vaccinations and Its Application in the Meta-Analysis of Different Animal Responses to Tuberculosis Vaccinations     
Thomas Todd  Natalie Dunn  Zuoshuang Xiang  Yongqun He 《Comparative medicine》2016,66(2):119-128
  相似文献   

16.
Hepatitis C Virus (HCV) Sequence Variation Induces an HCV-Specific T-Cell Phenotype Analogous to Spontaneous Resolution     
Victoria Kasprowicz  Yu-Hoi Kang  Michaela Lucas  Julian Schulze zur Wiesch  Thomas Kuntzen  Vicki Fleming  Brian E. Nolan  Steven Longworth  Andrew Berical  Bertram Bengsch  Robert Thimme  Lia Lewis-Ximenez  Todd M. Allen  Arthur Y. Kim  Paul Klenerman  Georg M. Lauer 《Journal of virology》2010,84(3):1656-1663
Hepatitis C virus (HCV)-specific CD8+ T cells in persistent HCV infection are low in frequency and paradoxically show a phenotype associated with controlled infections, expressing the memory marker CD127. We addressed to what extent this phenotype is dependent on the presence of cognate antigen. We analyzed virus-specific responses in acute and chronic HCV infections and sequenced autologous virus. We show that CD127 expression is associated with decreased antigenic stimulation after either viral clearance or viral variation. Our data indicate that most CD8 T-cell responses in chronic HCV infection do not target the circulating virus and that the appearance of HCV-specific CD127+ T cells is driven by viral variation.Hepatitis C virus (HCV) persists in the majority of acutely infected individuals, potentially leading to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The cellular immune response has been shown to play a significant role in viral control and protection from liver disease. Phenotypic and functional studies of virus-specific T cells have attempted to define the determinants of a successful versus an unsuccessful T-cell response in viral infections (10). So far these studies have failed to identify consistent distinguishing features between a T-cell response that results in self-limiting versus chronic HCV infection; similarly, the impact of viral persistence on HCV-specific memory T-cell formation is poorly understood.Interleukin-7 (IL-7) receptor alpha chain (CD127) is a key molecule associated with the maintenance of memory T-cell populations. Expression of CD127 on CD8 T cells is typically only observed when the respective antigen is controlled and in the presence of significant CD4+ T-cell help (9). Accordingly, cells specific for persistent viruses (e.g., HIV, cytomegalovirus [CMV], and Epstein-Barr virus [EBV]) have been shown to express low levels of CD127 (6, 12, 14) and to be dependent on antigen restimulation for their maintenance. In contrast, T cells specific for acute resolving virus infections, such as influenza virus, respiratory syncytial virus (RSV), hepatitis B virus (HBV), and vaccinia virus typically acquire expression of CD127 rapidly with the control of viremia (5, 12, 14). Results for HCV have been inconclusive. The expected increase in CD127 levels in acute resolving but not acute persisting infection has been found, while a substantial proportion of cells with high CD127 expression have been observed in long-established chronic infection (2). We tried to reconcile these observations by studying both subjects with acute and chronic HCV infection and identified the presence of antigen as the determinant of CD127 expression.Using HLA-peptide multimers we analyzed CD8+ HCV-specific T-cell responses and CD127 expression levels in acute and chronic HCV infection. We assessed a cohort of 18 chronically infected subjects as well as 9 individuals with previously resolved infection. In addition, we longitudinally studied 9 acutely infected subjects (5 individuals who resolved infection spontaneously and 4 individuals who remain chronically infected) (Tables (Tables11 and and2).2). Informed consent in writing was obtained from each patient, and the study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, as reflected in a priori approval from the local institutional review boards. HLA-multimeric complexes were obtained commercially from Proimmune (Oxford, United Kingdom) and Beckman Coulter (CA). The staining and analysis procedure was as described previously (10). Peripheral blood mononuclear cells (PBMCs) were stained with the following antibodies: CD3 from Caltag; CD8, CD27, CCR7, CD127, and CD38 from BD Pharmingen; and PD-1 (kindly provided by Gordon Freeman). Primer sets were designed for different genotypes based on alignments of all available sequences from the public HCV database (http://hcvpub.ibcp.fr). Sequence analysis was performed as previously described (8).

TABLE 1.

Patient information and autologous sequence analysis for patients with chronic and resolved HCV infection
CodeGenotypeStatusEpitope(s) targetedSequencea
02-031bChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
00-261bChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
99-242aChronicA2 NS3 1073-1083P: CINGVCWTV
No recognitionA: S-S--L---
A2 NS3 1406-1415P: KLVALGINAV
No recognitionA: A-RGM-L---
A2 NS5B 2594-2602P: ALYDVVTKL
A: no sequence
1111aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
A2 NS5 2594-2602P: ALYDVVTKL
A: ---------
00X3aChronicA2 NS5 2594-2602P: ALYDVVTKL
No recognitionA: -----IQ--
O3Qb1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03Sb1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
02A1aChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
01N1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03H1aChronicA2 NS3 1073-1083P: CINGVCWTV
Full recognitionA: ----A----
01-391aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03-45b1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
06P3aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
GS127-11aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-61aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-81bChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-161aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-201aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
04D4ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
01-49b1ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
A2 NS3 1406-1415P: KLVALGINAV
01-311ResolvedA1 NS3 1436-1444P: ATDALMTGY
B57 NS5 2629-2637P: KSKKTPMGF
04N1ResolvedA1 NS3 1436-1444P: ATDALMTGY
01E4ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
98A1ResolvedA2 NS3 1073-1083P: CINGVCWTV
00-10c1ResolvedA24 NS4 1745-1754P: VIAPAVQTNW
O2Z1ResolvedA1 NS3 1436-1444P: ATDALMTGY
99-211ResolvedB7 CORE 41-49P: GPRLGVRAT
OOR1ResolvedB35 NS3 1359-1367P: HPNIEEVAL
Open in a separate windowaP, prototype; A, autologous. Identical residues are shown by dashes.bHIV coinfection.cHBV coinfection.

TABLE 2.

Patient information and autologous sequence analysis for patients with acute HCV infection
CodeGenotypeOutcomeEpitope targeted and time analyzedSequencea
5541aPersistingA2 NS3 1073-1083P: CINGVCWTV
wk 8A: ---------
wk 30A: ---------
03-321aPersistingB35 NS3 1359-1367P: HPNIEEVAL
wk 8A: ---------
No recognition (wk 36)A: S--------
04-111a (1st)Persisting (1st) Resolving (2nd)A2 NS5 2594-2602P: ALYDVVTKL
1b (2nd)A: no sequence
00231bPersistingA1 NS3 1436-1444P: ATDALMTGY
Diminished (wk 7)A: --------F
Diminished (wk 38)A: --------F
A2 NS3 1073-1083P: CINGVCWTV
wk 7A: ---------
wk 38A: ---------
A2 NS3 1406-1415P: KLVALGINAV
Full recognition (wk 7)A: --S-------
Full recognition (wk 38)A: --S-------
3201ResolvingA2 NS3 1273-1282P: GIDPNIRTGV
5991ResolvingA2 NS3 1073-1083P: CINGVCWTV
11441ResolvingA2 NS3 1073-1083P: CINGVCWTV
B35 NS3 1359-1367P: HPNIEEVAL
06L3aResolvingB7 CORE 41-49P: GPRLGVRAT
05Y1ResolvingA2 NS3 1073-1083P: CINGVCWTV
Open in a separate windowaP, prototype; A, autologous. Identical residues are shown by dashes.In established persistent infection, CD8+ T-cell responses against HCV are infrequently detected in blood using major histocompatibility complex (MHC) class I tetramers and are only observed in a small fraction of those sampled (10). We were able to examine the expression of CD127 on antigen-specific T cells in such a group of 18 individuals. We observed mostly high levels of CD127 expression (median, 66%) on these populations (Fig. (Fig.1a),1a), although expression was higher on HCV-specific T-cell populations from individuals with resolved infection (median, 97%; P = 0.0003) (Fig. 1a and c). Importantly, chronically infected individuals displayed CD127 expression levels over a much broader range than resolved individuals (9.5% to 100% versus 92 to 100%) (Fig. (Fig.1a1a).Open in a separate windowFIG. 1.Chronically infected individuals express a range of CD127 levels on HCV-specific T cells. (a) CD127 expression levels on HCV-specific T-cell populations in individuals with established chronic or resolved infection. While individuals with resolved infection (11 tetramer stains in 9 subjects) uniformly express high levels of CD127, chronically infected individuals (21 tetramer stains in 18 subjects) express a wide range of CD127 expression levels. (b) CD127 expression levels are seen to be highly dependent on sequence match with the autologous virus, based on analysis of 9 responses with diminished recognition of the autologous virus and 8 responses with intact epitopes. (c) CD127 expression levels on HCV-specific T-cell B7 CORE 41-49-specific T cells from individual 01-49 with resolved HCV infection (left-hand panel). Lower CD127 expression levels are observed on an EBV-specific T-cell population from the same individual (right-hand panel). APC-A, allophycocyanin-conjugated antibody. (d) Low CD127 levels are observed on A2 NS3 1073-1083 HCV-specific T cells from individual 111 with chronic HCV infection in whom sequencing revealed an intact autologous sequence.Given the relationship between CD127 expression and antigenic stimulation as well as the potential of HCV to escape the CD8 T-cell response through viral mutation, we sequenced the autologous circulating virus in subjects with chronic infection (Table (Table1).1). A perfect match between the optimal epitope sequence and the autologous virus was found for only 8 responses. These were the only T-cell populations with lower levels of CD127 expression (Fig. (Fig.1a,1a, b, and d). In contrast, HCV T-cell responses with CD127 expression levels comparable to those observed in resolved infection (>85%) were typically mismatched with the viral sequence, with some variants compatible with viral escape and others suggesting infection with a non-genotype 1 strain (10) (Fig. (Fig.1).1). Enzyme-linked immunospot (ELISPOT) assays using T-cell lines confirmed the complete abrogation of T-cell recognition and thus antigenic stimulation in cases of cross-genotype mismatch (10). Responses targeting the epitope A1-143D expressed somewhat lower levels of CD127 (between 70% and 85%). Viral escape (Y to F at position 9) in this epitope has been shown to be associated with significantly diminished but not fully abolished recognition (11a), and was found in all chronically infected subjects whose T cells targeted this epitope. Thus, expression of CD127 in the presence of viremia is closely associated with the capacity of the T cell to recognize the circulating virus.That a decrease in antigenic stimulation is indeed associated with the emergence of CD127-expressing CD8 T cells is further demonstrated in subject 111. This subject with chronic infection targeted fully conserved epitopes with T cells with low CD127 expression; with clearance of viremia under antiviral therapy, CD127-negative HCV-specific CD8 T cells were no longer detectable and were replaced by populations expressing CD127 (data not shown). Overall these data support the notion that CD127 expression on HCV-specific CD8+ T-cell populations is dependent on an absence of ongoing antigenic stimulation.To further evaluate the dynamic relationship between antigenic stimulation and CD127 expression, we also analyzed HCV-specific T-cell responses longitudinally during acute HCV infection (Fig. (Fig.2a).2a). CD127 expression was generally low or absent during the earliest time points. After resolution of infection, we see a contraction of the HCV-specific T-cell response together with a continuous increase in CD127 expression, until virtually all tetramer-positive cells express CD127 approximately 6 months after the onset of disease (Fig. (Fig.2a).2a). A similar increase in CD127 expression was not seen in one subject (no. 554) with untreated persisting infection that maintained a significant tetramer-positive T-cell population for an extended period of time (Fig. (Fig.2a).2a). Importantly, sequence analysis of the autologous virus demonstrated the conservation of this epitope throughout persistent infection (8). In contrast, subject 03-32 (with untreated persisting infection) developed a CD8 T-cell response targeting a B35-restricted epitope in NS3 from which the virus escaped (8). The T cells specific for this epitope acquired CD127 expression in a comparable manner to those controlling infection (Fig. (Fig.2a).2a). In other subjects with persisting infection, HCV-specific T-cells usually disappeared from blood before the time frame in which CD127 upregulation was observed in the other subjects.Open in a separate windowFIG. 2.CD127 expression levels during acute HCV infection. (a) CD127 expression levels on HCV-specific T cells during the acute phase of HCV infection (data shown for 5 individuals who resolve and two individuals who remain chronically infected). (b) HCV RNA viral load and CD127 expression levels on HCV-specific T cells (A2 NS3 1073-1083 and A1 NS3 1436-1444) for chronically infected individual 00-23. PEG-IFN-α, pegylated alpha interferon. (c) Fluorescence-activated cell sorter (FACS) plots showing longitudinal CD127 expression levels on HCV-specific T cells (A2 NS3 1073-1083 and A1 NS3 1436-1444) from individual 00-23.We also characterized the levels of CD127 expression on HCV-specific CD4+ T-cell populations with similar results: low levels were observed during the acute phase of infection and increased levels in individuals after infection was cleared (data not shown). CD127 expression on CD4 T cells could not be assessed in viral persistence since we failed to detect significant numbers of HCV-specific CD4+ T cells, in agreement with other reports.In our cohort of subjects with acute HCV infection, we had the opportunity to study the effect of reencounter with antigen on T cells with high CD127 expression in 3 subjects in whom HCV viremia returned after a period of viral control. Subject 00-23 experienced viral relapse after interferon treatment (11), while subjects 05-13 and 04-11 were reinfected with distinct viral isolates. In all subjects, reappearance of HCV antigen that corresponded to the HCV-specific T-cell population was associated with massive expansion of HCV-specific T-cell populations and a decrease in CD127 expression on these T cells (Fig. (Fig.22 and and3)3) (data not shown). In contrast, T-cell responses that did not recognize the current viral isolate did not respond with an expansion of the population or the downregulation of CD127. This was observed in 00-23, where the sequence of the A1-restricted epitope 143D was identical to the frequent escape mutation described above in chronically infected subjects associated with diminished T-cell recognition (Fig. (Fig.2b2b and and3a).3a). In 05-13, the viral isolate during the second episode of viremia contained a variant in one of the anchor residues of the epitope A2-61 (Fig. (Fig.2d).2d). These results show that CD127 expression on HCV-specific T cells follows the established principles observed in other viral infections.Open in a separate windowFIG. 3.Longitudinal phenotypic changes on HCV-specific T cells. (a) HCV RNA viral load and CD127 expression (%) levels on A2 NS5B 2594-2602 HCV-specific T cells for individual 04-11. This individual was administered antiviral therapy, which resulted in a sustained virological response. Following reinfection, the individual spontaneously cleared the virus. (b) Longitudinal frequency of A2 NS5B 2594-2602 HCV-specific T cells and PD-1 expression levels (mean fluorescent intensity [MFI]) for individual 04-11. (c) Longitudinal analysis of 04-11 reveals the progressive differentiation of HCV-specific A2 259F CD8+ T cells following repetitive antigenic stimulation. FACS plots show longitudinal CD127, CD27, CD57, and CCR7 expression levels on A2 NS5B 2594-2602 tetramer-positive cells from individual 04-11. PE-A, phycoerthrin-conjugated antibody.In addition to the changes in CD127 expression for T cells during reencounter with antigen, we detected comparable changes in other phenotypic markers shortly after exposure to viremia. First, we detected an increase in PD-1 and CD38 expression—both associated with recent T-cell activation. Additionally, we observed a loss of CD27 expression, a feature of repetitive antigenic stimulation (Fig. (Fig.3).3). The correlation of CD127 and CD27 expression further supports the notion that CD127 downregulation is a marker of continuous antigenic stimulation (1, 7).In conclusion we confirm that high CD127 expression levels are common for detectable HCV-specific CD8+ T-cell populations in chronic infection and find that this phenotype is based on the existence of viral sequence variants rather than on unique properties of HCV-specific T cells. This is further demonstrated by our data from acute HCV infection showing that viral escape as well as viral resolution is driving the upregulation of CD127. We also show that some, but not all, markers typically used to phenotypically describe virus-specific T cells show a similar dependence on cognate HCV antigen. Our data further highlight that sequencing of autologous virus is vital when interpreting data obtained in chronic HCV infection and raise the possibility that previous studies, focused on individuals with established chronic infection, may have been confounded by antigenic variation within epitopes or superinfection with different non-cross-reactive genotypes. Interestingly, it should be pointed out that this finding is supported by previous data from both the chimpanzee model of HCV and from human HBV infection (3, 13).Overall our data clearly demonstrate that the phenotype of HCV-specific CD8+ T cells is determined by the level of antigen-specific stimulation. The high number of CD127 positive virus-specific CD8+ T cells that is associated with the presence of viral escape mutations is a hallmark of chronic HCV infection that clearly separates HCV from other chronic viral infections (4, 14).  相似文献   

17.
Single Nucleotide Polymorphism-Based Diagnostic System for Crop-Associated Sclerotinia Species     
Marion Andrew  Linda M. Kohn 《Applied and environmental microbiology》2009,75(17):5600-5606
A molecular diagnostic system using single nucleotide polymorphisms (SNPs) was developed to identify four Sclerotinia species: S. sclerotiorum (Lib.) de Bary, S. minor Jagger, S. trifoliorum Erikss., and the undescribed species Sclerotinia species 1. DNAs of samples are hybridized with each of five 15-bp oligonucleotide probes containing an SNP site midsequence unique to each species. For additional verification, hybridizations were performed using diagnostic single nucleotide substitutions at a 17-bp sequence of the calmodulin locus. The accuracy of these procedures was compared to that of a restriction fragment length polymorphism (RFLP) method based on Southern hybridizations of EcoRI-digested genomic DNA probed with the ribosomal DNA-containing plasmid probe pMF2, previously shown to differentiate S. sclerotiorum, S. minor, and S. trifoliorum. The efficiency of the SNP-based assay as a diagnostic test was evaluated in a blind screening of 48 Sclerotinia isolates from agricultural and wild hosts. One isolate of Botrytis cinerea was used as a negative control. The SNP-based assay accurately identified 96% of Sclerotinia isolates and could be performed faster than RFLP profiling using pMF2. This method shows promise for accurate, high-throughput species identification.Sclerotinia is distinguished morphologically from other genera in the Sclerotiniaceae (Ascomycota, Pezizomycotina, Leotiomycetes) by the production of tuberoid sclerotia that do not incorporate host tissue, by the production of microconidia that function as spermatia but not as a disseminative asexual state, and by the development of a layer of textura globulosa composing the outer tissue of apothecia (8). Two hundred forty-six species of Sclerotinia have been reported, most distinguished morphotaxonomically (Index Fungorum [www.indexfungorum.org]). These include the four species of agricultural importance now recognized plus many that are imperfectly known, seldom collected, or apparently endemic to relatively small geographic areas (2, 5, 6, 7, 8, 9, 17).The main species of phythopathological interest in the genus Sclerotinia are S. sclerotiorum (Lib.) de Bary, S. minor Jagger, S. trifoliorum Erikss., and the undescribed species Sclerotinia species 1. Sclerotinia species 1 is an important cause of disease in vegetables in Alaska (16) and has been found in association with wild Taraxacum sp., Caltha palustris, and Aconitum septentrionalis in Norway (7). It is morphologically indistinguishable from S. sclerotiorum, but it was shown to be a distinct species based on distinctive polymorphisms in sequences from internal transcribed spacer 2 (ITS2) of the nuclear ribosomal repeat (7). The other three species have been delimited using morphological, cytological, biochemical, and molecular characters (3, 8, 9, 10, 12, 15). Interestingly, given that the ITS is sufficiently polymorphic in many fungal genera to resolve species, in Sclerotinia, only species 1 and S. trifoliorum are distinguished by characteristic ITS sequence polymorphisms; S. sclerotiorum and S. minor cannot be distinguished based on ITS sequence (2, 7).Sclerotinia sclerotiorum is a necrotrophic pathogen with a broad host range (1). S. minor has a more restricted host range but causes disease in a variety of important crops such as lettuce, peanut, and sunflower crops (11). S. trifoliorum has a much narrower host range, limited to the Fabaceae (3, 8, 9). Sclerotial and ascospore characteristics also serve to differentiate among the three species. Sclerotinia minor has small sclerotia that develop throughout the colony in vitro and aggregate to form crusts on the host, while the sclerotia of S. sclerotiorum and S. trifoliorum are large and form at the colony periphery in vitro, remaining separate on the host (8, 9). The failure of an isolate to produce sclerotia or apothecia in vitro is not unusual, especially after serial cultivation (8). The presence of dimorphic, tetranucleate ascospores characterizes S. trifoliorum, while S. sclerotiorum and S. minor both have uniformly sized ascospores that are binucleate and tetranucleate, respectively (9, 14).With the apparent exception of Sclerotinia species 1, morphological characteristics are sufficient to delimit Sclerotinia species given that workers have all manifestations of the life cycle in hand. In cultures freshly isolated from infected plants, investigators usually have mycelia and sclerotia but not apothecia. Restriction fragment length polymorphisms (RFLPs) in ribosomal DNA (rDNA) are diagnostic for Sclerotinia species (3, 10), but the assay requires cloned probes (usually accessed from other laboratories) hybridized to Southern blots from vertical gels, an impractical procedure for large samples. We have analyzed sequence data from previous phylogenetic studies (2) and have identified diagnostic variation for the rapid identification of the four Sclerotinia species. The single nucleotide polymorphism (SNP) assay that we report here is amenable to a high throughput of samples and requires only PCR amplification with a standard set of primers and oligonucleotide hybridizations to Southern blots in a dot format.The SNP assay was performed using two independent sets of species-specific oligonucleotide probes, all with SNP sites shown to differentiate the four Sclerotinia species (Fig. (Fig.1).1). A panel of 49 anonymously coded isolates (Table (Table1)1) was screened using these species-specific SNP probes, as outlined in Fig. Fig.1.1. The assay was validated by comparison to Southern hybridizations of EcoRI-digested genomic DNA hybridized with pMF2, a plasmid probe containing the portion of the rDNA repeat with the 18S, 5.8S, and 26S rRNA cistrons of Neurospora crassa (4, 10).Open in a separate windowFIG. 1.Protocol for the SNP-based identification of Sclerotinia species, with diagnostic SNP sites underlined and in boldface type for each hybridization probe.

TABLE 1.

Isolates and hybridization results for all SNP-based oligonucleotide probesf
Collector''s isolateAnonymous codePrescreened presumed species identityOriginHostSpecies-specific SNP
IGS50CAL448 S.trifolCAL124CAL448 S.minorRAS148CAL446 S.sp1CAL19ACAL19BCAL448 S.sclero
LMK1849Botrytis cinereaOntario, CanadaAllium cepa
FA2-13Sclerotinia minorNorth CarolinaArachis hypogaea++
W15Sclerotinia minorNorth CarolinaCyperus esculentus++
W1030Sclerotinia minorNorth CarolinaOenothra laciniata++
PF1-138Sclerotinia minorNorth CarolinaArachis hypogaea++
PF18-49714Sclerotinia minorOklahomaArachis hypogaea++
PF17-48246Sclerotinia minorOklahomaArachis hypogaea++
PF19-51948Sclerotinia minorOklahomaArachis hypogaea++
LF-2720Sclerotinia minorUnited StatesLactuca sativa++
AR12811Sclerotinia sclerotiorumArgentinaArachis hypogaea++
AR128216Sclerotinia sclerotiorumArgentinaArachis hypogaea++
LMK2116Sclerotinia sclerotiorumCanadaBrassica napus++
LMK5725Sclerotinia sclerotiorumNorwayRanunculus ficaria++
LMK75415Sclerotinia sclerotiorumNorwayRanunculus ficaria++
UR1939Sclerotinia sclerotiorumUruguayLactuca sativa++
UR4789Sclerotinia sclerotiorumUruguayLactuca sativa++
CA90132Sclerotinia sclerotiorumCaliforniaLactuca sativa++
CA99540Sclerotinia sclerotiorumCaliforniaLactuca sativa++
CA104441Sclerotinia sclerotiorumCaliforniaLactuca sativa++
1980a34Sclerotinia sclerotiorumNebraskaPhaseolus vulgaris++
Ss00113Sclerotinia sclerotiorumNew YorkbGlycine max++
Ssp00531Sclerotinia sclerotiorumNew YorkGlycine max++
H02-V2833Sclerotinia species 1AlaskacUnknown vegetable crop++
H01-V1426Sclerotinia species 1AlaskaUnknown vegetable crop++
LMK74521Sclerotinia species 1NorwayTaraxacum sp.++
02-2611Sclerotinia trifoliorumFinlanddTrifolium pratense+
06-1429Sclerotinia trifoliorumFinlandTrifolium pratense++
2022Sclerotinia trifoliorumFinlandTrifolium pratense++
2-L945Sclerotinia trifoliorumFinlandTrifolium pratense++
3-A524Sclerotinia trifoliorumFinlandTrifolium pratense
5-L912Sclerotinia trifoliorumFinlandTrifolium pratense++
K14Sclerotinia trifoliorumFinlandTrifolium pratense++
K237Sclerotinia trifoliorumFinlandTrifolium pratense++
L-11223Sclerotinia trifoliorumFinlandTrifolium pratense++
L-11944Sclerotinia trifoliorumFinlandTrifolium pratense++
LMK3619Sclerotinia trifoliorumTasmaniaTrifolium repens++
Ssp00118Sclerotinia trifoliorumNew YorkLotus corniculatus++
Ssp00210Sclerotinia trifoliorumNew YorkLotus corniculatus++
Ssp00328Sclerotinia trifoliorumNew YorkLotus corniculatus++
Ssp00436Sclerotinia trifoliorumNew YorkLotus corniculatus++
LMK4743Sclerotinia trifoliorumVirginiaMedicago sativa++
MBRS-127UnknownAustraliaeBrassica spp.++
MBRS-27UnknownAustraliaBrassica spp.++
MBRS-342UnknownAustraliaBrassica spp.++
MBRS-522UnknownAustraliaBrassica spp.++
WW-135UnknownAustraliaBrassica spp.++
WW-28UnknownAustraliaBrassica spp.++
WW-317UnknownAustraliaBrassica spp.++
WW-447UnknownAustraliaBrassica spp.++
Open in a separate windowaThe annotated genome for S. sclerotiorum strain 1980 (ATCC 18683) is publicly available through the Broad Institute, Cambridge, MA (http://www.broad.mit.edu/annotation/genome/sclerotinia_sclerotiorum/Home.html).bAll isolates from New York were provided by Gary C. Bergstrom, Cornell University, Ithaca, NY. Isolates Ss001 and Ssp005 were submitted as S. sclerotiorum, and Ssp001 through Ssp004 were submitted as S. trifoliorum.cAll isolates from Alaska, submitted as Sclerotinia species 1, were provided by Lori Winton, USDA-ARS Subarctic Agricultural Research Unit, University of Alaska, Fairbanks.dAll isolates from Finland, submitted as S. trifoliorum, were provided by Tapani Yli-Mattila, University of Turku, Turku, Finland.eAll isolates from Australia, presumed to be S. sclerotiorum but requiring species confirmation, were provided by Martin Barbetti, DAF Plant Protection Branch, South Perth, Australia.fThe probes that are diagnostic for S. minor, S. sclerotiorum, S. trifoliorum, and Sclerotinia species 1 are listed, with a “+” indicating a positive hybridization for the probe and a “−” indicating no hybridization of the probe.  相似文献   

18.
Focus Issue on Roots: The Optimal Lateral Root Branching Density for Maize Depends on Nitrogen and Phosphorus Availability     
Johannes Auke Postma  Annette Dathe  Jonathan Paul Lynch 《Plant physiology》2014,166(2):590-602
Observed phenotypic variation in the lateral root branching density (LRBD) in maize (Zea mays) is large (1–41 cm−1 major axis [i.e. brace, crown, seminal, and primary roots]), suggesting that LRBD has varying utility and tradeoffs in specific environments. Using the functional-structural plant model SimRoot, we simulated the three-dimensional development of maize root architectures with varying LRBD and quantified nitrate and phosphorus uptake, root competition, and whole-plant carbon balances in soils varying in the availability of these nutrients. Sparsely spaced (less than 7 branches cm−1), long laterals were optimal for nitrate acquisition, while densely spaced (more than 9 branches cm−1), short laterals were optimal for phosphorus acquisition. The nitrate results are mostly explained by the strong competition between lateral roots for nitrate, which causes increasing LRBD to decrease the uptake per unit root length, while the carbon budgets of the plant do not permit greater total root length (i.e. individual roots in the high-LRBD plants stay shorter). Competition and carbon limitations for growth play less of a role for phosphorus uptake, and consequently increasing LRBD results in greater root length and uptake. We conclude that the optimal LRBD depends on the relative availability of nitrate (a mobile soil resource) and phosphorus (an immobile soil resource) and is greater in environments with greater carbon fixation. The median LRBD reported in several field screens was 6 branches cm−1, suggesting that most genotypes have an LRBD that balances the acquisition of both nutrients. LRBD merits additional investigation as a potential breeding target for greater nutrient acquisition.At least four major classes of plant roots can be distinguished based on the organ from which they originate: namely the seed, the shoot, the hypocotyl/mesocotyl, and other roots (Zobel and Waisel, 2010). The last class is lateral roots, which form in most plants the majority of the root length, but not necessarily of the root weight, as lateral roots have smaller diameter. Lateral roots start with the formation of lateral root primordia, closely behind the root tip of the parent root. These primordia undergo nine distinguishable steps, of which the last step is the emergence from the cortex of the parent root just behind the zone of elongation, usually only a few days after the first cell divisions that lead to their formation (Malamy and Benfey, 1997). However, not all primordia develop into lateral roots; some stay dormant (Dubrovsky et al., 2006), although dormancy of primordia may not occur in maize (Zea mays; Jordan et al., 1993; Ploshchinskaia et al., 2002). The final number of lateral roots is thereby dependent on the rate of primordia formation as well as the percentage of primordia that develop into lateral roots. This process of primordia formation and lateral root emergence is being studied intensively, including the genes that are activated during the different steps and the hormones regulating the process (López-Bucio et al., 2003; Dubrovsky et al., 2006; Osmont et al., 2007; Péret et al., 2009; Lavenus et al., 2013). Significant genotypic variation in the density of lateral roots has been observed, ranging from no lateral roots to 41 roots cm−1 in maize (Trachsel et al., 2010; Lynch, 2013). This suggests that clear tradeoffs exist for the development of lateral roots and that these genotypes have preprogrammed growth patterns that are adaptive to specific environments. While some of the variation for lateral root branching density (LRBD) that has been observed across environments, for example by Trachsel et al. (2010), is constitutive, many genotypes have strong plasticity responses of LRBD to variations in soil fertility (Zhu et al., 2005a; Osmont et al., 2007). Both the nutrient and carbon status of the plant and the local nutrient environment of the (parent) root tip influence LRBD. Many studies have documented these plasticity responses, and others have tried to unravel parts of the sensing and signaling pathways that regulate LRBD. The utility of root proliferation into a nutrient patch has been studied and debated (Robinson et al., 1999; Hodge, 2004), but much less so the utility of having fewer or more branches across the whole root system. Our understanding of the adaptive significance of variation in LRBD among genotypes is thereby limited, with many studies not accounting for relevant tradeoffs. In this study, we integrate several functional aspects of LRBD with respect to nutrient acquisition, root competition, and internal resource costs and quantify these functional aspects using the functional structural plant model SimRoot. SimRoot simulates plant growth with explicit representation of root architecture in three dimensions (Fig. 1; Supplemental Movie S1). The model focuses on the resource acquisition by the root system and carbon fixation by the shoot while estimating the resource utilization and requirements by all the different organs.

Table I.

Minimum, maximum, and median LRBD in different populations phenotyped by various researchers at several locations in the worldLocations are as follows: D, Juelich, Germany; PA, State College, PA; and SA, Alma, South Africa. Some of the experiments included nutrient treatments: LN, low nitrogen availability; and LP, low phosphorus availability. Data were collected by counting the number of roots along a nodal root segment. Data were supplied by the person indicated under source: H.S., H. Schneider; L.Y., L. York; A.Z., A. Zhan; and J.P., J.A. Postma. WiDiv, Wisconsin Diversity panel; IBM, intermated B73 × Mo17; NAM, nested association mapping.
PopulationNo. of GenotypesaExperimentLocationDateNutrient TreatmentsSourceLRBD
MinimumMaximumMedian
cm−1
WiDiv527FieldSA2010H.S.1159
400FieldSA2011, 2012H.S.0186
400FieldSA2013LNH.S.0136
IBM30FieldSA, PA2012, 2013, 2014LNL.Y.0416
18MesocosmsPA2013LNA.Z.1104
NAM1,235FieldSA2010, 2011, 2012H.S.0146
6RhizotronsD2011LN, LPJ.P.1144
Open in a separate windowaMeans for the individual treatments are presented in Supplemental Appendix S4, Figure S5.Open in a separate windowFigure 1.Rendering of two simulated maize root systems. The model presents 40-d-old maize root systems with 2 (left) and 20 (right) branches cm−1 major root axes. The simulations depicted here assumed that there were no nutrient deficiencies affecting growth. Carbon limitations do cause the laterals in the right root system to stay somewhat shorter. Different major axes, with their respective laterals, have different pseudocolors: light blue, primary root; green, seminal roots; red, crown roots; and yellow, brace roots. For animation of these root systems over time, see Supplemental Movie S1.The formation of lateral roots presumably increases the sink strength of the root system, promoting the development of greater root length and thereby greater nutrient and water acquisition. However, greater LRBD also places roots closer together, which may increase competition for nutrients and water among roots of the same plant, effectively reducing the uptake efficiency per unit of root length. This decrease in efficiency when the root system increases in size was nicely modeled by Berntson (1994). Furthermore, the metabolic costs of the construction and maintenance of the additional root length, either calculated in units of carbon or in terms of other limiting resources, may reduce the growth of other roots or the shoot (Lynch, 2007b). We can thereby logically derive that there will be an optimum number of lateral roots depending on the balance of the marginal cost of root production and the marginal utility of soil resource acquisition. Therefore, the optimal LRBD will depend on environmental conditions. It is not clear in the literature what the optimal branching density might be, and how different environmental factors shift this optimum to fewer or more lateral branches per centimeter of parent root. Considering the primacy of soil resources as pervasive limitations to plant growth, understanding the utility and tradeoffs of lateral root branching density is important in understanding the evolution of root architecture and plant environmental adaptation in general. In addition, such information would be useful for trait-based selection to develop cultivars with increased productivity on soils with suboptimal availability of nutrients. The necessity and prospects of developing such cultivars are outlined by Lynch (2007a, 2011).Here, we present results from root architectural simulations with which we estimated the optimal lateral branching density in maize in soils with variable availability of nitrogen and phosphorus. The model simulated the uptake benefits from having additional lateral roots, root competition as affected by the three-dimensional placement of roots over time, metabolic costs of lateral roots, and effects on whole-plant root architecture, notably with respect to rooting depth.  相似文献   

19.
A conifer genome spruces up plant phylogenomics     
Pamela S Soltis  Douglas E Soltis 《Genome biology》2013,14(6):122
The Norway spruce genome provides key insights into the evolution of plant genomes, leading to testable new hypotheses about conifer, gymnosperm, and vascular plant evolution.In the past year a burst of plant genome sequences have been published, providing enhanced phylogenetic coverage of green plants (Figure (Figure1)1) and inclusion of new agricultural, ecological, and evolutionary models. Collectively, these sequences are revealing some extraordinary structural and evolutionary attributes in plant genomes. Perhaps most surprising is the exceptionally high frequency of whole-genome duplication (WGD): nearly every genome that has been analyzed has borne the signature of one or more WGDs, with particularly notable events having occurred in the common ancestors of seed plants, of angiosperms, and of core eudicots (the latter ''WGD'' represents two WGDs in close succession) [1,2]. Given this tendency for plant genomes to duplicate and then return to an essentially diploid genetic system (an example is the cotton genomes, which have accumulated the effects of perhaps 15 WGDs [3]), the conservation of genomes in terms of gene number, chromosomal organization, and gene content is astonishing. From the publication of the first plant genome, Arabidopsis thaliana [4], the number of inferred genes has been between 25,000 and 30,000, with many gene families shared across all land plants, although the number of members and patterns of expansion and contraction vary. Furthermore, conserved synteny has been detected across the genomes of diverse angiosperms, despite WGDs, diploidization, and millions of years of evolution.Open in a separate windowFigure 1Simplified phylogeny of land plants, showing major clades and their component lineages. Asterisks indicate species (or lineage) for which whole-genome sequence (or sequences) is (are) available. Increases and decreases in genome size are shown by arrows.Despite the proliferation of genome sequences available for angiosperms, genome-level data for both ferns (and their relatives, collectively termed monilophytes; Figure Figure1)1) and gymnosperms have been conspicuously lacking - until recently, with the publication of the genome sequence of the gymnosperm Norway spruce (Picea abies) [5]. The large genome sizes for both monilophytes and gymnosperms have discouraged attempts at genome sequencing and assembly, whereas the smaller genome size of angiosperms has resulted in more genome sequences being available (Table (Table1)1) [6]. Because of this limited phylogenetic sample, our understanding of the timing and phylogenetic positions of WGDs, the core number of plant genes, possible conserved syntenic regions, and patterns of expansion and contraction of gene families across both tracheophytes (vascular plants) and across all land plants is imperfect. This sampling problem is particularly acute in analyses of the genes and genomes of seed plants; many hundreds of genes are present in angiosperms that are not present in mosses or lycophytes, but whether these genes arose in the common ancestor of seed plants or of angiosperms cannot be determined without a gymnosperm genome sequence. The Norway spruce genome therefore offers tremendous power, not only for understanding the structure and evolution of conifer genomes, but also as a reference for interpreting gene and genome evolution in angiosperms.

Table 1

Genome sizes in land plants
LineageRange (1C; pg)Mean
Gymnosperms
  Conifers
    Pinaceae9.5-36.023.7
    Cupressaceae8.3-32.112.8
    Sciadopitys 20.8n/a
  Gnetales
    Ephedraceae8.9-15.78.9
    Gnetaceae2.3-4.02.3
    Cycadaceae12.6-14.813.4
    Ginkgo biloba11.75n/a
Monilophytes
    Ophioglossaceae10.2-65.631.05
    Equisetaceae12.9-30422.0
    Psilotum72.7n/a
  Leptosporangiate ferns
    Polypodiaceae7.5-19.77.5
    Aspleniaceae4.1-9.16.2
    Athyriaceae6.3-9.37.6
    Dryopteridaceae6.8-23.611.7
  Water ferns
    Azolla0.77n/a
Angiosperms
    Oryza sativa 0.50n/a
    Amborella trichopoda0.89n/a
    Arabidopsis thaliana0.16n/a
    Zea mays2.73n/a
Open in a separate windown/a, not applicable. Data based on [6].  相似文献   

20.
Identification of Pathogenic Vibrio Species by Multilocus PCR-Electrospray Ionization Mass Spectrometry and Its Application to Aquatic Environments of the Former Soviet Republic of Georgia     
Chris A. Whitehouse  Carson Baldwin  Rangarajan Sampath  Lawrence B. Blyn  Rachael Melton  Feng Li  Thomas A. Hall  Vanessa Harpin  Heather Matthews  Marina Tediashvili  Ekaterina Jaiani  Tamar Kokashvili  Nino Janelidze  Christopher Grim  Rita R. Colwell  Anwar Huq 《Applied and environmental microbiology》2010,76(6):1996-2001
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号