首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysosomes provide a niche for molecular digestion and are a convergence point for endocytic trafficking, phagosome maturation and autophagy. Typically, lysosomes are small, globular organelles that appear punctate under the fluorescence microscope. However, activating agents like phorbol esters transform macrophage lysosomes into tubular lysosomes (TLs), which have been implicated in retention of pinocytic uptake and phagosome maturation. Moreover, dendritic cells exposed to lipopolysaccharides (LPSs) convert their punctate class II major histocompatibility complex compartment, a lysosome‐related organelle, into a tubular network that is thought to be involved in antigen presentation. Other than a requirement for microtubules and kinesin, little is known about the molecular mechanisms that drive lysosome tubulation. Here, we show that macrophage cell lines readily form TLs after LPS exposure, with a requirement for the Rab7 GTPase and its effectors RILP (Rab7‐interacting lysosomal protein) and FYCO1 (coiled‐coil domain‐containing protein 1), which respectively modulate the dynein and kinesin microtubule motor proteins. We also show that Arl8B, a recently identified lysosomal GTPase, and its effector SKIP, are also important for TL biogenesis. Finally, we reveal that TLs are significantly more motile than punctate lysosomes within the same LPS‐treated cells. Therefore, we identify the first molecular regulators of lysosome tubulation and we show that TLs represent a more dynamic lysosome population.  相似文献   

2.
The dependence of neurons on microtubule-based motors for the movement of lysosomes over long distances raises questions about adaptations that allow neurons to meet these demands. Recently, JIP3/MAPK8IP3, a neuronally enriched putative adaptor between lysosomes and motors, was identified as a critical regulator of axonal lysosome abundance. In this study, we establish a human induced pluripotent stem cell (iPSC)-derived neuron model for the investigation of axonal lysosome transport and maturation and show that loss of JIP3 results in the accumulation of axonal lysosomes and the Alzheimer’s disease–related amyloid precursor protein (APP)-derived Aβ42 peptide. We furthermore reveal an overlapping role of the homologous JIP4 gene in lysosome axonal transport. These results establish a cellular model for investigating the relationship between lysosome axonal transport and amyloidogenic APP processing and more broadly demonstrate the utility of human iPSC–derived neurons for the investigation of neuronal cell biology and pathology.  相似文献   

3.
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell–mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.  相似文献   

4.
Lysosomes move bidirectionally on microtubules, and this motility can be stimulated by overexpression of the small GTPase Arl8. By using affinity chromatography, we find that Arl8-GTP binds to the soluble protein SKIP (SifA and kinesin-interacting protein, aka PLEKHM2). SKIP was originally identified as a target of the Salmonella effector protein SifA and found to bind the light chain of kinesin-1 to activate the motor on the bacteria's replicative vacuole. We show that in uninfected cells both Arl8 and SKIP are required for lysosomes to distribute away from the microtubule-organizing center. We identify two kinesin light chain binding motifs in SKIP that are required for lysosomes to accumulate kinesin-1 and redistribute to the cell periphery. Thus, Arl8 binding to SKIP provides a link from lysosomal membranes to plus-end-directed motility. A splice variant of SKIP that lacks a light chain binding motif does not stimulate movement, suggesting fine-tuning by alternative splicing.  相似文献   

5.
6.
为探讨Arl8a(ADP—ribosylation factor-like 8A)与树突状细胞(dendritic cells.DCs)TLR4两条下游信号途径的关系,用Arl8a和GEFH1(guanine nucleotide-exchange factors H1)的siRNA转染来自野生型小鼠的DC,进行LPS刺激或未刺激处理后,检测TLR4-TRIF途径中RhoB靶蛋白MYH9的mRNA表达。然后从野生型和IFNα/β受体基因敲除小鼠中分离和培养DC,LPS刺激后收集细胞扩增总cDNA,通过实时定量PCR检测Arl8a的mRNA表达。再用Arl8a的siRNA转染DC,LPS刺激后检测IL-6和IL-12a的mRNA表达。结果表明,Arl8a和GEFH1的siRNA均能显著抑制LPS介导的MYH9的mRNA表达(P〈0.01),而且在LPs刺激后,Arl8a的mRNA表达在野生型小鼠的DC中增加,在IFNα/β受体基因敲除小鼠的DC中则未被上调。此外,Arl8a的siRNA对IL-6和IL-12a的mRNA表达没有显著效应。以上结果提示,在转录水平,Arl8a和GEFH1均对MYH9的表达有影响,并且Arl8a基因的表达与TRIF—IFNβ途径有关,Arl8a可能与MyD88途径中细胞因子IL-6和IL-12a的表达无关。  相似文献   

7.
Cell migration is mediated by the dynamic remodeling of focal adhesions (FAs). Recently, an important role of endosomal signaling in regulation of cell migration was recognized. Here, we show an essential function for late endosomes carrying the p14–MP1 (LAMTOR2/3) complex in FA dynamics. p14–MP1-positive endosomes move to the cell periphery along microtubules (MTs) in a kinesin1- and Arl8b-dependent manner. There they specifically target FAs to regulate FA turnover, which is required for cell migration. Using genetically modified fibroblasts from p14-deficient mice and Arl8b-depleted cells, we demonstrate that MT plus end–directed traffic of p14–MP1-positive endosomes triggered IQGAP1 disassociation from FAs. The release of IQGAP was required for FA dynamics. Taken together, our results suggest that late endosomes contribute to the regulation of cell migration by transporting the p14–MP1 scaffold complex to the vicinity of FAs.  相似文献   

8.
Lysosomes are essential organelles that function to degrade and recycle unwanted, damaged and toxic biological components. Lysosomes also act as signalling platforms in activating the nutrient‐sensing kinase mTOR. mTOR regulates cellular growth, but it also helps to maintain lysosome identity by initiating lysosomal tubulation through a process termed autophagosome‐lysosome reformation (ALR). Here we identify a lysosomal pool of phosphatidylinositol 3‐phosphate that, when depleted by specific inhibition of the class III phosphoinositide 3‐kinase VPS34, results in prolonged lysosomal tubulation. This tubulation requires mTOR activity, and we identified two direct mTOR phosphorylation sites on UVRAG (S550 and S571) that activate VPS34. Loss of these phosphorylation sites reduced VPS34 lipid kinase activity and resulted in an increase in number and length of lysosomal tubules. In cells in which phosphorylation at these UVRAG sites is disrupted, the result of impaired lysosomal tubulation alongside ALR activation is massive cell death. Our data imply that ALR is critical for cell survival under nutrient stress and that VPS34 is an essential regulatory element in this process.  相似文献   

9.
Acute liver injury (ALI) has multiple causes and results in liver dysfunction. Severe or persistent liver injury eventually leads to liver failure and even death. Pregnane X receptor (PXR)-null mice present more severe liver damage and lower rates of autophagy. 18β-glycyrrhetinic acid (GA) has been proposed as a promising hepatoprotective agent. We hypothesized that GA significantly alleivates D-GalN/LPS-induced ALI, which involved in PXR-mediated autophagy and lysosome biogenesis. We found that GA can significantly decrease hepatocyte apoptosis and increase the hepatic autophagy marker LC3-B. Ad-mCherry-GFP-LC3 tandem fluorescence, RNA-seq and real-time PCR indicated that GA may stabilize autophagosomes and lysosomes and inhibit autophagosome–lysosome fusion. Simultaneously, GA markedly activates PXR, even reversing the D-GalN/LPS-induced reduction of PXR and its downstream genes. In contrast, GA has a weak protective effect in pharmacological inhibition of PXR and PXR-null mice, which significantly affected apoptosis- and autophagy-related genes. PXR knockout interferes with the stability of autophagosomes and lysosomes, preventing GA reducing the expression of lysosomal genes such as Cst B and TPP1, and suppressing autophagy flow. Therefore, we believe that GA increases autophagy by inhibiting autophagosome–lysosome fusion and blocked autophagy flux via activation of PXR. In conclusion, our results show that GA activates PXR to regulate autophagy and lysosome biogenesis, represented by inhibiting autophagosome–lysosome fusion and stabilization of lysosome. These results identify a new mechanism by which GA-dependent PXR activation reduces D-GalN/LPS-induced acute liver injury.Subject terms: Metabolic disorders, Immunopathogenesis  相似文献   

10.
The small GTPase Arl8 is known to be involved in the periphery-directed motility of lysosomes. However, the overall importance of moving these vesicles is still poorly understood. Here we show that Drosophila Arl8 is required not only for the proper distribution of lysosomes, but also for autophagosome-lysosome fusion in starved fat cells, endosome-lysosome fusion in garland nephrocytes, and developmentally programmed secretory granule degradation (crinophagy) in salivary gland cells. Moreover, proper Arl8 localization to lysosomes depends on the shared subunits of the BLOC-1 and BORC complexes, which also promote autophagy and crinophagy. In conclusion, we demonstrate that Arl8 is responsible not only for positioning lysosomes but also acts as a general lysosomal fusion factor.  相似文献   

11.
12.
Lysosomes are dynamic structures capable of fusing with endosomes as well as other lysosomes. We examined the biochemical requirements for homotypic lysosome fusion in vitro using lysosomes obtained from rabbit alveolar macrophages or the cultured macrophage-like cell line, J774E. The in vitro assay measures the formation of a biotinylated HRP–avidin conjugate, in which biotinylated HRP and avidin were accumulated in lysosomes by receptor-mediated endocytosis. We determined that lysosome fusion in vitro was time- and temperature-dependent and required ATP and an N-ethylmaleimide (NEM)-sensitive factor from cytosol. The NEM-sensitive factor was NSF as purified recombinant NSF could completely replace cytosol in the fusion assay whereas a dominant-negative mutant NSF inhibited fusion. Fusion in vitro was extensive; up to 30% of purified macrophage lysosomes were capable of self-fusion. Addition of GTPγs to the in vitro assay inhibited fusion in a concentration-dependent manner. Purified GDP-dissociation inhibitor inhibited homotypic lysosome fusion suggesting the involvement of rabs. Fusion was also inhibited by the heterotrimeric G protein activator mastoparan, but not by its inactive analogue Mas-17. Pertussis toxin, a Gαi activator, inhibited in vitro lysosome fusion whereas cholera toxin, a Gαs activator did not inhibit the fusion reaction. Addition of agents that either promoted or disrupted microtubule function had little effect on either the extent or rate of lysosome fusion. The high value of homotypic fusion was supported by in vivo experiments examining lysosome fusion in heterokaryons formed between cells containing fluorescently labeled lysosomes. In both macrophages and J774E cells, almost complete mixing of the lysosome labels was observed within 1–3 h of UV sendai-mediated cell fusion. These studies provide a model system for identifying the components required for lysosome fusion.  相似文献   

13.
Expression of the deubiquitinase USP17 is induced by multiple stimuli, including cytokines (IL‐4/6), chemokines (IL‐8, SDF1), and growth factors (EGF), and several studies indicate it is required for cell proliferation and migration. However, the mechanisms via which USP17 impacts upon these cellular functions are unclear. Here, we demonstrate that USP17 depletion prevents peripheral lysosome positioning, as well as trafficking of lysosomes to the cell periphery in response to EGF stimulation. Overexpression of USP17 also increases secretion of the lysosomal protease cathepsin D. In addition, USP17 depletion impairs plasma membrane repair in cells treated with the pore‐forming toxin streptolysin O, further indicating that USP17 is required for lysosome trafficking to the plasma membrane. Finally, we demonstrate that USP17 can deubiquitinate p62, and we propose that USP17 can facilitate peripheral lysosome trafficking by opposing the E3 ligase RNF26 to untether lysosomes from the ER and facilitate lysosome peripheral trafficking, lysosome protease secretion, and plasma membrane repair.  相似文献   

14.
Phagocytes engulf unwanted particles into phagosomes that then fuse with lysosomes to degrade the enclosed particles. Ultimately, phagosomes must be recycled to help recover membrane resources that were consumed during phagocytosis and phagosome maturation, a process referred to as “phagosome resolution.” Little is known about phagosome resolution, which may proceed through exocytosis or membrane fission. Here, we show that bacteria-containing phagolysosomes in macrophages undergo fragmentation through vesicle budding, tubulation, and constriction. Phagosome fragmentation requires cargo degradation, the actin and microtubule cytoskeletons, and clathrin. We provide evidence that lysosome reformation occurs during phagosome resolution since the majority of phagosome-derived vesicles displayed lysosomal properties. Importantly, we show that clathrin-dependent phagosome resolution is important to maintain the degradative capacity of macrophages challenged with two waves of phagocytosis. Overall, our work suggests that phagosome resolution contributes to lysosome recovery and to maintaining the degradative power of macrophages to handle multiple waves of phagocytosis.  相似文献   

15.
The metabolic and signaling functions of lysosomes depend on their intracellular positioning and trafficking, but the underlying mechanisms are little understood. Here, we have discovered a novel septin GTPase–based mechanism for retrograde lysosome transport. We found that septin 9 (SEPT9) associates with lysosomes, promoting the perinuclear localization of lysosomes in a Rab7-independent manner. SEPT9 targeting to mitochondria and peroxisomes is sufficient to recruit dynein and cause perinuclear clustering. We show that SEPT9 interacts with both dynein and dynactin through its GTPase domain and N-terminal extension, respectively. Strikingly, SEPT9 associates preferentially with the dynein intermediate chain (DIC) in its GDP-bound state, which favors dimerization and assembly into septin multimers. In response to oxidative cell stress induced by arsenite, SEPT9 localization to lysosomes is enhanced, promoting the perinuclear clustering of lysosomes. We posit that septins function as GDP-activated scaffolds for the cooperative assembly of dynein–dynactin, providing an alternative mechanism of retrograde lysosome transport at steady state and during cellular adaptation to stress.  相似文献   

16.
The facultative intracellular pathogen Salmonella enterica serovar Typhimurium establishes a replicative niche, the Salmonella-containing vacuole (SCV), in host cells. Here we demonstrate that these bacteria exploit the function of Arl8B, an Arf family GTPase, during infection. Following infection, Arl8B localized to SCVs and to tubulated endosomes that extended along microtubules in the host cell cytoplasm. Arl8B(+) tubules partially colocalized with LAMP1 and SCAMP3. Formation of LAMP1(+) tubules (the Salmonella-induced filaments phenotype; SIFs) required Arl8B expression. SIFs formation is known to require the activity of kinesin-1. Here we find that Arl8B is required for kinesin-1 recruitment to SCVs. We have previously shown that SCVs undergo centrifugal movement to the cell periphery at 24 h post infection and undergo cell-to-cell transfer to infect neighbouring cells, and that both phenotypes require kinesin-1 activity. Here we demonstrate that Arl8B is required for migration of the SCV to the cell periphery 24 h after infection and for cell-to-cell transfer of bacteria to neighbouring cells. These results reveal a novel host factor co-opted by S. Typhimurium to manipulate the host endocytic pathway and to promote the spread of infection within a host.  相似文献   

17.
Lysosomes are late-endocytic organelles which primarily contribute to degradation and recycling of cellular material. From a previous proteomics study of purified rat liver lysosomal membranes we identified a protein from the Arf-family of small GTPases, Arl8b. Although proteins of the Arf-family have roles in a wide range of cellular functions, most notably roles in protein/vesicular trafficking, Arl8b represents the first from this protein family to be associated with a late-endocytic organelle. We demonstrate the co-localization of this protein with various lysosomal markers in different cell lines by confocal-immunofluorescence microscopy. We also show that GTP-restricted mutant Arl8b localizes to lysosomes and causes their redistribution to the periphery of the cell and into membrane projections. This indicates that Arl8b is involved in trafficking processes for lysosomes.  相似文献   

18.
Interaction of Ag-loaded dendritic cells with Ag-specific CD4 T cells induces the formation of long tubular class II MHC-positive compartments that polarize toward the T cell. We show involvement of a Toll-like receptor-mediated signal in this unusual form of intracellular class II MHC trafficking. First, wild-type dendritic cells loaded with LPS-free Ag failed to show formation of class II-positive tubules upon Ag-specific T cell engagement, but did so upon supplementation of the Ag with low concentrations of LPS. Second, Ag-loaded myeloid differentiation factor 88 -deficient dendritic cells failed to form these tubules upon interaction with T cells, regardless of the presence of LPS. Finally, inclusion of a cell-permeable peptide that blocks TNFR-associated factor 6 function, downstream of myeloid differentiation factor 88, blocked T cell-dependent tubulation. A Toll-like receptor-dependent signal is thus required to allow Ag-loaded dendritic cells to respond to T cell contact by formation of extended endosomal compartments. This activation does not result in massive translocation of class II MHC molecules to the cell surface.  相似文献   

19.
20.
Calcium and phosphoinositide signaling regulate cell division in model systems, but their significance in mammalian cells is unclear. Calcium-binding protein-7 (CaBP7) is a phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ) inhibitor required during cytokinesis in mammalian cells, hinting at a link between these pathways. Here we characterize a novel association of CaBP7 with lysosomes that cluster at the intercellular bridge during cytokinesis in HeLa cells. We show that CaBP7 regulates lysosome clustering and that PI4KIIIβ is essential for normal cytokinesis. CaBP7 depletion induces lysosome mislocalization, extension of intercellular bridge lifetime, and cytokinesis failure. These data connect phosphoinositide and calcium pathways to lysosome localization and normal cytokinesis in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号