首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roads exert various effects of conservation concern. They cause road mortality of wildlife, change the behaviour of animals and lead to habitat fragmentation. Roads also have genetic effects, as they restrict animal movement and increase the functional isolation of populations. We first formulate theoretical expectations on the genetic effects of roads with respect to a decrease in genetic diversity and an increase in genetic differentiation or distance of populations or individuals. We then review the empirical evidence on the genetic effects of roads based on the available literature. We found that roads often, but not always, decrease the genetic diversity of affected populations due to reduced population size and genetic drift. Whether the reduction in genetic diversity influences the long-term fitness of affected populations is, however, not yet clear. Roads, especially fenced highways, also act as barriers to movement, migration and gene flow. Roads therefore often decrease functional connectivity and increase the genetic differentiation of populations or the genetic distance among individuals. Nevertheless, roads and highways rarely act as complete barriers as shown by genetic studies assessing contemporary migration across roads (by using assignment tests). Some studies also showed that road verges act as dispersal corridors for native and exotic plants and animals. Genetic methods are well suited to retrospectively trace such migration pathways. Most roads and highways have only recently been built. Although only few generations might thus have passed since road construction, our literature survey showed that many studies found negative effects of roads on genetic diversity and genetic differentiation in animal species, especially for larger mammals and amphibians. Roads may thus rapidly cause genetic effects. This result stresses the importance of defragmentation measures such as over- and underpasses or wildlife bridges across roads.  相似文献   

2.
Anthropogenic disturbances are increasing worldwide, causing wildlife habitat loss, alteration, and fragmentation. In Canada, the decommissioning of linear anthropogenic structures is identified as a promising tool to restore the habitat of threatened populations of boreal caribou (Rangifer tarandus caribou) by reducing food availability for alternate prey and decreasing encounter probabilities with predators. In this study, we monitored the use of 40 km of decommissioned forest roads by caribou, gray wolves (Canis lupus), black bears (Ursus americanus), and moose (Alces americanus) 1–3 years after reclamation, using 232 motion-activated camera traps. We compared four additive treatments (meaning that each successive treatment included the treatment prior): closing the road to human access, decompacting its soil, planting black spruce (Picea mariana) trees, and adding enriched soil. We assessed the influence of treatments, use by other large mammals, and characteristics of the surrounding environment on road use by the four species. Caribou used the planted treatment (which also included closing and decompacting) more than the closed-only (reference) treatment, but treatments did not influence the use of decommissioned roads by bears and moose. We could not assess the use of treated roads by wolves because of low sample size. Road use by caribou declined with local moose density, but increased with local bear density. Caribou were observed more frequently on roads surrounded by regenerating and mature coniferous stands; caribou also preferentially used roads surrounded by wetlands. Our results suggest that the treatment combining road closure, soil decompaction, and tree planting could be beneficial to caribou, highlighting the relevance of including active restoration efforts in caribou conservation programs. We recommend that such a treatment be added to road decommissioning protocols for the conservation of caribou, alongside broad-scale habitat protection.  相似文献   

3.
Many Eastern European countries still host landscapes with high value due to their habitat quality and size. Some of these countries are new member states of the European Union, and EU-accession is accompanied by huge investments in the development of traffic infrastructure. Environmental assessments mandatory for road constructions in the EU do not necessarily require explicit measures for the mitigation of fragmentation, and technical constructions associated with road building are frequently assumed to provide sufficient possibilities for wildlife crossings. We evaluated those technical structures at two motorway sections separating relevant subpopulations of the brown bear (Ursus arctos) in Bulgaria. Our assessment revealed that the permeability of the two motorways has been considerably overestimated. A total of just 13 out of the 77 potential crossing possibilities of the two roads together meet the requirements we defined for suitable wildlife crossings. We found that the potential for improvement of the crossing functionality of already existing technical facilities along the motorways is very limited. Given the dependence on a small number of habitat paths connecting suitable crossings with habitat on both sides of the road, connectivity between subpopulations is vulnerable to fragmentation impacts.  相似文献   

4.
Summary Research into mitigation of the ecological impacts of rainforest roads in North Queensland has a long history, commencing during the formative years of Australian road ecology. In Queensland’s Wet Tropics and throughout Australia, installation of engineered structures to ameliorate ecological road impacts is now common during larger construction projects, but unusual in smaller road projects. Retro‐fitting of engineering solutions to roads that are causing obvious impacts is also uncommon. Currently, Australian mitigation measures concentrate on two important impacts: road mortality and terrestrial habitat fragmentation. Unfortunately, other important ecological impacts of roads are seldom addressed. These include edge effects, traffic disturbance, exotic invasions and fragmentation of stream habitats. In North Queensland, faunal underpasses and canopy bridges across rainforest roads have been monitored over long periods. These structures are used frequently by multiple individuals of various species, implying effectiveness for movements and dispersal of many generalist and specialised rainforest animals. However, without addressing population and genetic implications, assessment of effectiveness of these connectivity structures is not holistic. These aspects need sufficient long‐term funding to allow similar systematic monitoring before and after construction. Throughout Australia, more holistic approaches to mitigation of road impacts would routinely examine population and genetic connectivity, consider mitigation against more ecological impacts where appropriate and include landscape‐scale replication.  相似文献   

5.
In many parts of the world, roads are the most common causes of forest fragmentation. We know roads can affect wildlife, but understand little the extent to which these effects depend on road type and use. We compared the effects of several road types upon a diverse, carrion frequenting beetle assemblage in rural New York State. We found no consistent effects of distance from road on the diversity, abundance or species density of beetles across road types. However, forests near highways and two-lane paved roads were significantly less diverse than were forests near dirt roads. The reduced diversity of beetles near roads was at least in part due to lower species turnover in space near dirt roads than near either type of paved roads. Our data suggest that all roads are not created equal and that comparably sized minimum-use paved roads have a substantially greater affect on fauna than dirt roads. Highways and two-lane paved roads appear to depress biodiversity even among relatively vagile animals like beetles.  相似文献   

6.
Despite the near universal recognition that roads negatively affect wildlife, the mechanisms that elicit animal responses to roads are often ambiguous or poorly understood. We conducted a multi-year, multi-season study to assess the relative influence of roads on elk (Cervus elaphus) in a human-dominated landscape in South Dakota. We evaluated the effects of habitat covariates including security cover, forage quality, distance to roads (primary, secondary, and tertiary), and visibility from roads at the home range scale. We radio-collared 28 elk (21 adult females and 7 adult males) and calculated seasonal (winter, spring, summer, and autumn) utilization distributions (UDs). We assigned habitat covariates to use percentiles within the UDs (1% increments; from 1 to 98 percentiles) and used spatially explicit mixed linear regression to model the relationship between use percentile and habitat covariates. For each season and sex, we evaluated 15 candidate models and used Akaike's Information Criterion weights (ωi) to identify top-ranking models. We plotted influential coefficients from these models with 95% confidence intervals to examine the magnitude of effects. Our analysis revealed fundamental differences in response to roads, by road type, between sexes, and across seasons. Male elk established home ranges near roads devoid of vehicle traffic in winter, spring, and autumn. In summer, coinciding with peak vehicle traffic levels, male elk reduced their use of habitat that was both visible from and close to primary roads. Female elk subherds similarly responded to primary roads in spring and autumn, during times of year when they were calving and mating, respectively. In spring and summer, female elk subherds selected habitat near roads that were closed to vehicle traffic. Forage quality and security cover were influential in the periphery (>50th use percentile) of elk home ranges, whereas road covariates were more influential towards the core of elk home ranges. This analysis further demonstrates the utility of visibility from road metrics and suggests that the retention of vegetation structures that screen visibility potential from roads could be important components of elk management strategies. © 2012 The Wildlife Society.  相似文献   

7.
Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond‐breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata; and Southern Leopard frogs, Lithobates sphenocephalus) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond‐breeding amphibian species.  相似文献   

8.
One of the most evident and direct effects of roads on wildlife is the death of animals by vehicle collision. Understanding the spatial patterns behind roadkill helps to plan mitigation measures to reduce the impacts of roads on animal populations. However, although roadkill patterns have been extensively studied in temperate zones, the potential impacts of roads on wildlife in the Neotropics have received less attention and are particularly poorly understood in the Western Amazon. Here, we present the results of a study on roadkill in the Amazon region of Ecuador; a region that is affected by a rapidly increasing development of road infrastructure. Over the course of 50 days, in the wet season between September and November 2017, we searched for road‐killed vertebrates on 15.9 km of roads near the city of Tena, Napo province, for a total of 1,590 surveyed kilometers. We recorded 593 dead specimens, predominantly reptiles (237 specimens, 40%) and amphibians (190, 32%), with birds (102, 17%) and mammals (64, 11%) being less common. Recorded species were assigned to three functional groups, based on their movement behavior and habitat use (“slow,” “intermediate,” and “fast”). Using Ripley's K statistical analyses and 2D HotSpot Identification Analysis, we found multiple distinct spatial clusters or hotspots, where roadkill was particularly frequent. Factors that potentially determined these clusters, and the prevalence of roadkill along road segments in general, differed between functional groups, but often included land cover variables such as native forest and waterbodies, and road characteristics such as speed limit (i.e., positive effect on roadkill frequency). Our study, which provides a first summary of species that are commonly found as roadkill in this part of the Amazon region, contributes to a better understanding of the negative impacts of roads on wildlife and is an important first step toward conservation efforts to mitigate these impacts.  相似文献   

9.
ABSTRACT Anthropogenic structures associated with energy development and other activities are a growing concern in wildlife conservation because of habitat loss and fragmentation. We conducted a retrospective analysis of effects of barbed-wire fences, oil-extraction structures, aboveground power lines, resurfaced roads, and artificial water sites on space use by northern bobwhite (Colinus virginianus)in western Oklahoma, USA. Nest location data accrued during 1991–2002 and radiolocation data during 1997–2002. Data suggested fences had a weak repellent effect at distances <300 m, oil structures had neutral effects at distances <800 m, aboveground power lines had neutral effects at distances <250 m, resurfaced roads attracted at distances <350 m, and water sites had neutral effects at distances <250 m. Generally, anthropogenic structures seemed compatible with bobwhite populations on our study area, given density and dispersion of the structures that existed.  相似文献   

10.
Brown hare populations (Lepus europaeus) are in decline throughout Europe since the 1960s, and numerous impact factors have been discussed in the literature. Although landscape fragmentation by roads is assumed to be one potential factor, the effects of roads on brown hare populations are poorly understood. We studied three potential effects of roads on brown hares asking: (1) Do roads affect the spatial distribution of hares due to disturbance effects? (2) Does road network density affect hare abundance due to barrier effects? (3) Does road network density affect road mortality rates in hare populations? The study is based on harvest statistics and spotlight taxations in Canton Aargau, Switzerland and was conducted at three different spatial scales. Spatial distribution was studied in plots established in varying distances parallel to roads, effects on abundance were analysed on the basis of raster grids, and road mortality was studied on the level of hunting districts. We show that (1) hares avoid the proximity to roads and prefer large non-fragmented areas over small isolated patches. (2) The density of freeways, federal and main roads has a negative effect on hare abundance. The density of unpaved field tracks has a positive effect probably because vegetation at field tracks contributes to the diet spectrum. (3) Effects of road network density on road mortality rates could not be shown, although road mortality has increased since the 1990s. We conclude that in debilitated populations, roads act as threatening factor for brown hare. We recommend establishing large un-dissected areas as a new category of wildlife refuge and to protect these areas from being further fragmented.  相似文献   

11.
We assessed the magnitude, composition, and spatial and temporal patterns of road mortality of native vertebrates on two highways in southern Brazil from 18 January 2003 to 26 January 2004. The highways cross remnants of the Atlantic Rainforest, a global biodiversity hotspot, and differ in vehicle traffic and surrounding landscape. We compared the road-kill magnitude and composition of birds, mammals, and reptiles between roads and seasons. We used a modified K statistic to depict the spatial patterns of roadkills of these groups and tested the association between vehicle traffic and road mortality through linear regression. We recorded 869 kills of 92 species. The two roads differed regarding the abundance and composition of roadkills. Reptile road mortality was higher in summer than winter, but all other groups did not show significant difference in the magnitude of mortality between seasons. The composition of killed assemblages differed significantly for some of the taxonomic groups among seasons. We found only one positive association between roadkills and vehicle traffic (reptiles on one of the roads), suggesting that vehicle flow does not explain the road-kill temporal variation on these roads. Total vertebrate, bird, and mammal roadkills showed significant spatial aggregations possibly due to variation in vehicle traffic, highway design, and local landscape condition and arrangement. With expected expansion of the road network, mitigation measures for multi-species assemblages should include habitat protection, soil use regulation, road crossing structures, speed reducers, and campaigns to raise people’s awareness about road impacts on wildlife.  相似文献   

12.
保护地以其丰富的生物多样性和优美的自然环境为生态旅游的开展提供了基础条件。近年来, 保护地的生态旅游与旅游道路建设得到了飞速发展。旅游公路的修建, 在促进经济发展的同时, 也带来了野生动物致死、基因隔离、栖息地丧失、生境破碎化等一系列生态问题。因此设立合适的野生动物通道作为一种有效方式, 成为缓解公路对野生动物负面影响的主要途径。本文基于动物通道相关研究, 提出通道设计应遵从针对性、科学性、持续有效性、可行性四条原则, 道路生态学与保护生物学相关理论、保护地管理法规与管理规划、关键物种或类群生态学特性与栖息地现状以及沿线地形地貌特征都应作为通道设置的参考依据; 并从通道建设的数量、位置、类型、尺寸、表面设计、配套设施以及后期监测等方面提出了通道建设的技术参数。为长期有效地发挥野生动物通道的生态功能, 建议制定通道建设技术规范, 细化通道技术参数, 积极开展科研监测, 以缓解道路对野生动物的影响。  相似文献   

13.
Anthropogenic disturbances, like roads, increase the landscape fragmentation and affect wildlife migration and biodiversity. Such disturbances often prevent migration of wildlife due to increased barriers and mortality effects.

The aim of our simulation based approach is to assess the landscape permeability considering anthropogenic disturbances. The developed framework SimapD imposes an abstract view of a habitat network, based on an undirected graph. The simulation is done by an individual-oriented approach, where individuals explore the idealized network. Based on the information gained during the simulation, an overall network permeability index is calculated, which can be used to compare different scenarios of landscape development. Disturbances are represented by sub-models, from which appropriate resistance and mortality rates can be deduced. In this paper this is demonstrated by the construction of a fuzzy road kill model for the federal state of Baden-Wuerttemberg, Germany. The utilization of the network permeability index and a comparison to other fragmentation measures is shown by an exemplary application.  相似文献   


14.
Habitat fragmentation is a considerable threat to biodiversity worldwide. To minimize the effects of fragmentation, it is important to identify and conserve the existing habitat connections that facilitate dispersal and gene flow among populations. Connected populations are more resilient to the changing environment that affects local populations due to greater demographic stability and higher genetic diversity. Our study is the first attempt to identify the crucial habitats facilitating the dispersal of two key sympatric cervids - spotted deer Axis axis and sambar Rusa unicolor in central India. We use species distribution models followed by landscape pattern analyses and connectivity analyses to delineate the essential habitats. Thereafter, we estimated the relative contribution of habitats outside protected areas in maintaining the ecological network, using graph-based metrics. We then locate and predict the areas that have a high risk of human-influenced cervid mortality using a Bayesian regression model that accounts for spatial structure in the data. The results show that about 55% of the core habitats, integrated across both species, lie outside the protected areas and are important in maintaining the ecological network for these cervids. Some peripheral habitats have an increased risk of anthropogenic cervid mortality, which poses high demographic risk. There is an urgent need to regulate the nature and intensity of human activities in areas of human-wildlife coexistence to maintain habitat connectivity and ensure the survival of wildlife populations. Our results on cervids complement analyses on connectivity for large carnivores and thus enables one to account for important trophic interactions among wildlife species in land use planning.  相似文献   

15.
Barbed and woven wire fences, common structures across western North America, act as impediments to wildlife movements. In particular, fencing influences pronghorn (Antilocapra americana) daily and seasonal movements, as well as modifying habitat selection. Because of fencing''s impacts to pronghorn and other wildlife, it is a potentially important factor in both wildlife movement and habitat selection models. At this time, no geospatial fencing data is available at regional scales. Consequently, we constructed a regional fence model using a series of land tenure assumptions for the Hi-Line region of northern Montana – an area consisting of 13 counties over 103,400 km2. Randomized 3.2 km long transects (n = 738) on both paved and unpaved roads were driven to collect information on habitat, fence densities and fence type. Using GIS, we constructed a fence location and a density model incorporating ownership, size, neighboring parcels, township boundaries and roads. Local knowledge of land ownership and land use assisted in improving the final models. We predict there is greater than 263,300 km of fencing in the Hi-Line region, with a maximum density of 6.8 km of fencing per km2 and mean density of 2.4 km of fencing per km2. Using field data to assess model accuracy, Cohen''s Kappa was measured at 0.40. On-the-ground fence modification or removal could be prioritized by identifying high fence densities in critical wildlife areas such as pronghorn migratory pathways or sage grouse lekking habitat. Such novel fence data can assist wildlife and land managers to assess effects of anthropogenic features to wildlife at various scales; which in turn may help conserve declining grassland species and overall ecological functionality.  相似文献   

16.
The negative effects of roads on wildlife in tropical rainforests are poorly understood. Road construction has high priority in Africa, while negative impacts of roads on wildlife movement often are neglected. This study aims at providing information on the effects of roads on crossing behaviour of rainforest wildlife. The probability that wildlife would cross forest roads was analysed for association with ten different factors that were linked to road presence or construction. Factors were divided into three classes: vegetation cover, topography and human influence. A trackplot survey was done in southern Cameroon, Africa. Trackplots were laid along a 32 km unpaved logging road that intersects Campo‐Ma’an National Park. Tracks of several species were found frequently (e.g. genets and porcupines); while others were found only sporadically (e.g. forest duikers and apes). The actual physical obstacles found along the road (e.g. logs, banks, etc.) were highly negatively correlated with crossing probabilities. For all wildlife species high vegetation cover was positively correlated to crossing probability. This study indicates that roads have a large impact on wildlife, and suggests which factors could be altered during road construction and maintenance in order to mitigate these impacts.  相似文献   

17.
Barriers that dissect continuous habitat, such as roads, initiate the process of habitat fragmentation and can filter or eliminate animal movement through otherwise pristine areas. A severe road barrier appears to exist in Banff National Park where the Trans‐Canada Highway (TCH) is known to impede the movement of some animals, but the effects of this barrier relative to natural barriers and continuous habitat have not been assessed. To compare animal movement in response to these three contexts, we translocated three species of murid rodents (meadow voles, Microtus pennsylvanicus, deer mice, Peromyscus maniculatus, and red‐backed voles, Clethrionomys gapperi) across the TCH (an artificial barrier), a forested strip in the median of the TCH (a natural barrier), in the adjacent highway verge (continuous grassy) and in nearby forest (continuous forested). We coated murids with fluorescent dye, released them at standardized distances, and followed the resulting trails to obtain detailed information on movement paths. Overall, individuals were 20% less successful crossing the TCH than natural (forested) barriers and 10% less successful crossing natural barriers than continuous habitat, but exhibited marked variation among species. Path tortuosity was negatively related to return success; more convoluted paths were associated with lower success across all treatments. Deer mice returned to their home‐ranges more often than the other two species, perhaps because of their generalist habitat preferences, nocturnal activities, or larger home ranges. In all treatments, the fractal dimensions of movement paths were very qualitatively similar to those observed for return success and tortuosity, indicating that the responses of these species were not influenced by spatial scale. Together, our results suggest that (a) murid species differ in the movement limitation imposed by both natural and artificial barriers, perhaps as a consequence of differences in habitat preferences and activity patterns, and (b) murid responses to a road barrier are only moderately different from responses to the natural barrier of a forest edge in the context of translocation experiments.  相似文献   

18.

Background

Understanding the ecological consequences of roads and developing ways to mitigate their negative effects has become an important goal for many conservation biologists. Most mitigation measures are based on road mortality and barrier effects data. However, studying fine-scale individual spatial responses in roaded landscapes may help develop more cohesive road planning strategies for wildlife conservation.

Methodology/Principal Findings

We investigated how individuals respond in their spatial behavior toward a highway and its traffic intensity by radio-tracking two common species particularly vulnerable to road mortality (barn owl Tyto alba and stone marten Martes foina). We addressed the following questions: 1) how highways affected home-range location and size in the immediate vicinity of these structures, 2) which road-related features influenced habitat selection, 3) what was the role of different road-related features on movement properties, and 4) which characteristics were associated with crossing events and road-kills. The main findings were: 1) if there was available habitat, barn owls and stone martens may not avoid highways and may even include highways within their home-ranges; 2) both species avoided using areas near the highway when traffic was high, but tended to move toward the highway when streams were in close proximity and where verges offered suitable habitat; and 3) barn owls tended to cross above-grade highway sections while stone martens tended to avoid crossing at leveled highway sections.

Conclusions

Mortality may be the main road-mediated mechanism that affects barn owl and stone marten populations. Fine-scale movements strongly indicated that a decrease in road mortality risk can be realized by reducing sources of attraction, and by increasing road permeability through measures that promote safe crossings.  相似文献   

19.
The demands of a growing human population dictates that expansion of energy infrastructure, roads, and other development frequently takes place in native rangelands. Particularly, transmission lines and roads commonly divide rural landscapes and increase fragmentation. This has direct and indirect consequences on native wildlife that can be mitigated through thoughtful planning and proactive approaches to identifying areas of high conservation priority. We used nine years (2003–2011) of Greater Prairie-Chicken (Tympanuchus cupido) lek locations totaling 870 unique leks sites in Kansas and seven geographic information system (GIS) layers describing land cover, topography, and anthropogenic structures to model habitat suitability across the state. The models obtained had low omission rates (<0.18) and high area under the curve scores (AUC >0.81), indicating high model performance and reliability of predicted habitat suitability for Greater Prairie-Chickens. We found that elevation was the most influential in predicting lek locations, contributing three times more predictive power than any other variable. However, models were improved by the addition of land cover and anthropogenic features (transmission lines, roads, and oil and gas structures). Overall, our analysis provides a hierarchal understanding of Greater Prairie-Chicken habitat suitability that is broadly based on geomorphological features followed by land cover suitability. We found that when land features and vegetation cover are suitable for Greater Prairie-Chickens, fragmentation by anthropogenic sources such as roadways and transmission lines are a concern. Therefore, it is our recommendation that future human development in Kansas avoid areas that our models identified as highly suitable for Greater Prairie-Chickens and focus development on land cover types that are of lower conservation concern.  相似文献   

20.
Roads have a pervasive multi‐faceted influence on ecosystems, including pronounced impacts on wildlife movements. In recognition of the scale‐transcending impacts of transportation infrastructure, ecologists have been encouraged to extend the study of barrier impacts from individual roads and animals to networks and populations. In this study, we adopt an analytical representation of road networks as mosaics of landscape tiles, separated by roads. We then adapt spatial capture–recapture analysis to estimate the propensity of wildlife to stay within the boundaries of the road network tiles (RNTs) that hold their activity centres. We fit the model to national non‐invasive genetic monitoring data for brown bears Ursus arctos in Sweden and show that bears had up to 73% lower odds of using areas outside the network tile of their home range centre, even after accounting for the effect of natural barriers (major rivers) and the decrease in utilization with increasing distance from a bear's activity centre. Our study highlights the pronounced landscape‐level barrier effect on wildlife mobility and, in doing so, introduces a novel and flexible approach for quantifying contemporary fragmentation from the scale of RNTs and individual animals to transportation networks and populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号