首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).  相似文献   

2.
An electricity-generating bacterium, Geobacter sulfurreducens PCA, was inoculated into a single-chamber, air-cathode microbial fuel cell (MFC) in order to determine the maximum electron transfer rate from bacteria to the anode. To create anodic reaction-limiting conditions, where electron transfer from bacteria to the anode is the rate-limiting step, anodes with electrogenic biofilms were reduced in size and tests were conducted using anodes of six different sizes. The smallest anode (7 cm2, or 1.5 times larger than the cathode) achieved an anodic reaction-limiting condition as a result of a limited mass of bacteria on the electrode. Under these conditions, the limiting current density reached a maximum of 1,530 mA/m2, and power density reached a maximum of 461 mW/m2. Per-biomass efficiency of the electron transfer rate was constant at 32 fmol cell−1 day−1 (178 μmol g of protein−1 min−1), a rate comparable to that with solid iron as the electron acceptor but lower than rates achieved with fumarate or soluble iron. In comparison, an enriched electricity-generating consortium reached 374 μmol g of protein−1 min−1 under the same conditions, suggesting that the consortium had a much greater capacity for electrode reduction. These results demonstrate that per-biomass electrode reduction rates (calculated by current density and biomass density on the anode) can be used to help make better comparisons of electrogenic activity in MFCs.  相似文献   

3.
Primary features of hydrogen and carbon isotope fractionation during toluene degradation were studied to evaluate if analysis of isotope signatures can be used as a tool to monitor biodegradation in contaminated aquifers. D/H hydrogen isotope fractionation during microbial degradation of toluene was measured by gas chromatography. Per-deuterated toluene-d8 and nonlabeled toluene were supplied in equal amounts as growth substrates, and kinetic isotope fractionation was calculated from the shift of the molar ratios of toluene-d8 and nondeuterated toluene. The D/H isotope fractionation varied slightly for sulfate-reducing strain TRM1 (slope of curve [b] = −1.219), Desulfobacterium cetonicum (b = −1.196), Thauera aromatica (b = −0.816), and Geobacter metallireducens (b = −1.004) and was greater for the aerobic bacterium Pseudomonas putida mt-2 (b = −2.667). The D/H isotope fractionation was 3 orders of magnitude greater than the 13C/12C carbon isotope fractionation reported previously. Hydrogen isotope fractionation with nonlabeled toluene was 1.7 and 6 times less than isotope fractionation with per-deuterated toluene-d8 and nonlabeled toluene for sulfate-reducing strain TRM1 (b = −0.728) and D. cetonicum (b = −0.198), respectively. Carbon and hydrogen isotope fractionation during toluene degradation by D. cetonicum remained constant over a growth temperature range of 15 to 37°C but varied slightly during degradation by P. putida mt-2, which showed maximum hydrogen isotope fractionation at 20°C (b = −4.086) and minimum fractionation at 35°C (b = −2.138). D/H isotope fractionation was observed only if the deuterium label was located at the methyl group of the toluene molecule which is the site of the initial enzymatic attack on the substrate by the bacterial strains investigated in this study. Use of ring-labeled toluene-d5 in combination with nondeuterated toluene did not lead to significant D/H isotope fractionation. The activity of the first enzyme in the anaerobic toluene degradation pathway, benzylsuccinate synthase, was measured in cell extracts of D. cetonicum with an initial activity of 3.63 mU (mg of protein)−1. The D/H isotope fractionation (b = −1.580) was 30% greater than that in growth experiments with D. cetonicum. Mass spectroscopic analysis of the product benzylsuccinate showed that H atoms abstracted from the toluene molecules by the enzyme were retained in the same molecules after the product was released. Our findings revealed that the use of deuterium-labeled toluene was appropriate for studying basic features of D/H isotope fractionation. Similar D/H fractionation factors for toluene degradation by anaerobic bacteria, the lack of significant temperature dependence, and the strong fractionation suggest that analysis of D/H fractionation can be used as a sensitive tool to assess degradation activities. Identification of the first enzyme reaction in the pathway as the major fractionating step provides a basis for linking observed isotope fractionation to biochemical reactions.  相似文献   

4.
Microbial fuel cells hold great promise as a sustainable biotechnological solution to future energy needs. Current efforts to improve the efficiency of such fuel cells are limited by the lack of knowledge about the microbial ecology of these systems. The purposes of this study were (i) to elucidate whether a bacterial community, either suspended or attached to an electrode, can evolve in a microbial fuel cell to bring about higher power output, and (ii) to identify species responsible for the electricity generation. Enrichment by repeated transfer of a bacterial consortium harvested from the anode compartment of a biofuel cell in which glucose was used increased the output from an initial level of 0.6 W m−2 of electrode surface to a maximal level of 4.31 W m−2 (664 mV, 30.9 mA) when plain graphite electrodes were used. This result was obtained with an average loading rate of 1 g of glucose liter−1 day−1 and corresponded to 81% efficiency for electron transfer from glucose to electricity. Cyclic voltammetry indicated that the enhanced microbial consortium had either membrane-bound or excreted redox components that were not initially detected in the community. Dominant species of the enhanced culture were identified by denaturing gradient gel electrophoresis and culturing. The community consisted mainly of facultative anaerobic bacteria, such as Alcaligenes faecalis and Enterococcus gallinarum, which are capable of hydrogen production. Pseudomonas aeruginosa and other Pseudomonas species were also isolated. For several isolates, electrochemical activity was mainly due to excreted redox mediators, and one of these mediators, pyocyanin produced by P. aeruginosa, could be characterized. Overall, the enrichment procedure, irrespective of whether only attached or suspended bacteria were examined, selected for organisms capable of mediating the electron transfer either by direct bacterial transfer or by excretion of redox components.  相似文献   

5.
Studies were conducted to identify a 64-kD thylakoid membrane protein of unknown function. The protein was extracted from chloroplast thylakoids under low ionic strength conditions and purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Four peptides generated from the proteolytic cleavage of the wheat 64-kD protein were sequenced and found to be identical to internal sequences of the chloroplast-coupling factor (CF1) α-subunit. Antibodies for the 64-kD protein also recognized the α-subunit of CF1. Both the 64-kD protein and the 61-kD CF1 α-subunit were present in the monocots barley (Hordeum vulgare), maize (Zea mays), oat (Avena sativa), and wheat (Triticum aestivum); but the dicots pea (Pisum sativum), soybean (Glycine max Merr.), and spinach (Spinacia oleracea) contained only a single polypeptide corresponding to the CF1 α-subunit. The 64-kD protein accumulated in response to high irradiance (1000 μmol photons m−2 s−1) and declined in response to low irradiance (80 μmol photons m−2 s−1) treatments. Thus, the 64-kD protein was identified as an irradiance-dependent isoform of the CF1 α-subunit found only in monocots. Analysis of purified CF1 complexes showed that the 64-kD protein represented up to 15% of the total CF1 α-subunit.  相似文献   

6.
Direct, shuttle-free uptake of extracellular, cathode-derived electrons has been postulated as a novel mechanism of electron metabolism in some prokaryotes that may also be involved in syntrophic electron transport between two microorganisms. Experimental proof for direct uptake of cathodic electrons has been mostly indirect and has been based on the absence of detectable concentrations of molecular hydrogen. However, hydrogen can be formed as a transient intermediate abiotically at low cathodic potentials (<−414 mV) under conditions of electromethanogenesis. Here we provide genetic evidence for hydrogen-independent uptake of extracellular electrons. Methane formation from cathodic electrons was observed in a wild-type strain of the methanogenic archaeon Methanococcus maripaludis as well as in a hydrogenase-deletion mutant lacking all catabolic hydrogenases, indicating the presence of a hydrogenase-independent mechanism of electron catabolism. In addition, we discovered a new route for hydrogen or formate production from cathodic electrons: Upon chemical inhibition of methanogenesis with 2-bromo-ethane sulfonate, hydrogen or formate accumulated in the bioelectrochemical cells instead of methane. These results have implications for our understanding on the diversity of microbial electron uptake and metabolism.  相似文献   

7.
Although metals are thought to inhibit the ability of microorganisms to degrade organic pollutants, several microbial mechanisms of resistance to metal are known to exist. This study examined the potential of cadmium-resistant microorganisms to reduce soluble cadmium levels to enhance degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under conditions of cocontamination. Four cadmium-resistant soil microorganisms were examined in this study. Resistant up to a cadmium concentration of 275 μg ml−1, these isolates represented the common soil genera Arthrobacter, Bacillus, and Pseudomonas. Isolates Pseudomonas sp. strain H1 and Bacillus sp. strain H9 had a plasmid-dependent intracellular mechanism of cadmium detoxification, reducing soluble cadmium levels by 36%. Isolates Arthrobacter strain D9 and Pseudomonas strain I1a both produced an extracellular polymer layer that bound and reduced soluble cadmium levels by 22 and 11%, respectively. Although none of the cadmium-resistant isolates could degrade 2,4-D, results of dual-bioaugmentation studies conducted with both pure culture and laboratory soil microcosms showed that each of four cadmium-resistant isolates supported the degradation of 500-μg ml−1 2,4-D by the cadmium-sensitive 2,4-D degrader Ralstonia eutropha JMP134. Degradation occurred in the presence of up to 24 μg of cadmium ml−1 in pure culture and up to 60 μg of cadmium g−1 in amended soil microcosms. In a pilot field study conducted with 5-gallon soil bioreactors, the dual-bioaugmentation strategy was again evaluated. Here, the cadmium-resistant isolate Pseudomonas strain H1 enhanced degradation of 2,4-D in reactors inoculated with R. eutropha JMP134 in the presence of 60 μg of cadmium g−1. Overall, dual bioaugmentation appears to be a viable approach in the remediation of cocontaminated soils.  相似文献   

8.
The anaerobic bacterium Desulfobacterium cetonicum oxidized p-cresol completely to CO2 with sulfate as the electron acceptor. During growth, 4-hydroxybenzylsuccinate accumulated in the medium. This finding indicated that the methyl group of p-cresol is activated by addition to fumarate, analogous to anaerobic toluene, m-xylene, and m-cresol degradation. In cell extracts, the formation of 4-hydroxybenzylsuccinate from p-cresol and fumarate was detected at an initial rate of 0.57 nmol min−1 (mg of protein)−1. This activity was specific for extracts of p-cresol-grown cells. 4-Hydroxybenzylsuccinate was degraded further to 4-hydroxybenzoyl-coenzyme A (CoA), most likely via β-oxidation. 4-Hydroxybenzoyl-CoA was reductively dehydroxylated to benzoyl-CoA. There was no evidence of degradation of p-cresol via methyl group oxidation by p-cresol-methylhydroxylase in this bacterium.  相似文献   

9.
Trace (microgram liter−1) quantities of either toluene or benzene injected into an amino-acid-limited continuous culture of Pseudomonas sp. strain T2 were utilized immediately with affinities of 2.6 and 6.8 liters g of cells−1 h−1, respectively, and yielded large amounts of organic products, carbon dioxide, and cells. The immediate utilization of hydrocarbons by hydrocarbon-deprived organisms helps to establish the nutritional value of nonpolar substrates in the environment. The observation of small Michaelis constants for toluene transport led to tests of metabolic competition between hydrocarbons; however, competitive inhibition of toluene metabolism was not found for benzene, naphthalene, xylene, dodecane, or amino acids. Benzene and terpenes were inhibitory at milligram liter−1 concentrations. Toluene was metabolized by a strongly inducible system when compared with benzene. The capacity of toluene to effect larger affinity values increased with exposure time and concentration. The kinetics of induction suggested saturation phenomena, resulting in an induction constant, Kind, of 96 μg of toluene liter−1. Maximal induction of amino-acid-grown cells required about 80 h, with the affinity reaching 317 liters g of cells−1 h−1.  相似文献   

10.
Up to 0.4 mM 1,3-dimethylbenzene (m-xylene) was rapidly mineralized in a laboratory aquifer column operated in the absence of molecular oxygen with nitrate as an electron acceptor. Under continuous flow conditions, the degradation rate constant (pseudo-first order) was >0.45 h−1. Based on a carbon mass balance with [ring-14C]m-xylene and a calculation of the electron balance, m-xylene was shown to be quantitatively (80%) oxidized to CO2 with a concomitant reduction of nitrate. The mineralization of m-xylene in the column also took place after reducing the redox potential, E′, of the inflowing medium with sulfide to <−0.11 V. Microorganisms adapted to growth on m-xylene were also able to degrade toluene under denitrifying conditions. These results suggest that aromatic hydrocarbons present in anoxic environments such as lake sediments, sludge digestors, and groundwater infiltration zones from landfills and polluted rivers are not necessarily persistent but may be mineralized in the absence of molecular oxygen.  相似文献   

11.
SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (Em) at pH 7.0 of approximately +210, −340, and −400 mV for the His/Met, His/Cys, and active site His/CysS-ligated heme, respectively. Exposing SoxAX to S2O42−, a substrate analog with Em ∼−450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (Em ∼−1140 mV), allows cyanide to displace the cysteine persulfide (CysS) ligand to the active site heme. This provides the first evidence for the dissociation of CysS that has been proposed as a key event in SoxAX catalysis.  相似文献   

12.
Kinetics of Perchlorate- and Chlorate-Respiring Bacteria   总被引:3,自引:2,他引:3       下载免费PDF全文
Ten chlorate-respiring bacteria were isolated from wastewater and a perchlorate-degrading bioreactor. Eight of the isolates were able to degrade perchlorate, and all isolates used oxygen and chlorate as terminal electron acceptors. The growth kinetics of two perchlorate-degrading isolates, designated “Dechlorosoma” sp. strains KJ and PDX, were examined with acetate as the electron donor in batch tests. The maximum observed aerobic growth rates of KJ and PDX (0.27 and 0.28 h−1, respectively) were only slightly higher than the anoxic growth rates obtained by these isolates during growth with chlorate (0.26 and 0.21 h−1, respectively). The maximum observed growth rates of the two non-perchlorate-utilizing isolates (PDA and PDB) were much higher under aerobic conditions (0.64 and 0.41 h−1, respectively) than under anoxic (chlorate-reducing) conditions (0.18 and 0.21 h−1, respectively). The maximum growth rates of PDX on perchlorate and chlorate were identical (0.21 h−1) and exceeded that of strain KJ on perchlorate (0.14 h−1). Growth of one isolate (PDX) was more rapid on acetate than on lactate. There were substantial differences in the half-saturation constants measured for anoxic growth of isolates on acetate with excess perchlorate (470 mg/liter for KJ and 45 mg/liter for PDX). Biomass yields (grams of cells per gram of acetate) for strain KJ were not statistically different in the presence of the electron acceptors oxygen (0.46 ± 0.07 [n = 7]), chlorate (0.44 ± 0.05 [n = 7]), and perchlorate (0.50 ± 0.08 [n = 7]). These studies provide evidence that facultative microorganisms with the capability for perchlorate and chlorate respiration exist, that not all chlorate-respiring microorganisms are capable of anoxic growth on perchlorate, and that isolates have dissimilar growth kinetics using different electron donors and acceptors.  相似文献   

13.
The effects of trichloroethylene (TCE) oxidation on toluene 2-monooxygenase activity, general respiratory activity, and cell culturability were examined in the toluene-oxidizing bacterium Burkholderia cepacia G4. Nonspecific damage outpaced inactivation of toluene 2-monooxygenase in B. cepacia G4 cells. Cells that had degraded approximately 0.5 μmol of TCE (mg of cells−1) lost 95% of their acetate-dependent O2 uptake activity (a measure of general respiratory activity), yet toluene-dependent O2 uptake activity decreased only 35%. Cell culturability also decreased upon TCE oxidation; however, the extent of loss varied greatly (up to 3 orders of magnitude) with the method of assessment. Addition of catalase or sodium pyruvate to the surfaces of agar plates increased enumeration of TCE-injured cells by as much as 100-fold, indicating that the TCE-injured cells were ultrasensitive to oxidative stress. Cell suspensions that had oxidized TCE recovered the ability to grow in liquid minimal medium containing lactate or phenol, but recovery was delayed substantially when TCE degradation approached 0.5 μmol (mg of cells−1) or 66% of the cells' transformation capacity for TCE at the cell density utilized. Furthermore, among B. cepacia G4 cells isolated on Luria-Bertani agar plates from cultures that had degraded approximately 0.5 μmol of TCE (mg of cells−1), up to 90% were Tol variants, no longer capable of TCE degradation. These results indicate that a toxicity threshold for TCE oxidation exists in B. cepacia G4 and that once a cell suspension has exceeded this toxicity threshold, the likelihood of reestablishing an active, TCE-degrading biomass from the cells will decrease significantly.  相似文献   

14.
Pelobacter carbinolicus and P. acetylenicus oxidize ethanol in syntrophic cooperation with methanogens. Cocultures with Methanospirillum hungatei served as model systems for the elucidation of syntrophic ethanol oxidation previously done with the lost “Methanobacillus omelianskii” coculture. During growth on ethanol, both Pelobacter species exhibited NAD+-dependent alcohol dehydrogenase activity. Two different acetaldehyde-oxidizing activities were found: a benzyl viologen-reducing enzyme forming acetate, and a NAD+-reducing enzyme forming acetyl-CoA. Both species synthesized ATP from acetyl-CoA via acetyl phosphate. Comparative 2D-PAGE of ethanol-grown P. carbinolicus revealed enhanced expression of tungsten-dependent acetaldehyde: ferredoxin oxidoreductases and formate dehydrogenase. Tungsten limitation resulted in slower growth and the expression of a molybdenum-dependent isoenzyme. Putative comproportionating hydrogenases and formate dehydrogenase were expressed constitutively and are probably involved in interspecies electron transfer. In ethanol-grown cocultures, the maximum hydrogen partial pressure was about 1,000 Pa (1 mM) while 2 mM formate was produced. The redox potentials of hydrogen and formate released during ethanol oxidation were calculated to be EH2 = -358±12 mV and EHCOOH = -366±19 mV, respectively. Hydrogen and formate formation and degradation further proved that both carriers contributed to interspecies electron transfer. The maximum Gibbs free energy that the Pelobacter species could exploit during growth on ethanol was −35 to −28 kJ per mol ethanol. Both species could be cultivated axenically on acetaldehyde, yielding energy from its disproportionation to ethanol and acetate. Syntrophic cocultures grown on acetoin revealed a two-phase degradation: first acetoin degradation to acetate and ethanol without involvement of the methanogenic partner, and subsequent syntrophic ethanol oxidation. Protein expression and activity patterns of both Pelobacter spp. grown with the named substrates were highly similar suggesting that both share the same steps in ethanol and acetalydehyde metabolism. The early assumption that acetaldehyde is a central intermediate in Pelobacter metabolism was now proven biochemically.  相似文献   

15.
The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a very low rate (31 nmol mg of cells [dry weight]−1 h−1). All four strains were maintained in the mixed culture at comparable numbers when TCE was absent. After the start of the addition of TCE, the viabilities of B. cepacia G4 and P. putida F1 and GJ31 decreased 50- to 1,000-fold in 1 month. These bacteria can degrade TCE, although at considerably different rates. P. putida mt-2, which did not degrade TCE, became the dominant organism. Kinetic analysis showed that the presence of TCE caused up to a ninefold reduction in the affinity for toluene of the three disappearing strains, indicating that inhibition of toluene degradation by TCE occurred. While P. putida mt-2 took over the culture, mutants of this strain which could no longer grow on p-xylene arose. Most of them had less or no meta-cleavage activity and were able to grow on toluene with a higher growth rate. The results indicate that cometabolic degradation of TCE has a negative effect on the maintenance and competitive behavior of toluene-utilizing organisms that transform TCE.  相似文献   

16.
Photoinhibition of photosystem II (PSII) electron transport and subsequent degradation of the D1 protein were studied in pumpkin (Cucurbita pepo L.) leaves developed under high (1000 μmol m−2 s−1) and low (80 μmol m−2 s−1) photon flux densities. The low-light leaves were more susceptible to high light. This difference was greatly diminished when illumination was performed in the presence of chloramphenicol, indicating that a poor capacity to repair photodamaged PSII centers is decisive in the susceptibility of low-light leaves to photoinhibition. In fact, the first phases of the repair cycle, degradation and removal of photodamaged D1 protein from the reaction center complex, occurred slowly in low-light leaves, whereas in high-light leaves the degradation of the D1 protein more readily followed photoinhibition of PSII electron transport. A modified form of the D1 protein, with slightly slower electrophoretic mobility than the original D1, accumulated in the appressed thylakoid membranes of low-light leaves during illumination and was subsequently degraded only slowly.  相似文献   

17.
Directed evolution of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 previously created the hydroxylase α-subunit (TomA3) V106A variant (TOM-Green) with increased activity for both trichloroethylene degradation (twofold enhancement) and naphthalene oxidation (six-times-higher activity). In the present study, saturation mutagenesis was performed at position A106 with Escherichia coli TG1/pBS(Kan)TOMV106A to improve TOM activity for both chloroform degradation and naphthalene oxidation. Whole cells expressing the A106E variant had two times better naphthalene-to-1-naphthol activity than the wild-type cells (Vmax of 9.3 versus 4.5 nmol·min−1·mg of protein−1 and unchanged Km), and the regiospecificity of the A106E variant was unchanged, with 98% 1-naphthol formed, as was confirmed with high-pressure liquid chromatography. The A106E variant degrades its natural substrate toluene 63% faster than wild-type TOM does (2.12 ± 0.07 versus 1.30 ± 0.06 nmol·min−1·mg of protein−1 [mean ± standard deviation]) at 91 μM and has a substantial decrease in regiospecificity, since o-cresol (50%), m-cresol (25%), and p-cresol (25%) are formed, in contrast to the 98% o-cresol formed by wild-type TOM. The A106E variant also has an elevated expression level compared to that of wild-type TOM, as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Another variant, the A106F variant, has 2.8-times-better chloroform degradation activity based on gas chromatography (Vmax of 2.61 versus 0.95 nmol·min−1·mg of protein−1 and unchanged Km) and chloride release (0.034 ± 0.002 versus 0.012 ± 0.001 nmol·min−1·mg of protein−1). The A106F variant also was expressed at levels similar to those of wild-type TOM and 62%-better toluene oxidation activity than wild-type TOM (2.11 ± 0.3 versus 1.30 ± 0.06 nmol·min−1·mg of protein−1). A shift in regiospecificity of toluene hydroxylation was also observed for the A106F variant, with o-cresol (28%), m-cresol (18%), and p-cresol (54%) being formed. Statistical analysis was used to estimate that 292 colonies must be screened for a 99% probability that all 64 codons were sampled during saturation mutagenesis.  相似文献   

18.
Dehalococcoides ethenogenes strain 195 reductively dechlorinates tetrachloroethene (PCE) and trichloroethene (TCE) to vinyl chloride and ethene using H2 as an electron donor. PCE- and TCE-reductive dehalogenase (RD) activities were mainly membrane associated, whereas only about 20% of the hydrogenase activity was membrane associated. Experiments with methyl viologen (MV) were consistent with a periplasmic location for the RDs or a component feeding electrons to them. The protonophore uncoupler tetrachlorosalicylanilide did not inhibit reductive dechlorination in cells incubated with H2 and PCE and partially restored activity in cells incubated with the ATPase inhibitor N,N′-dicyclohexylcarbodiimide. Benzyl viologen or diquat (Eo′ ≈ −360 mV) supported reductive dechlorination of PCE or TCE at rates comparable to MV (−450 mV) in cell extracts.  相似文献   

19.
Iodine is oxidized and reduced as part of a biogeochemical cycle that is especially pronounced in the oceans, where the element naturally concentrates. The use of oxidized iodine in the form of iodate (IO3) as an electron acceptor by microorganisms is poorly understood. Here, we outline genetic, physiological, and ecological models for dissimilatory IO3 reduction to iodide (I) by a novel estuarine bacterium, Denitromonas sp. IR-12. Our results show that dissimilatory iodate reduction (DIR) by strain IR-12 is molybdenum-dependent and requires an IO3 reductase (idrA) and likely other genes in a mobile cluster with a conserved association across known and predicted DIR microorganisms (DIRM). Based on genetic and physiological data, we propose a model where three molecules of IO3 are likely reduced to three molecules of hypoiodous acid (HIO), which rapidly disproportionate into one molecule of IO3 and two molecules of iodide (I), in a respiratory pathway that provides an energy yield equivalent to that of nitrate or perchlorate respiration. Consistent with the ecological niche expected of such a metabolism, idrA is enriched in the metagenome sequence databases of marine sites with a specific biogeochemical signature (high concentrations of nitrate and phosphate) and diminished oxygen. Taken together, these data suggest that DIRM help explain the disequilibrium of the IO3:I concentration ratio above oxygen-minimum zones and support a widespread iodine redox cycle mediated by microbiology.Subject terms: Biogeochemistry, Biogeochemistry, Microbial ecology  相似文献   

20.
The influence of glucose concentration on Cd, Cu, Hg, and Zn toxicity to a Klebsiella sp. was studied by following the degradation of 14C-labeled glucose at pH 6.0. Uptake of 14C into the cells was also determined. The carbon concentrations ranged from 0.01 to 40 mg liter−1, which are equivalent to soluble C concentrations in natural environments. The toxicity of Cu, Cd, and Zn to a Klebsiella sp. was affected considerably by the C concentration. Copper at 10−5 M was toxic when the carbon concentration was 10 or 40 mg liter−1, while at 0.01 to 1.0 mg liter−1 no toxicity was observed. Cadmium and zinc were toxic at 10−2 M in media containing 0.01 to 1.0 mg of C liter−1. At C concentrations greater than 1.0 mg liter−1, the inhibition of glucose degradation and carbon assimilation was observed at 10−3 M Cd and Zn. The toxicity of mercury seemed to be independent of the C concentration. Results of this study showed that the nutritional state of an organism may have a profound effect on its sensitivity to metals. Metals taken up by an energy-driven transport system may be less toxic under conditions of C starvation. The C concentration should be taken into account when evaluating results from toxicity studies, especially as most microorganisms in nature live under energy-limited conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号