首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-2 has been used in culture of primary T cells to maintain cell proliferation. We have previously reported that IL-27 inhibits HIV-1 replication in primary T cells in the presence of IL-2. To gain a better understanding of the mechanisms involved in this inhibitory effect, we attempted to investigate in detail the effects of IL-27 and IL-2 using several cell lines. Unexpectedly, IL-27 did not inhibit HIV-1 in T cell lines, whereas IL-2 inhibited HIV-1 replication in the human T cell lymphotrophic virus (HTLV)-1-transformed T cell lines, MT-2, MT-4, SLB-1, and ATL-2. No effects were seen in HTLV-1-negative cell lines. Utilizing MT-2 cells, we demonstrated that IL-2 treatment inhibited HIV-1 syncytia-inducing ability and dose-dependently decreased supernatant p24 antigen levels by >90%. Using real time PCR and Western blot analysis, we observed that IL-2 treatment induced the host restriction factor, APOBEC3G with accumulation into the lower molecular mass active form as characterized by FPLC. Further analysis revealed that the virus recovered from IL-2-treated MT-2 cells had impaired replication competency. This was found to be due to incorporation of APOBEC3G into the virion despite the presence of Vif. These findings demonstrate a novel role for IL-2 in regulating production of infectious HIV-1 virions in HTLV-1-infected cells through the induction of APOBEC3G.  相似文献   

2.
3.
HIV-infected patients are at increased risk of developing atherosclerosis, in part due to an altered high density lipoprotein profile exacerbated by down-modulation and impairment of ATP-binding cassette transporter A1 (ABCA1) activity by the HIV-1 protein Nef. However, the mechanisms of this Nef effect remain unknown. Here, we show that Nef interacts with an endoplasmic reticulum chaperone calnexin, which regulates folding and maturation of glycosylated proteins. Nef disrupted interaction between calnexin and ABCA1 but increased affinity and enhanced interaction of calnexin with HIV-1 gp160. The Nef mutant that did not bind to calnexin did not affect the calnexin-ABCA1 interaction. Interaction with calnexin was essential for functionality of ABCA1, as knockdown of calnexin blocked the ABCA1 exit from the endoplasmic reticulum, reduced ABCA1 abundance, and inhibited cholesterol efflux; the same effects were observed after Nef overexpression. However, the effects of calnexin knockdown and Nef on cholesterol efflux were not additive; in fact, the combined effect of these two factors together did not differ significantly from the effect of calnexin knockdown alone. Interestingly, gp160 and ABCA1 interacted with calnexin differently; although gp160 binding to calnexin was dependent on glycosylation, glycosylation was of little importance for the interaction between ABCA1 and calnexin. Thus, Nef regulates the activity of calnexin to stimulate its interaction with gp160 at the expense of ABCA1. This study identifies a mechanism for Nef-dependent inactivation of ABCA1 and dysregulation of cholesterol metabolism.  相似文献   

4.
The northern pig-tailed macaque(Macaca leonina) has been identified as an independent species of Old World monkey, and we previously found that PBMCs from M. leonina were susceptible to human immunodeficiency virus type 1(HIV-1), which may be due to the absence of a TRIM5 protein restricting HIV-1 replication. Here we investigated the infection potentials of six laboratory adapted HIV-1 strains and three primary HIV-1 isolates in PBMCs from M. leonina. The results indicate that these strains are characterized by various but low replication levels, and among which, HIV-1NL4-3 shows the highest replication ability. Based on the abundant evidence of species-specific interactions between restriction factors APOBEC3 and HIV/SIV-derived Vif protein, we subsequently examined the replication potentials of vif-substituted HIV-1(HSIV) in M. leonina PBMCs. Notably, HSIV-vifmac and stHIV-1SV chimeras, two HIV-1NL4-3-derived viruses encoding the viral infectivity factor(Vif) protein from SIVmac239, replicated robustly in cells from M. leonina, which suggests that HSIV could effectively antagonize the antiviral activity of APOBEC3 proteins expressed in cells of M. leonina. Therefore, our data demonstrate that M. leonina has the potential to be developed into a promising animal model for human AIDS.  相似文献   

5.
目的:以非小细胞肺癌A549细胞为模型,探讨miR-490-3p在肺癌发生发展过程中的作用及其调控机制。方法:通过miRBase数据库获得miR-490-3p序列,设计miR-490-3pmimics并转染A549细胞,CCK8、细胞划痕及Transwell实验分别检测miR-490-3p过表达对A549细胞增殖、迁移和侵袭能力的影响;使用miRwalk在线工具预测miR-490-3p可能的调控基因,通过实时荧光定量PCR及Western印迹对候选调控基因进行筛选,最后通过双萤光素酶报告基因实验验证miR-490-3p与调控基因之间的靶向关系。结果:过表达miR-490-3p可显著抑制A549细胞的增殖、侵袭和迁移能力;在预测的miR-490-3p候选靶基因中,选择与细胞增殖、迁移等表型相关的RASAL2、TGFBR1、PAPPA、HMGA2、TGFA靶基因进行实时荧光定量PCR及Western印迹筛选,结果仅TGFBR1基因在mRNA和蛋白水平的表达与miR-490-3p水平呈负相关,且双萤光素酶报告实验证实miR-490-3p可直接与TGFBR1的3'-UTR结合并抑制其表达。结论:miR-490-3p通过靶向调控TGFBR1的表达抑制非小细胞肺癌A549细胞的增殖和侵袭。  相似文献   

6.
Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance.  相似文献   

7.
在大肠杆菌中,利用新构建的含T7g-10L RBS以及λ-PR启动子的新型原核表达载体,通过表达gag-pol基因片段,获得了具有天然序列的人类免疫缺陷病毒1型(HIV-1)核心蛋白p24的高效表达。克隆的gag-pol基因片段在其阅读框架移位区域插入了4bp碱基,其表达的病毒蛋白酶在阅读框架上与gag一致,从而实现了对gag-pol融合蛋白的有效加工,产生成熟的核心蛋白p24及其它产物。重组p24以可溶形式存在,可以被抗p24的单克隆抗体特异识别。测定的N端8个氨基酸序列与从病毒纯化的p24完全一致。在使用硫酸铵沉淀后,采用两步离子柱层析,可将重组蛋白纯化到95%以上的纯度。结果表明,纯化的p24可以作为特异性很强的试剂而用于HIV感染的诊断及病情的预后,并可用于p24的生化及结构分析。  相似文献   

8.
目的:通过研究人类免疫缺陷病毒1型(HIV-1)Tat蛋白对骨髓间充质干细胞(BMSC)造血支持功能的影响,进一步揭示HIV-1感染者造血损伤的机理。方法:原代培养BMSC,流式检测其表面标志,诱导分化鉴定其多向分化潜能;免疫磁珠分选造血干细胞(HSC),流式检测其纯度;HIV-1 Tat蛋白添加到培养基中培养20天的BMSC(BMSC_(Tat))与对照BMSC(BMSC_(Con))分别作为滋养层与HSC分6组进行共培养,随后计数各组造血细胞总数,诱导分化检测造血细胞集落形成能力;RT-PCR检测BMSC_(Tat)和BMSC_(Con)造血相关因子mRNA的表达强度,ELISA检测BMSC_(Tat)和BMSC_(Con)条件培养液中造血相关因子GM-CSF及IL-6的浓度。结果:经鉴定成功培养获得原代BMSC;免疫磁珠分选的HSC纯度可达95%以上;分6组共培养进行比较,以BMSC_(Tat)为滋养层培养的造血细胞总数及造血细胞形成的集落总数均明显少于以BMSC_(Con)为滋养层;BMSC_(Tat)的造血相关因子的mRNA的表达明显弱于BMSC_(Con),BMSC_(Tat)的条件培养液中GM-CSF和IL-6的浓度均明显低于BMSC_(Con)。结论:HIV-1 Tat蛋白对BMSC的造血支持功能有明显的抑制作用。  相似文献   

9.
A restricted number of studies have shown that human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic CD4+ T cells are present in HIV-1-infected individuals. However, the roles of this type of CD4+ T cell in the immune responses against an HIV-1 infection remain unclear. In this study, we identified novel Nef epitope-specific HLA-DRB1*0803-restricted cytotoxic CD4+ T cells. The CD4+ T-cell clones specific for Nef187-203 showed strong gamma interferon production after having been stimulated with autologous B-lymphoblastoid cells infected with recombinant vaccinia virus expressing Nef or pulsed with heat-inactivated virus particles, indicating the presentation of the epitope antigen through both exogenous and endogenous major histocompatibility complex class II processing pathways. Nef187-203-specific CD4+ T-cell clones exhibited strong cytotoxic activity against both HIV-1-infected macrophages and CD4+ T cells from an HLA-DRB1*0803+ donor. In addition, these Nef-specific cytotoxic CD4+ T-cell clones exhibited strong ability to suppress HIV-1 replication in both macrophages and CD4+ T cells in vitro. Nef187-203-specific cytotoxic CD4+ T cells were detected in cultures of peptide-stimulated peripheral blood mononuclear cells (PBMCs) and in ex vivo PBMCs from 40% and 20% of DRB1*0803+ donors, respectively. These results suggest that HIV-1-specific CD4+ T cells may directly control HIV-1 infection in vivo by suppressing virus replication in HIV-1 natural host cells.Human immunodeficiency virus (HIV)-specific CD8+ cytotoxic T cells (CTLs) play a central role in the control of HIV type 1 (HIV-1) during acute and chronic phases of an HIV-1 infection (5, 29, 34). However, HIV-1 escapes from the immune surveillance of CD8+ CTLs by mechanisms such as mutations of immunodominant CTL epitopes and downregulation of major histocompatibility complex class I (MHC-I) molecules on the infected cells (9, 11, 12, 49). Therefore, most HIV-1-infected patients without highly active antiretroviral therapy (HAART) develop AIDS eventually.HIV-1-specific CD4+ T cells also play an important role in host immune responses against HIV-1 infections. An inverse association of CD4+ T-cell responses with viral load in chronically HIV-1-infected patients was documented in a series of earlier studies (8, 36, 39, 41, 48), although the causal relationship between them still remains unclear (23). Classically, CD4+ T cells help the expansion of CD8+ CTLs by producing growth factors such as interleukin-2 (IL-2) or by their CD40 ligand interaction with antigen-processing cells and CD8+ CTLs. In addition, CD4+ T cells provide activation of macrophages, which can professionally maintain CD8+ T-cell memory (17). On the other hand, the direct ability of virus-specific cytotoxic CD4+ T cells (CD4+ CTLs) to kill target cells has been widely observed in human virus infections such as those by human cytomegalovirus, Epstein-Barr virus (EBV), hepatitis B virus, Dengue virus, and HIV-1 (2, 4, 10, 19, 30, 31, 38, 50). Furthermore, one study showed that mouse CD4+ T cells specific for lymphocytic choriomeningitis virus have cytotoxic activity in vivo (25). These results, taken together, indicate that a subset of effector CD4+ T cells develops cytolytic activity in response to virus infections.HIV-1-specific CD4+ CTLs were found to be prevalent in HIV-1 infections, as Gag-specific cytotoxic CD4+ T cells were detected directly ex vivo among peripheral blood mononuclear cells (PBMCs) from an HIV-1-infected long-term nonprogressor (31). Other studies showed that up to 50% of the CD4+ T cells in some HIV-1-infected donors can exhibit a clear cytolytic potential, in contrast to the fact that healthy individuals display few of these cells (3, 4). These studies indicate the real existence of CD4+ CTLs in HIV-1 infections.The roles of CD4+ CTLs in the control of an HIV-1 infection have not been widely explored. It is known that Gag-specific CD4+ CTLs can suppress HIV-1 replication in a human T-cell leukemia virus type 1-immortalized CD4+ T-cell line (31). However, the functions of CD4+ T cells specific for other HIV-1 antigens remain unclear. On the other hand, the abilities of CD4+ CTLs to suppress HIV-1 replication in infected macrophages and CD4+ T cells may be different, as in the case of CD8+ CTLs for HIV-1-infected macrophages (17). In this study, we identified Nef-specific CD4+ T cells and investigated their ability to kill HIV-1 R5 virus-infected macrophages and HIV-1 X4 virus-infected CD4+ T cells and to suppress HIV-1 replication in the infected macrophages and CD4+ T cells. The results obtained in the present study show for the first time the ability of HIV-1-specific CD4+ CTLs to suppress HIV-1 replication in natural host cells, i.e., macrophages and CD4+ T cells.  相似文献   

10.
11.
12.
13.
14.
Tuberculosis (TB) is the leading cause of mortality among those infected with human immunodeficiency virus (HIV-1) worldwide. HIV-1 load and heterogeneity are increased both locally and systemically in active TB. Mycobacterium tuberculosis (MTB) infection supports HIV-1 replication through dysregulation of host cytokines, chemokines, and their receptors. However the possibility that mycobacterial molecules released from MTB infected macrophages directly interact with CD4+ T cells triggering HIV-1 replication has not been fully explored. We studied the direct effect of different MTB molecules on HIV-1 replication (R5-tropic strain Bal) in anti-CD3- stimulated CD4+ T cells from healthy donors in an antigen presenting cell (APC)-free system. PIM6, a major glycolipid of the mycobacterial cell wall, induced significant increases in the percent of HIV-1 infected T cells and the viral production in culture supernatants. In spite of structural relatedness, none of the other three major MTB cell wall glycolipids had significant impact on HIV-1 replication in T cells. Increased levels of IFN-γ in culture supernatants from cells treated with PIM6 indicate that HIV-1 replication is likely dependent on enhanced T cell activation. In HEK293 cells transfected with TLR2, PIM6 was the strongest TLR2 agonist among the cell wall associated glycolipids tested. PIM6 increased the percentage of HIV infected cells and viral particles in the supernatant in a T-cell-based reporter cell line (JLTRg-R5) transfected with TLR1 and TLR2 but not in the cells transfected with the empty vector (which lack TLR2 expression) confirming that PIM6-induced HIV-1 replication depends at least partially on TLR2 signaling.  相似文献   

15.
STC1 is a glycoprotein hormone involved in calcium/phosphate (Pi) homeostasis. There is mounting evidence that STC1 is tightly associated with the development of cancer. But the function of STC1 in cancer is not fully understood. Here, we found that STC1 is down-regulated in Clinical tissues of cervical cancer compared to the adjacent normal cervical tissues (15 cases). Subsequently, the expression of STC1 was knocked down by RNA interference in cervical cancer CaSki cells and the low expression promoted cell growth, migration and invasion. We also found that STC1 overexpression inhibited cell proliferation and invasion of cervical cancer cells. Moreover, STC1 overexpression sensitized CaSki cells to drugs. Further, we showed that NF-κB p65 protein directly bound to STC1 promoter and activated the expression of STC1 in cervical cancer cells. Thus, these results provided evidence that STC1 inhibited cell proliferation and invasion through NF-κB p65 activation in cervical cancer.  相似文献   

16.
To investigate the role of cell surface glycosaminoglycans (GAGs), including heparan sulfate (HS), on HIV-1 infection in human T cells, HIV-1 binding and infection were determined after treatment of T-cell lines and CD4 + T cells from normal peripheral blood mononuclear cells (PBMC) with GAG-degrading enzyme or a GAG metabolic sulfation inhibitor. Heparitinase I (hep I) and sodium chlorate prevented binding of HIV-1/IIIB to MT-4 cells as revealed by indirect immunofluorescence procedures, thereby inhibiting infection. Hep I was less effective in the binding inhibition of the macrophage-tropic strain HIV-1/SF162 than that of the T-cell line-tropic strain HIV-1/IIIB. The binding of HIV-1/SF162 was about 100-fold less dependent on cell surface HS than HIV-1/IIIB. Human HTLV-I positive T-cell lines expressed more HS than HTLV-I negative T-cell lines or normal CD4 + T cells when stained with anti-HS mAbs against either native or heparitinase-treated HS. With the exception of endo-β-galactosidase (endo-β-gal), GAG-degrading enzymes, including hep I, chondroitinase ABC (chon ABC), chondroitinase AC II (chon AC II) and keratanase, did not prevent the binding of HIV-1/IIIB to CD4+ T cells from normal PBMC. These results indicate that the cell surface HS of human T cells participates in HIV-1 infection by facilitating HIV-1/IIIB binding to MT-4 cells. In particular, the sulfation of HS chains is critical. Since the expression of cell surface HS varies among T cells, which are not consistently sensitive to hep I treatment in HIV-1 binding inhibition, other GAG-like molecules may also be involved.  相似文献   

17.
DBM-2198, a six-membered azasugar nucleotide (6-AZN)-containing phosphorothioate (P = S) oligonucleotide (AZPSON), was described in our previous publication [Lee et al. (2005)] with regard to its antiviral activity against a broad spectrum of HIV-1 variants. This report describes the mechanisms underlying the anti-HIV-1 properties of DBM-2198. The LTR-mediated reporter assay indicated that the anti-HIV-1 activity of DBM-2198 is attributed to an extracellular mode of action rather than intracellular sequence-specific antisense activity. Nevertheless, the antiviral properties of DBM-2198 and other AZPSONs were highly restricted to HIV-1. Unlike other P = S oligonucleo-tides, DBM-2198 caused no host cell activation upon administration to cultures. HIV-1 that was pre-incubated with DBM-2198 did not show any infectivity towards host cells whereas host cells pre-incubated with DBM-2198 remained susceptible to HIV-1 infection, suggesting that DBM-2198 acts on the virus particle rather than cell surface molecules in the inhibition of HIV-1 infection. Competition assays for binding to HIV-1 envelope protein with anti-gp120 and anti-V3 antibodies revealed that DBM-2198 acts on the viral attachment site of HIV-1 gp120, but not on the V3 region. This report provides a better understanding of the antiviral mechanism of DBM-2198 and may contribute to the development of a potential therapeutic drug against a broad spectrum of HIV-1 variants.  相似文献   

18.
研究了重组痘苗病毒表达的HIV1核心蛋白(Gag)p17p24蛋白的一些生物学及免疫学特点。间接免疫荧光、DotELISA及Westernblot结果表明,构建的两株重组病毒分别表达了HIV1Gagp24及p17p24融合蛋白。电镜观察证实,Gagp24及p1724重组蛋白均可形成病毒样粒子。重组病毒可诱导小鼠产生抗HIV1Gagp24抗体。重组病毒感染BHK21细胞后,可见由于细胞凋亡而致的染色体DNA断裂“梯子”电泳图。  相似文献   

19.
Coarse-grained models of the HIV-1 CA dimer are constructed based on all-atom molecular dynamics simulations. Coarse-grained representations of the capsid shell, which is composed of ∼1500 copies of CA proteins, are constructed and their stability is examined. A key interaction between carboxyl and hexameric amino terminal domains is shown to generate the curvature of the capsid shell. It is demonstrated that variation of the strength of this interaction for different subunits in the lattice can cause formation of asymmetric, conical-shaped closed capsid shells, and it is proposed that variations, in the structure of the additional carboxyl-amino terminal binding interface during self-assembly, are important aspects of capsid cone formation. These results are in agreement with recent structural studies of the capsid hexamer subunit, which suggest that variability in the binding interface is a cause of the differences in subunit environments that exist in a conical structure.  相似文献   

20.
Genetic mutations in osteoclastogenic genes are closely associated with osteopetrotic bone diseases. Genetic defects in OSTM1 (osteopetrosis-associated transmembrane protein 1) cause autosomal recessive osteopetrosis in humans. In particular, OSTM1 mutations that exclude the transmembrane domain might lead to the production of a secreted form of truncated OSTM1. However, the precise role of the secreted form of truncated OSTM1 remains unknown. In this study, we analyzed the functional role of truncated OSTM1 in osteoclastogenesis. Here, we showed that a secreted form of truncated OSTM1 binds to the cell surface of osteoclast (OC) precursors and inhibits the formation of multinucleated OCs through the reduction of cell fusion and survival. Truncated OSTM1 significantly inhibited the expression of OC marker genes through the down-regulation of the BLIMP1 (B lymphocyte-induced maturation protein 1)-NFATc1 (nuclear factor of activated T cells c1) axis. Finally, we demonstrated that truncated OSTM1 reduces lipopolysaccharide-induced bone destruction in vivo. Thus, these findings suggest that autosomal recessive osteopetrosis patients with an OSTM1 gene mutation lacking the transmembrane domain produce a secreted form of truncated OSTM1 that inhibits osteoclastogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号