首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the aquatic environment, mercury is readily methylated into its most toxic form of methylmercury. In this form, it enters the aquatic food chain and its concentrations increase in subsequent links, which decreases the quality of fish meat and poses risks to consumer health. Concentrations of methylmercury (MeHg) and total mercury (THg) were determined in the muscle tissues of 64 eel specimens measuring from 59 to 95 cm in length as functions of specimen size and weight. Risks posed to consumers by eel from different length classes were also assessed. The mean concentration of THg in all of the eel examined was 0.179 mg kg?1, but the range was from 0.028 to 0.487 mg kg?1. The mean concentration of MeHg was 0.147 mg kg?1, and the range was also wide from 0.023 to 0.454 mg kg?1. Accumulated MeHg and THg increased with eel body length. The percentage share of MeHg in THg also changed with specimen length, and there was a positive correlation between the concentrations of MeHg and THg. Risk assessment was performed based on the doses of THg and MeHg ingested with fish for several specimen length classes. Consuming the meat of eel measuring 80 cm in length increased the estimated weekly intake (EWI) of THg and MeHg twofold in comparison to that from specimens 60 cm in length and fourfold in specimens exceeding 90 cm in length. The percentage shares of the EWI in the tolerable weekly intake and the target hazard quotient coefficient also increased proportionally. Generally, concentrations of MeHg and THg in eel are below current limits and pose no risk to consumer health as long as the consumption of larger specimens is avoided.  相似文献   

2.
The purpose of this study was to investigate the effect of sewage treatment on total mercury (THg) and methylmercury (MeHg) concentrations in domestic effluents and the contribution of urban sewage treatment facilities to THg and MeHg in rivers. We determined the concentrations of THg and MeHg in unfiltered samples of untreated and treated domestic sewage from the three treatment facilities and receiving river water within the City of Winnipeg. The concentrations of THg in the Red and Assiniboine rivers ranged from 3–31 ng/L. THg was related positively to suspended sediment concentrations in the rivers. The concentrations of MeHg in these rivers were usually 0.2–0.3 ng/L. THg concentrations in raw sewage varied widely, from 2–150 ng/L. Treatment removed an average of 88% of this mercury. MeHg concentrations in raw sewage were 0.5–4.3 ng/L, however, after treatment at two treatment facilities, MeHg was greatly reduced, usually to 0.1–0.4 ng/L. Most treated sewage, therefore, had MeHg concentrations that were similar to levels in the receiving rivers and the effect of discharged effluent was usually a change of about 2% or less on concentrations in the rivers. However, one of the facilities (the West End plant) was discharging higher concentrations of MeHg, up to 2 ng/L, causing calculated increases of up to 11% in the concentration of MeHg in the Assiniboine River.  相似文献   

3.
BackgroundThe Madeira River (Amazon Basin) has been impacted by activities related to artisanal and small-scale gold mining (ASGM), deforestation and burning (for timber, agriculture, and hydroelectric dam projects). All these activities contribute to environmental mercury (Hg) release and cycling into the Amazon ecosystem and thus to changing lifestyles.MethodWe assessed exposure to total and MeHg in two small riverine communities of the Madeira River (Amazon): Lago Puruzinho (LP, n = 26 families) and São Sebastião do Tapurú (SST, n = 31 families). Samples of human hair (n = 137), blood (n = 39), and feces (n = 41) were collected from adults and children (0–15 years of age).ResultsIn women of childbearing age from LP village, the mean blood total-Hg (THg) (45.54 ± 24.76 μg.L−1) and MeHg (10.79 ± 4.36 μg.L−1) concentrations were significantly (p = 0.0024; p < 0.0001, respectively) higher than in women from SST village (THg: 25.32 ± 16.75 μg.L−1; MeHg: 2.32 ± 1.56 μg.L−1) village; the trend in hair-Hg persisted but was statistically significant (p < 0.0145) only for THg (LP, 11.34 ± 5.03 μg. g−1; SST, 7.97 ± 3.51 μg. g−1). In women, the median hair:blood ratio of total Hg was 269. In children, the mean hair THg concentrations were 6.07 ± 3.60 μg. g−1 and 6.47 ± 4.16 μg. g−1 in LP and SST; thus, not significantly different (p = 0.8006). There was a significant association (p < 0.001) between hair-Hg concentrations of mothers and their respective children. The excretion of Hg in feces of women (0.52 μg. g−1 dw) was not significantly different from children (0.49 μg. g−1 dw). The only statistically significant correlation between Hg in feces and in hair was found in children, (n = 16, rs = 0.38, p = 0.005). Significant relationship was seen between the levels of THg in blood and hair of women from LP and SST. Based on hair-Hg concentrations, fish consumption rate ranged from 94.5 to 212.3 g.day−1.ConclusionWomen and children excrete THg in feces in comparable concentrations. However, the mean fish consumption rate and blood MeHg are higher in the most remote villagers. Mother`s hair-Hg concentration is a good predictor of children’s hair-Hg.  相似文献   

4.
BackgroundThe main exposure route to methylmercury (MeHg) is from eating fish and shellfish containing this compound. Since 2004, women of childbearing age in Spain have been urged not to eat some species (eg, tuna, shark, and swordfish), instead choosing low-MeHg seafood as part of a healthy diet.ObjectiveTo describe maternal total blood mercury (THg) and serum selenium (Se) in a cohort of pregnant women living in Spain as it relates to fish intake during the three trimesters and to assess whether or not Spanish women of childbearing age follow the recommendations listed in fish advisories and choose fish species with lower mercury levels.MethodsWe studied 141 female volunteers of childbearing age (16–45 years), interviewing all participants about their overall eating habits and seafood intake. Hg and Se levels were tested using cold-vapor atomic absorption spectrometry (CVAAS) and electrothermal atomic absorption spectrometry (ETAAS), respectively.ResultsAverage THg levels in pregnant women were 2.89 μg/L (standard deviation [SD], 2.75 μg/L, geometric mean [GM], 2.19 μg/L), and THg GM was positively associated with fish intake. Mean Se levels in pregnant women were 73.06 μg/L (SD, 13.38 μg/L), and Se levels were found to increase with tuna intake. In 16 (12%) pregnant women, THg was higher than the level recommended by the U.S. Environmental Protection Agency (EPA) (6.4 μg/L). A positive association was also found between THg and serum Se.ConclusionWomen of childbearing age in Spain had higher THg levels than women in other Western studies. Our study observed that 12% of women had THg levels above the safety limit set by the EPA (6.4 μg/L), and 31% had levels above the relevant benchmark level of 3.5 μg/L suggested by various researchers.  相似文献   

5.
Top marine predators present high mercury concentrations in their tissues as consequence of biomagnification of the most toxic form of this metal, methylmercury (MeHg). The present study concerns mercury accumulation by Guiana dolphins (Sotalia guianensis), highlighting the selenium-mediated methylmercury detoxification process. Liver samples from 19 dolphins incidentally captured within Guanabara Bay (Rio de Janeiro State, Brazil) from 1994 to 2006 were analyzed for total mercury (THg), methylmercury (MeHg), total organic mercury (TOrgHg) and selenium (Se). X-ray microanalyses were also performed. The specimens, including from fetuses to 30-year-old dolphins, comprising 8 females and 11 males, presented high THg (0.53-132 μg/g wet wt.) and Se concentrations (0.17-74.8 μg/g wet wt.). Correlations between THg, MeHg, TOrgHg and Se were verified with age (p<0.05), as well as a high and positive correlation was observed between molar concentrations of Hg and Se (p<0.05). Negative correlations were observed between THg and the percentage of MeHg contribution to THg (p<0.05), which represents a consequence of the selenium-mediated methylmercury detoxification process. Accumulation of Se-Hg amorphous crystals in Kupffer Cells was demonstrated through ultra-structural analysis, which shows that Guiana dolphin is capable of carrying out the demethylation process via mercury selenide formation.  相似文献   

6.
Forestry has been reported to cause elevated mercury (Hg) concentrations in runoff water. However, the degree to which forestry operations influence Hg in runoff varies among sites. A synoptic study, covering 54 catchments distributed all over Sweden, subjected to either stump harvest (SH), site preparation (SP) or no treatment (Ref), was undertaken to reveal the degree of forestry impact and causes of eventual variation. All streams were sampled twice, in autumn 2009 and summer 2010. There were no significant differences in total mercury (THg) and methylmercury (MeHg) concentrations between the three treatments in either 2009 or 2010. However, when pooling the treated catchments (that is, SH and SP) and taking catchment properties such as latitude into account, the treatment had a significant influence on the THg and MeHg concentrations. Although the treatment effect on THg and MeHg did not differ between SH and SP, the study did reveal significant forestry effects on potassium (K) and total nitrogen (TN) that were greater in the SH catchments and lower in the SP catchments. Partial least square (PLS) regressions indicated that organic matter was the most important variable influencing both the THg and MeHg concentrations. There were no significant differences between the treatment groups when comparing the ratios of THg/total organic carbon (TOC) and MeHg/TOC, suggesting that the high concentrations of THg and MeHg observed at some of the treated catchments are associated with increased concentrations of TOC rather than new methylation or increased mobilization caused by factors other than TOC.  相似文献   

7.
The bioaccumulation and biomagnification of mercury (Hg) and selenium (Se) were investigated in sub-tropical freshwater food webs from Burkina Faso, West Africa, a region where very few ecosystem studies on contaminants have been performed. During the 2010 rainy season, samples of water, sediment, fish, zooplankton, and mollusks were collected from three water reservoirs and analysed for total Hg (THg), methylmercury (MeHg), and total Se (TSe). Ratios of δ13C and δ15N were measured to determine food web structures and patterns of contaminant accumulation and transfer to fish. Food chain lengths (FCLs) were calculated using mean δ15N of all primary consumer taxa collected as the site-specific baseline. We report relatively low concentrations of THg and TSe in most fish. We also found in all studied reservoirs short food chain lengths, ranging from 3.3 to 3.7, with most fish relying on a mixture of pelagic and littoral sources for their diet. Mercury was biomagnified in fish food webs with an enrichment factor ranging from 2.9 to 6.5 for THg and from 2.9 to 6.6 for MeHg. However, there was no evidence of selenium biomagnification in these food webs. An inverse relationship was observed between adjusted δ15N and log-transformed Se:Hg ratios, indicating that Se has a lesser protective effect in top predators, which are also the most contaminated animals with respect to MeHg. Trophic position, carbon source, and fish total length were the factors best explaining Hg concentration in fish. In a broader comparison of our study sites with literature data for other African lakes, the THg biomagnification rate was positively correlated with FCL. We conclude that these reservoir systems from tropical Western Africa have low Hg biomagnification associated with short food chains. This finding may partly explain low concentrations of Hg commonly reported in fish from this area.  相似文献   

8.
This study investigates mercury, lead, copper, and zinc concentrations in six most frequently consumed fish species (120 samples), sediments (20 samples) taken from Karaduvar Fishing Area where fish species live, and Mersin Port as a contrary region, and human scalp hair for people regularly consuming these fish species (50 samples) and non-fish-eaters (15 samples) in Mersin, Turkey. On taking living environment into account, the fish groups include pelagic species of Liza saliens, Liza aurata, and demersal species of Merluccius merluccius, Mullus barbatus, Upeneus moluccensis, and Solea solea. Total Hg (THg) was found to accumulate in muscle tissues at the lowest concentration (0.01 μg/g) in L. saliens and at the highest (2.66 μg/g) in S. solea. Pb was only detected at high concentrations of 1.86 μg/g in M. barbatus and of 2.16 μg/g in M. merluccius. Cu and Zn concentrations were below the detection limit within all fish species. In the sediment samples, Pb and Cu concentrations were persistently below their effect range–median (ERM) value, whereas this limiting value only maintained for 15% of THg concentrations. On the other hand, the effect range–low (ERL) of sediment exceeded at Pb in 15% of samples and Cu in 25% of samples. Zn remained below the detection limit for sediment samples. The metal concentrations at scalp hairs of regular consumers of these fish groups and non-fish eaters vary from the range 0.40–3.28 to 0.14–1.02 μg/g for THg, 11.16–107.84 to 8.00–22.38 μg/g for Pb, and 151.67–645.35 to 144.92–343.50 μg/g for Zn. An important finding of the present study is the significant adverse impact of sedimentary heavy metal bioaccumulation to human through the consumption of demersal fishes in the city of Mersin along the southern coast of Turkey.  相似文献   

9.
This study examined mercury levels in northern pike (Esox lucius) from the Twin Valley Reservoir in southern Alberta, 2 years after construction in 2003. The hypothesis was tested that mercury concentrations in pike from the reservoir are significantly higher than in pike from the nearby Oldman River. Mercury concentrations in muscle tissue (0.37–1.54 ppm) generally exceeded the consumption guideline of 0.5 ppm total mercury (THg), and were significantly higher (3.5-fold) than northern pike mercury concentrations in the Oldman River. In addition, these levels exceeded (up to 2-fold) previously published data from other reservoirs of the northern hemisphere. Gill-netting followed by stomach contents and stable isotope analysis revealed a very simple food web. No zooplanktivorous fish species were present, and the benthic fish community contained only few white sucker (Catostomus commersoni). Thus, the reservoir almost completely lacked forage fish, and the pike fed primarily on amphipods (Gammarus lacustris and Hyalella azteca), whose average mercury concentrations were 0.21 ppm. An observed low growth trajectory of northern pike in this reservoir may reflect low growth efficiency as a result of their invertebrate diet.  相似文献   

10.
We examined factors and pathways involved in the transfer of mercury (Hg) to the food web in St. Lawrence River embayments near Cornwall, Ontario, where natural remediation of contaminated sediments (eventual burial by settling of cleaner sediments) has been adopted as a management strategy. Yellow perch (Perca flavescens) from one of the study zones (Zone 1) along the river by Cornwall contained significantly higher total mercury (THg) concentrations than perch from other equally contaminated zones. While THg concentrations in benthic invertebrates did not vary among contaminated zones, THg concentrations in yellow perch and invertebrate prey recovered from the perch stomachs were 1.5–2.5 times higher in Zone 1 than those from other zones, suggesting that prey selection affects THg accumulation more than habitat location. No significant differences were found in THg concentrations among different prey species within Zone 1, although there were significant differences in THg concentrations in the same prey species within Zone 1. In contrast, THg concentrations among different prey species increased significantly with trophic level in other contaminated and reference zones. The lack of correspondence between trophic position and THg accumulation in Zone 1 suggests two possibilities: (1) yellow perch in Zone 1 are highly mobile and are assimilating THg from a wide range of prey across Zone 1 with variable THg concentrations and (2) there may be an important non-dietary source of THg to the Zone 1 food web. Potential waterborne Hg sources to Zone 1 were investigated. Whereas THg and MeHg values in discharges from a disused canal were similar to Zone 1 surface water values (0.97 and 0.04 ng l?1, respectively), concentrations in storm sewer and combined sewer overflows discharging in the vicinity of Zone 1 were 19–45-fold (THg) and 2–4-fold (MeHg) higher than upstream river water. Contributions of Hg to the water column from sediment–water diffusion, estimated using a simple, well-mixed reactor model, ranged 0.05–0.1% of the surface water THg concentration and 1–2% of the MeHg concentration measured in summer months in Zone 1. Although not investigated in the other zones, a strong correlation (r 2 = 0.82) was found between MeHg in porewater and amphipod concentrations in Zone 1, indicating that the sediment porewater is bioavailable and likely an important pathway for transfer of sediment Hg to the foodweb. Large areas of Zone 1 contain bark deposits and produce high rates of gas ebullition, and may not provide favourable conditions for progressive burial with clean sediments and attenuation of Hg transfer to biota through natural remediation. Careful monitoring of surface sediment concentrations and biota is required in these areas. Failure to reduce concentrations of Hg in these media would indicate alternative or additional management measures are required.  相似文献   

11.
Background/aimThe ingestion of contaminated seafood by MeHg is considered the main route of human exposure, turning the salivary gland one important target organ. The salivary glands play critical roles in maintaining oral health homeostasis, producing saliva that maintains the oral microbiota, initiation of the digestion of macromolecules, and being essential in maintaining the integrity of the adjacent soft tissues and teeth. Thus, this study aimed to investigate the effects of MeHg exposure on human salivary gland cells line.MethodsCells were exposed to 1–6 μM of MeHg for 24 h, and analysis of toxicity was performed. Based on these results, the LC50 was calculated and two concentrations were chosen (0.25 and 2.5 μM MeHg) to evaluate intracellular mercury (Hg) accumulation (THg), metabolic viability and oxidative stress parameters (GSH:GSSG ratio, lipid peroxidation, protein oxidation and DNA damage).ResultsThe results demonstrated accumulation of THg as we increased the MeHg concentrations in the exposure and, the higher the dose, the lower is the cell metabolic response. In addition, the 2.5 μM MeHg concentration also triggered oxidative stress in human salivary gland cells by depleting the antioxidant competence of GSH:GSSG ratio and increasing lipid peroxidation and proteins carbonyl levels, but no damages to DNA integrity.ConclusionIn conclusion, although these two elected doses did not show lethal effects, the highest dose triggered oxidative stress and new questionings about long-term exposure models are raised to investigate furthers cellular damages to human salivary gland cells caused by MeHg exposure to extrapolate in a translational perspective.  相似文献   

12.
As top predators in the Pearl River Estuary (PRE) of China, Indo-Pacific humpback dolphins (Sousa chinensis) are bioindicators for examining regional trends of environmental contaminants in the PRE. We examined samples from stranded S. chinensis in the PRE, collected since 2004, to study the distribution and fate of total mercury (THg), methylmercury (MeHg) and selenium (Se) in the major tissues, in individuals at different ages and their prey fishes from the PRE. This study also investigated the potential protective effects of Se against the toxicities of accumulated THg. Dolphin livers contained the highest concentrations of THg (32.34±58.98 µg g−1 dw) and Se (15.16±3.66 µg g−1 dw), which were significantly different from those found in kidneys and muscles, whereas the highest residue of MeHg (1.02±1.11 µg g−1 dw) was found in dolphin muscles. Concentrations of both THg and MeHg in the liver, kidney and muscle of dolphins showed a significantly positive correlation with age. The biomagnification factors (BMFs) of inorganic mercury (Hginorg) in dolphin livers (350×) and MeHg in muscles (18.7×) through the prey fishes were the highest among all three dolphin tissues, whereas the BMFs of Se were much lower in all dolphin tissues. The lower proportion of MeHg in THg and higher Se/THg ratios in tissues were demonstrated. Our studies suggested that S. chinensis might have the potential to detoxify Hg via the demethylation of MeHg and the formation of tiemannite (HgSe) in the liver and kidney. The lower threshold of hepatic THg concentrations for the equimolar accumulation of Se and Hg in S. chinensis suggests that this species has a greater sensitivity to THg concentrations than is found in striped dolphins and Dall’s porpoises.  相似文献   

13.
The aim of this study was to evaluate the potential risk of mercury contamination near the Mid-Atlantic Ridge relating total mercury (THg) concentrations in the human scalp hair (n?=?110) and high fish consumption levels. THg was quantified in human scalp hair, and volunteers were questioned about age, gender, and smoking habits being subsequently grouped in categories based on the individual average intake of fish meals per week. THg concentrations ([THg]) in hair samples ranged from 0.05 to 2.24 μg g?1, and significant differences were found according to age (p?<?0.05) and also among volunteers presenting different fish consumption rates (p?<?0.001) being the highest [THg] observed on the adult population and also on volunteers that indicated consuming five or more meals of fish per week. Results indicate a pattern of increased mercury accumulation with increasing fish consumption. Despite mercury availability and a potential mercury intake of up to seven times, the WHO provisional tolerable weekly intake of mercury value, in consequence of high fish consumption, mercury concentrations in scalp hair are comparatively low regarding recommended levels by WHO.  相似文献   

14.
We examined the net exchange of total mercury (THg) and methylmercury (MeHg) between a tidal marsh and its adjacent estuary over a 1-year period from August 2007 to July 2008. Our objectives were to estimate the importance of tidal salt marshes as sources and sinks of mercury within the Chesapeake Bay system, and to examine the hydrologic and biogeochemical controls on mercury fate and transport in tidal marshes. Tidal flows and water chemistry were measured at an established tidal flume at the mouth of the principal tidal creek of a 3-ha marsh section at the Smithsonian Environmental Research Center. Fluxes were estimated by combining continuous tidal flow measurement for the entire study year, with discrete, hourly, flow-weighted measurements of filterable and particulate THg and MeHg, dissolved organic carbon (DOC), and suspended particulate matter (SPM) made over 20 tidal cycles during the year. We found that the marsh was a relatively small net tidal source of MeHg, mainly during the warmer growing season. We also confirmed that the marsh was a substantial source of DOC to the adjacent estuary. DOC was a significant predictor of both filterable THg and MeHg fluxes. However, although the marsh was a source of filterable THg, it was overall a net sink for THg because of particulate trapping. The net per-area annual flux of MeHg from tidal marshes is greater than other MeHg pathways within Chesapeake Bay. The annual load of MeHg from tidal marshes into Chesapeake Bay, however, is likely small relative to fluvial fluxes and efflux from bottom sediment. This study suggests that MeHg production within the tidal marsh has greater consequences for biota inhabiting the marsh than for the efflux of MeHg from the marsh.  相似文献   

15.
A recent study concerning the reproductive biology of the garfish (Belone belone, L. 1761) has been carried out in the eastern part of the Adriatic Sea along the Croatian coastline. Specimens of the fish (N = 3,393) were collected over a 6-year period (2003–2008). Their length varied between 20.8 and 75.4 cm (mean ± SD = 38.3 ± 7.94). Female garfish were dominant in larger length groups being most apparent during the resting phase of sexual cycle and in the peak of the spawning period, occurring in April and May. The sexual ratio of all specimens was m/f = 0.98. Males were prevalent in March—at the beginning of the highest spawning activities. Fifty percentage of the garfish population sexually matured at 28.5 cm of total length. Males and females reached their sexual maturity at 28.0 and 31.5 cm of total length, respectively. Spawning began in January peaking during March to May. According to their maturity stages, gonad weight and the gonadosomatic index, males began to spawn one month earlier (April) than females (May). The mean batch fecundity of garfish was 1,242.46 ± 843.64 of matured oocytes per ovary. Matured oocyte diameters ranged from 1.223 to 4.283 mm with the mean value of 2.269 ± 0.332 mm.  相似文献   

16.
Conifer needles are an important link in the cycling of Total Mercury (THg) and Methylmercury (MeHg) in the boreal ecosystem due to the high THg and MeHg concentrations in litterfall. Translocation within the tree of Hg from soils to the crown canopy has been assumed to be a minor source of the Hg in litterfall. This paper, however, is the first to present direct observations of THg/MeHg transport from the soil via xylem sap. Xylem sap concentrations of THg and MeHg were measured in sap drained from different levels along the boles of freshly cut 100 year old Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). The trees came from a mixed stand growing on podzolized till soils at the Svartberget Forest Research Station in N. Sweden. Soil solution concentrations of THg and MeHg at different levels in the soil profile were measured for comparison.Concentrations of THg in xylem sap ranged from 10–15 ng L-1 in both the Scots pine and Norway spruce. Concentrations of MeHg varied from 0.03 ng L-1to 0.16 ng L-1, with higher values in Scots pine than Norway spruce. If these concentrations are representative of the transport from soils to needles in xylem sap at this site, then only 3% of the MeHg in litterfall (0.12 mg ha-1 yr-1) and 11% of the THg (26 mg ha-1 yr-1) can originate via this pathway. The upward transport via xylem sap is larger relative to the open field inputs (84% of THg and 17% of MeHg). Comparison of soil solution and xylem sap THg/MeHg suggested some degree of THg exclusion during water uptake in Scots pine and Norway spruce, but MeHg exclusion only in Norway spruce.  相似文献   

17.
The paper’s objective was to estimate weekly Hg intake from fish meals based on intervention research. Total Hg (THg) concentrations in blood and hair samples collected from men (n = 67) from an intervention study as well as muscular tissues of fresh and after heat-treating fish were determined using the thermal decomposition amalgamation atomic absorption spectrometry method (TDA-AAS) using direct mercury analyzer (DMA-80). The mean of the estimated weekly intake (EWI) was estimated at 0.62 μg/kg bw/week in the range 0.36–0.96 μg/kg body weight (bw) /week through the consumption of 4 edible marine fish species every day (for 10 days) by the participants from the intervention research in Lodz, Poland. The Hg intake in the volunteers in our intervention study accounted for 38.6% of the provisional tolerable weekly intake (PTWI) (1.6 μg/kg bw, weekly) value. The average Hg concentration in the analyzed fish ranged from 0.018 ± 0.006 mg/kg wet weight (Gadus chalcogrammus) to 0.105 ± 0.015 mg/kg wet weight (Macruronus magellanicus). The results for the average consumers were within PTWI of methylmercury (MeHg). Moreover, the average concentration of Hg in the selected fish after heat treatment did not exceed the maximum permitted concentrations for MeHg (MPCs = 0.5 mg/kg wet weight) in food set by the European Commission Regulation (EC/1881/2006). Hence, the risk of adverse effects of MeHg for the participants is substantially low.  相似文献   

18.
杨光  孙涛  安思危  郭攀  马明 《生态学报》2019,39(6):2101-2108
森林凋落物对于汞在林地土壤的生物地球化学循环中起到重要作用,为研究森林凋落物分解过程中汞的迁移转化特征,以重庆四面山风景名胜区典型林分(常绿阔叶林)作为研究对象。于2014年3月—2015年3月连续监测典型林分凋落物中各形态汞浓度和有机质变化量,同时监测周围土壤中汞浓度变化。结果表明:四面山典型林分凋落物分解过程中汞浓度整体上升,总汞浓度(初始浓度:78 ng/g)的增幅最高达53%,甲基汞浓度(初始浓度:0.32 ng/g)最高增幅达138%;在春季和夏季,水溶态和酸溶态两种活性态汞含量分别增加了851%和96%,在分解前期和末期,凋落物汞的中惰性汞比例最高,占比达75%。土壤腐殖质层中总汞和甲基汞浓度比较稳定。凋落物中活性态汞通过雨水淋洗进入土壤与有机质络合并发生甲基化/去甲基化过程,通过地表径流、地下径流进入水体。凋落物中C含量减少了22%,N含量增加了15%,总汞浓度与C/N比呈负相关,与N含量呈正相关。凋落物中微生物C、N含量整体增加,与汞浓度峰值同步,且夏季含量显著高于冬季含量(P0.05),说明微生物与凋落物固定汞和汞的甲基化过程密切相关。  相似文献   

19.
Wetlands, and peatlands in particular, are important sources of methylmercury (MeHg) to susceptible downstream ecosystems and organisms, but very little work has addressed MeHg production and export from peatland-dominated watersheds during the spring snowmelt. Through intensive sampling, hydrograph separation, and mass balance, this study investigated the total mercury (THg) and MeHg fluxes from two upland–peatland watersheds in Minnesota, USA during the 2005 spring snowmelt and proportionally attributed these fluxes to either peatland runoff or upland runoff. Between 26% and 39% of the annual THg flux and 22–23% of the annual MeHg flux occurred during the 12-days snowmelt study period, demonstrating the importance of large hydrological inputs to the annual mercury flux from these watersheds. Upland and peatland runoff were both important sources of THg in watershed export. In contrast to other research, our data show that peatland pore waters were the principal source of MeHg to watershed export during snowmelt. Thus, despite cold and mostly frozen surface conditions during the snowmelt period, peatland pore waters continued to be an important source of MeHg to downstream ecosystems.  相似文献   

20.

Background and aims

Rice grains contaminated by mercury (Hg) and methylmercury (MeHg) pose risks to human health. This study evaluated the relative importance of genotype, environment and genotype-environment interactions on the accumulation of total Hg (THg) and MeHg in brown rice.

Methods

A pot trial with four rice genotypes and 10 Hg-contaminated paddy soils was conducted under greenhouse conditions. The effects of genotype, environment and genotype-environment interactions on brown rice THg and MeHg accumulation were assessed by an Additive Main Effects and Multiplicative Interaction (AMMI) model.

Results

THg and MeHg concentrations in brown rice ranged from 20.5 to 75.5 μg kg?1 and 2.24 to 54.7 μg kg?1, respectively. The AMMI model indicated that genotype explained 41.1 and 19.6%, environment described 40.6 and 55.8%, and the genotype-environment interaction explained 11.9 and 20.0% of the variation in brown rice THg and MeHg levels, respectively. Brown rice THg positively correlated with water-soluble Hg and total potassium, but negatively correlated with total sulphur, iron, total organic carbon and nickel in soils. Brown rice MeHg negatively correlated with soil pH and selenium.

Conclusion

THg accumulation in brown rice was mainly affected by both genotype and environment, whereas MeHg accumulation was largely determined by environment.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号