首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In broiler chickens, feed additives, including prebiotics, are widely used to improve gut health and to stimulate performance. Xylo-oligosaccharides (XOS) are hydrolytic degradation products of arabinoxylans that can be fermented by the gut microbiota. In the current study, we aimed to analyze the prebiotic properties of XOS when added to the broiler diet. Administration of XOS to chickens, in addition to a wheat-rye-based diet, significantly improved the feed conversion ratio. XOS significantly increased villus length in the ileum. It also significantly increased numbers of lactobacilli in the colon and Clostridium cluster XIVa in the ceca. Moreover, the number of gene copies encoding the key bacterial enzyme for butyrate production, butyryl-coenzyme A (butyryl-CoA):acetate CoA transferase, was significantly increased in the ceca of chickens administered XOS. In this group of chickens, at the species level, Lactobacillus crispatus and Anaerostipes butyraticus were significantly increased in abundance in the colon and cecum, respectively. In vitro fermentation of XOS revealed cross-feeding between L. crispatus and A. butyraticus. Lactate, produced by L. crispatus during XOS fermentation, was utilized by the butyrate-producing Anaerostipes species. These data show the beneficial effects of XOS on broiler performance when added to the feed, which potentially can be explained by stimulation of butyrate-producing bacteria through cross-feeding of lactate and subsequent effects of butyrate on gastrointestinal function.  相似文献   

2.
Ross 308 chickens were used to investigate fatty acid (FA) composition and oxidative stability of broiler chicken meat following the controlled inhibition of peroxidation in feed containing a concentrated source of omega-3 fatty acids (flaxseed oil, FLO), approximately 50% omega-3. Ninety-six one-day-old chicks were randomly allocated to four dietary treatments (n = 24/group) that included rapeseed oil (RO), flaxseed oil (FLO), RO with optimised quercetin (Q) – RO_Q, or FLO with optimised Q (FLO_Q). On day 35, breast and thigh muscles were collected in order to analyse their FA profile and malondialdehyde (MDA) levels. Dietary treatments had no effect on weight gain or feed conversion ratio in chickens. However, dietary FLO increased the deposition of α-linolenic acid in both pectoral and thigh meat (P < 0.05), and tended to decrease the ratio of omega-6/omega-3 FA in pectoral muscles (P < 0.07). Addition of an optimised concentration of Q proved to be an efficient way of limiting lipoperoxidation in breast and thigh muscles subjected to refrigeration at 2–3 °C for either 1 or 7 days. Results were consistent with the observed inhibition of peroxidation in feed mixtures and significantly correlated with MDA levels found in feed mixtures. These results provide evidence that it is possible to produce poultry meat with an improved proportion of omega-3 FA without significantly altering the performance of broiler chickens or the oxidative stability of their meat.  相似文献   

3.
Feed composition has the potential to influence the activities of bacteria that colonize the digestive tract of broiler chickens with important consequences for animal health, well being, and food safety. In this study, the gut microbiota of two groups of broiler chickens raised in immediate vicinity but fed either a standard corn/soybean meal ration (corn–soy, CS) or a ration high in wheat middlings (high wheat, HW) was characterized. The findings revealed that this small variation in feed composition did not influence the distribution of microbial species present in the microbial community throughout the digestive tract. However, diet variation markedly influenced the Lactobacillus strain composition in the crop. Most striking, the dominant type in birds on the CS diet (Lactobacillus agilis type R5), which comprised 25% of the isolates, was not detected in birds fed the HW diet. The latter birds harbored a different strain of L. agilis (type R1) in a significantly higher ratio than birds on the CS diet. Several other strains were also specific to the particular diet. In conclusion, this study showed that a small variation in the composition of chicken feed that does not result in detectable differences in species composition can still have an impact on which microbial strains become dominant in the digestive tract. This finding has relevance in the application of probiotics and other direct-fed microbials in poultry husbandry.  相似文献   

4.
5.
BackgroundNon-typhoidal Salmonella enterica serovars, associated with different foods including poultry products, are important causes of bacterial gastroenteritis worldwide. The colonization of the chicken gut by S. enterica could result in the contamination of the environment and food chain. The aim of this study was to compare the genomes of 25 S. enterica serovars isolated from broiler chicken farms to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics.Conclusions/SignificanceThis study showed that the predominant Salmonella serovars in broiler chickens harbor genes encoding adhesins, flagellar proteins, T3SS, iron acquisition systems, and antibiotic and metal resistance genes that may explain their pathogenicity, colonization ability and persistence in chicken. The existence of mobile genetic elements indicates that isolates from a given serovar could acquire and transfer genetic material. Conserved genes in the T3SS and T4SS that we have identified are promising candidates for identification of diagnostic, antimicrobial or vaccine targets for the control of Salmonella in broiler chickens.  相似文献   

6.
Delayed feed and water access is known to impair growth performance of day old broiler chickens. Although effects of feed access on growth performance and immune function of broilers have been examined before, effects of dietary composition and its potential interaction with feed access are hardly investigated. This experiment aimed to determine whether moment of first feed and water access after hatch and pre-starter composition (0 to 7 days) affect growth rate and humoral immune function in broiler chickens. Direct fed chickens received feed and water directly after placement in the grow-out facility, whilst delayed fed chickens only after 48 h. Direct and delayed fed chickens received a control pre-starter diet, or a diet containing medium chain fatty acids (MCFA) or fish oil. At 21 days, chickens were immunized by injection of sheep red blood cells. The mortality rate depended on an interaction between feed access and pre-starter composition (P=0.014). Chickens with direct feed access fed the control pre-starter diet had a higher risk for mortality than chickens with delayed feed access fed the control pre-starter diet (16.4% v. 4.2%) whereas the other treatment groups were in-between. BW gain and feed intake till 25 days in direct fed chickens were higher compared with delayed fed chickens, whilst gain to feed ratio was lower. Within the direct fed chickens, the control pre-starter diet resulted in the highest BW at 28 days and the MCFA pre-starter diet the lowest (Δ=2.4%), whereas this was opposite for delayed fed chickens (Δ=3.0%; P=0.033). Provision of MCFA resulted in a 4.6% higher BW gain and a higher gain to feed ratio compared with other pre-starter diets, but only during the period it was provided (2 to 7 days). Minor treatment effects were found for humoral immune response by measuring immunoglobulins, agglutination titers, interferon gamma (IFN-γ), and complement activity. Concluding, current inclusion levels of fish oil (5 g/kg) and MCFA (30 g/kg) in the pre-starter diet appear to have limited (carryover) effects on growth and development, as well as on humoral immune function.  相似文献   

7.
With growing concern about including unconventional dietary protein sources in poultry diets to substitute the protein sources that are essential for human consumption such as soybean meal, Azolla leaf meal (ALM) has grown in popularity. In our prior experiment, ALM was used at inclusion rates of 5 and 10%. Five per cent inclusion of ALM increased broiler chicken growth performance, the concentration of cecal propionic acid, and activation of skeletal muscle p70S6 Kinase1 (p70S6K1) without having detrimental effects on the meat quality. Those results prompted us to further evaluate the effect of the same inclusion rates of ALM on phase feeding and intestine and liver health of the broiler chicks. The current study hypothesis is that dietary ALM positively affects phase feeding, intestinal morphology and p70S6K1 activation, cecal microbial gene expression, and improves the liver energy status. For this, we enrolled 135 one-day-old broiler chicks and collected growth performance data (starter, grower, and finisher stages) and samples of the gastrointestinal tract to analyse the morphology of the villi, immune-related organs, mucin, and abundance of intestinal p70S6K1. Cecal bacterial species were analysed using qPCR and liver samples were collected to analyse adenosine monophosphate (AMP) and ATP content and selected oxidative stress biomarkers. ALM increased BW and feed intake during the starter and grower phases but did not affect the feed conversion ratio. Liver oxidative stress and AMP: ATP ratio increased in chickens fed on a diet containing 10% ALM (AZ10; P < 0.05). Jejunum villi length and abundance of duodenal neutral mucin increased but villi of the ileum decreased in chickens fed on a diet containing 5% ALM (AZ5), while lymphoid follicle areas of the cecal tonsils decreased with both doses of ALM. Activation of p70S6K1 increased with AZ10 in the duodenum and AZ5 in the jejunum. In the gut, the family of Enterobacteriaceae decreased with both ALM doses. In conclusion, our results indicate an overall positive effect of dietary inclusion of ALM in the broiler chicken diet via its positive effect on intestinal morphology and function; however, a negative effect on the liver was observed with 10% ALM.  相似文献   

8.
The fatty acid composition of chicken’s meat is largely influenced by dietary lipids, which are often used as supplements to increase dietary caloric density. The underlying key metabolites and pathways influenced by dietary oils remain poorly known in chickens. The objective of this study was to explore the underlying metabolic mechanisms of how diets supplemented with mixed or a single oil with distinct fatty acid composition influence the fatty acid profile in breast muscle of Qingyuan chickens. Birds were fed a corn-soybean meal diet supplemented with either soybean oil (control, CON) or equal amounts of mixed edible oils (MEO; soybean oil : lard : fish oil : coconut oil = 1 : 1 : 0.5 : 0.5) from 1 to 120 days of age. Growth performance and fatty acid composition of muscle lipids were analysed. LC-MS was applied to investigate the effects of CON v. MEO diets on lipid-related metabolites in the muscle of chickens at day 120. Compared with the CON diet, chickens fed the MEO diet had a lower feed conversion ratio (P < 0.05), higher proportions of lauric acid (C12:0), myristic acid (C14:0), palmitoleic acid (C16:1n-7), oleic acid (C18:1n-9), EPA (C20:5n-3) and DHA (C22:6n-3), and a lower linoleic acid (C18:2n-6) content in breast muscle (P < 0.05). Muscle metabolome profiling showed that the most differentially abundant metabolites are phospholipids, including phosphatidylcholines (PC) and phosphatidylethanolamines (PE), which enriched the glycerophospholipid metabolism (P < 0.05). These key differentially abundant metabolites – PC (14:0/20:4), PC (18:1/14:1), PC (18:0/14:1), PC (18:0/18:4), PC (20:0/18:4), PE (22:0/P-16:0), PE (24:0/20:5), PE (22:2/P-18:1), PE (24:0/18:4) – were closely associated with the contents of C12:0, C14:0, DHA and C18:2n-6 in muscle lipids (P < 0.05). The content of glutathione metabolite was higher with MEO than CON diet (P < 0.05). Based on these results, it can be concluded that the diet supplemented with MEO reduced the feed conversion ratio, enriched the content of n-3 fatty acids and modified the related metabolites (including PC, PE and glutathione) in breast muscle of chickens.  相似文献   

9.
The surgical castration of male chickens induces hormonal changes, which permanently influence metabolic processes in birds. The aim of this study was to determine the effect of age and castration on the growth rate, feed conversion, lipid profile and histopathological changes in the livers of cockerels and capons. The experimental materials comprised male chickens of the Green-legged Partridge breed (old traditional Polish chicken breed), raised to 28 weeks of age. At 8 weeks of age, 100 birds were castrated. Caponization had a significant effect on the plasma concentrations of total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triacylglycerols (P<0.05). Fatty degeneration and lymphoid cell infiltration were observed more frequently in the livers of capons than cockerels. Capon carcasses were characterized by increased deposition of abdominal and subcutaneous fat (P<0.05). Total meat weight in the carcasses of cockerels and capons was similar, but the proportions of muscles were different. From 20 weeks of age, the weight of breast muscles was higher, and the weight of leg muscles was lower in capons than in cockerels (P<0.05). Capons were characterized by higher liver weight, higher gizzard weight and lower heart weight than cockerels (P<0.05). The feed conversion ratio (kg/kg BW) was similar in intact cockerels and capons. The values of carcass quality parameters and feed conversion ratio as well as histopathological changes in the liver indicate that Green-legged Partridge capons should be slaughtered at 20 to 24 weeks of age.  相似文献   

10.
The microbial flora associated with Hyalomma anatolicum ticks was investigated using culture-dependent (CD) and independent (next generation sequencing, NGS) methods. The bacterial profiles of different organs, development stages, sexes, and of host cattle skins were analyzed using the CD method. The egg and female gut microbiota were investigated using NGS. Fourteen distinct bacterial strains were identified using the CD method, of which Bacillus subtilis predominated in eggs, larval guts and in adult female and male guts, suggesting probable transovarial transmission. Bacillus velezensis and B. subtilis were identified in cattle skin and tick samples, suggesting that skin is the origin of tick bacteria. H.anatolicum males harbour lower bacterial diversity and composition than females. The NGS analysis revealed five different bacterial phyla across all samples, Proteobacteria contributing to >95% of the bacteria. In all, 56611sequences were generated representing 6,023 OTUs per female gut and 421 OTUs per egg. Francisellaceae family and Francisella make up the vast majority of the OTUs. Our findings are consistent with interference between Francisella and Rickettsia. The CD method identified bacteria, such B. subtilis that are candidates for vector control intervention approaches such paratransgenesis whereas NGS revealed high Francisella spp. prevalence, indicating that integrated methods are more accurate to characterize microbial community and diversity.  相似文献   

11.
The aim of the present work was to examine how different fats commonly used in the feed industry affect broiler performance, nutrient digestibility and microbial fermentation in the gastrointestinal tract of broiler chickens challenged with virulent Clostridium perfringens strains. Two experiments were carried out, each including 480-day-old male broilers (Ross 308), which were randomly distributed to eight experimental groups using six replicate pens per treatment and 10 birds per pen. In Experiment 1, birds were fed diets containing soybean oil, palm kernel fatty acid distillers, rendered pork fat and lard. In Experiment 2, birds were fed diets containing rapeseed oil, coconut oil, beef tallow and palm oil. In both experiments, the birds were either not challenged or challenged with a mixture of three C. perfringens type A strains. Irrespective of the fat type present in the diet, C. perfringens did not affect broiler chicken body weight gain (BWG) and mortality in either of the two experiments. The BWG was affected by dietary fat type in both experiments, indicating that the fatty acid composition of the fat source affects broiler growth performance. In particular, the inclusion of animal fats tended to improve final BW to a greater extent compared with the inclusion of unsaturated vegetable oils. In Experiment 2, irrespective of the dietary fat type present in the diet, C. perfringens challenge significantly impaired feed conversion ratio in the period from 14 to 28 days (1.63 v. 1.69) and at 42 days (1.65 v. 1.68). In both experiments apparent metabolizable energy values were affected by dietary fat type. Irrespective of the fat type present in the diet, C. perfringens challenge decreased the digesta pH in the crop and ileum, but had no effect in cecal contents. Moreover, in Experiment 1, total organic acid concentration in the ileum was two to three times lower on soybean oil diets as compared with other treatments, indicating that C. perfringens as well as dietary fat type significantly affects microbiota activity in the broiler chicken gastrointestinal tract.  相似文献   

12.
This study explored the effects of natural growth promoters (phytogenic feed additives and organic acids) on animal performance, carcass characteristics, blood parameters, gut microflora composition, and microbe–host interactions in broiler chickens over a 42-day feeding period. Two-hundred-fifty-day-old chicks were randomly assigned to one of five treatments: (i) control diets (CON); (ii) control diets + 40 g/tons antibiotic growth promoter (AB); (iii) control diets + 3 kg/tons organic acids (ORG); (iv) control diets + 3 kg/tons phytogenic feed additives (PHY); (v) control diets + 3 kg/tons organic acids + phytogenic feed additive combination (COM). A non-significant differences (p > 0.05) were observed in broiler performance among treatments at 21 days of age; however, a gradually increasing body weight gain and reduced feed conversion ratio were observed at 42 days in treatments versus control group. Biochemical indices were non-significant (p > 0.05) except for decreased cholesterol (p < 0.05) and increased A/G ratio (p < 0.05) recorded in the treatment groups. The addition of PHY and ORG improved total counts of Enterococcus spp. and Lactobacillus spp. (p < 0.05) as well as reduced caecal and ileal Campylobacter spp. and Escherichia coli (p < 0.05). Correlation analysis elucidated beneficial bacteria (Enterococcus spp. and Lactobacillus spp.) were positively and pathogenic bacteria (Campylobacter spp. and E. coli) were negatively correlated (p < 0.05) with host weight gain. The findings indicated that dietary supplementation of PHY and ORG sustained balanced gut microflora, which in turn improved body weight. This study broadens the significance of using PHY and ORG as safe alternatives to antibiotic growth promoters for achieving healthier and economical broiler production.  相似文献   

13.
Bidens pilosa is claimed to be useful for immune or anti-inflammatory disorders; however, little scientific evidence has been published concerning its function. In this paper, immune disease mouse models were used to study the function of a butanol fraction of B.pilosa. We demonstrated treatment with the butanol fraction of B.pilosa ameliorated Th1 cell-mediated autoimmune diabetes in nonobese diabetic (NOD) mice but caused deterioration of Th2 cell-mediated airway inflammation induced by ovalbumin (OVA) in BALB/c mice. We next showed that Th2 cytokines (IL-4 and/or IL-5) increased but Th1 cytokine (IFN-) decreased following injections with the butanol fraction of B.pilosa in both mouse strains. Accordingly, Th2 cytokine-regulated IgE production in mouse serum increased following treatment with this fraction. Finally, we found that the butanol fraction of B.pilosa inhibited Th1 cell differentiation but promoted Th2 cell differentiation. Taken together, the butanol fraction of B.pilosa has a dichotomous effect on helper T cell-mediated immune disorders, plausibly via modulation of T cell differentiation.  相似文献   

14.
Unravelling the mechanisms of how antibiotics influence growth performance through changes in gut microbiota can lead to the identification of highly productive microbiota in animal production. Here we investigated the effect of zinc bacitracin and avilamycin on growth performance and caecal microbiota in chickens and analysed associations between individual bacteria and growth performance. Two trials were undertaken; each used 96 individually caged 15-day-old Cobb broilers. Trial 1 had a control group (n = 48) and a zinc bacitracin (50 ppm) treatment group (n = 48). Trial 2 had a control group (n = 48) and an avilamycin (15 ppm) treatment group (n = 48). Chicken growth performance was evaluated over a 10-day period, and caecal microbiota was characterised by sequencing of bacterial 16S rRNA gene amplicons. Avilamycin produced no effect on growth performance and exhibited little significant disturbance of the microbiota structure. However, zinc bacitracin reduced the feed conversion ratio (FCR) in treated birds, changed the composition and increased the diversity of their caecal microbiota by reducing dominant species. Avilamycin only produced minor reductions in the abundance of two microbial taxa, whereas zinc bacitracin produced relatively large shifts in a number of taxa, primarily Lactobacillus species. Also, a number of phylotypes closely related to lactobacilli species were positively or negatively correlated with FCR values, suggesting contrasting effects of Lactobacillus spp. on chicken growth performance. By harnessing such bacteria, it may be possible to develop high-productivity strategies in poultry that rely on the use of probiotics and less on in-feed antibiotics.  相似文献   

15.
16.
The increasing use of unconventional feedstuffs in chicken’s diets results in the substitution of starch by lipids as the main dietary energy source. To evaluate the responses of genetically fat or lean chickens to these diets, males of two experimental lines divergently selected for abdominal fat content were fed isocaloric, isonitrogenous diets with either high lipid (80 g/kg), high fiber (64 g/kg) contents (HL), or low lipid (20 g/kg), low fiber (21 g/kg) contents (LL) from 22 to 63 days of age. The diet had no effect on growth performance and did not affect body composition evaluated at 63 days of age. Glycolytic and oxidative energy metabolisms in the liver and glycogen storage in liver and Sartorius muscle at 63 days of age were greater in chicken fed LL diet compared with chicken fed HL diet. In Pectoralis major (PM) muscle, energy metabolisms and glycogen content were not different between diets. There were no dietary-associated differences in lipid contents of the liver, muscles and abdominal fat. However, the percentages of saturated (SFA) and monounsaturated fatty acids (MUFA) in tissue lipids were generally higher, whereas percentages of polyunsaturated fatty acids (PUFA) were lower for diet LL than for diet HL. The fat line had a greater feed intake and average daily gain, but gain to feed ratio was lower in that line compared with the lean line. Fat chickens were heavier than lean chickens at 63 days of age. Their carcass fatness was higher and their muscle yield was lower than those of lean chickens. The oxidative enzyme activities in the liver were lower in the fat line than in the lean line, but line did not affect energy metabolism in muscles. The hepatic glycogen content was not different between lines, whereas glycogen content and glycolytic potential were higher in the PM muscle of fat chickens compared with lean chickens. Lipid contents in the liver, muscles and abdominal fat did not differ between lines, but fat chickens stored less MUFA and more PUFA in abdominal fat and muscles than lean chickens. Except for the fatty acid composition of liver and abdominal fat, no interaction between line and diet was observed. In conclusion, the amount of lipids stored in muscles and fatty tissues by lean or fat chickens did not depend on the dietary energy source.  相似文献   

17.
Dietary interventions are a common practice in the poultry industry to promote optimal performance and health of animals. Here, we aim at assessing the influence of supplementing broiler diets with dry whey powder (DWP) and whey protein concentrate (WPC) on nutrient coefficient of apparent ileal digestibility (CAID) and productive performance. Cecal microbiota composition was also determined using Illumina amplicon sequencing. Dietary treatments were control diet (no supplementation of DWP or WPC), 60-DWP (60 g/kg of DWP), and 80-WPC (80 g/kg of WPC). One-day-old male broilers were randomly assigned to one of three treatments, and housed in floor pens. In Trial 1, 90 1-day-old chicks were allocated to three pens/treatment, with 10 birds/pen, during 21 days for CAID evaluation. Diet 60-DWP increased Ca CAID (P=0.041), while diet 80-WPC improved Ca and P CAID (P<0.001 and 0.002, respectively) when compared with control diet. In Trial 2, 810 one-day-old chicks were allocated to nine pens/treatment, with 30 birds/pen, during 42 days. Feeding chickens with 60-DWP and 80-WPC increased their BW, average daily gain (ADG) and feed intake (FI) during the starter (P<0.001 for all variables) and grower-finisher periods (P<0.001 for BW and FI, and P=0.048 for ADG), and during the entire feeding period (P<0.05), when compared with control diet. Diets 60-DWP and 80-WPC reduced the feed conversion ratio of chickens during the starter period (P<0.001 and 0.003, respectively), while 60-DWP reduced this parameter during the entire feeding period (P=0.048), when compared to control diet. At day 42, cecal microbial communities of chickens that were fed with 60-DWP and 80-WPC differed from those fed with control diet (R=0.776, P=0.008; and R=0.740, P=0.008, respectively). The abundance of Bacteroides fragilis, Bacteroides spp., Escherichia coli/Shigella flexneri and Megamonas furniformis increased when 60-DWP and 80-WPC diets were offered, while the presence of Helicobacter pullorum decreased. Lactobacillus salivarius consistently increased in chickens with better feed conversion ratio, which were those fed with 60-DWP. The results obtained in the present study indicate that growth of chickens is improved by DWP and WPC supplementation because of a higher mineral digestibility, increased feed intake and modulation of cecal microbiota communities.  相似文献   

18.
The presence of oxytetracycline-resistant bacteria was investigated with commercially frozen chicken thighs and drumsticks. Bacterial flora were surveyed by means of total and coliform counts with Tryptone Glucose Extract Agar and Desoxycholate Agar, respectively. After counting, the Desoxycholate Agar plates were replicated on the same medium containing 25, 50, 75, and 100 ppm of oxytetracycline. Resistant colonies were found on all samples that were replicated. Of 2613 colonies isolated on Desoxycholate Agar, 47.8% grew in the presence of 25 ppm of oxytetracycline. From 50 to 100 ppm, the number of resistant isolates remained essentially the same, near 34%. Of 812 colonies of antibiotic-resistant bacteria identified with dulcitol-lactose-iron-agar, 82.5% were paracolons, 13.7% were pseudomonads, and 3.8% were Escherichia or Aerobacter. Bacteria resistant to oxytetracycline were shown to be present on commercially processed chicken. The origin of the resistance to oxytetracycline was not established; however, since the antibiotic was not used during processing, it appeared that these antibiotic-resistant bacteria arose in the intestines of the chickens as a result of feed which contained antibiotic. This is supported by a comparison with the antibiotic resistance of coliforms from chickens raised on feed both with and without oxytetracycline, for the percentages of resistant colonies are similar in both commercial chicken and chicken raised on feed containing the antibiotic.  相似文献   

19.
It has been suggested that the human gut microbiota can be divided into enterotypes based on the abundance of specific bacterial groups; however, the biological significance and stability of these enterotypes remain unresolved. Here, we demonstrated that subjects (n = 62) 18 to 65 years old with central obesity and components of metabolic syndrome could be grouped into two discrete groups simply by their relative abundance of Prevotella spp. divided by Bacteroides spp. (P/B ratio) obtained by quantitative PCR analysis. Furthermore, we showed that these groups remained stable during a 6-month, controlled dietary intervention, where the effect of consuming a diet in accord with the new Nordic diet (NND) recommendations as opposed to consuming the average Danish diet (ADD) on the gut microbiota was investigated. In this study, subjects (with and without stratification according to P/B ratio) did not reveal significant changes in 35 selected bacterial taxa quantified by quantitative PCR (ADD compared to NND) resulting from the dietary interventions. However, we found higher total plasma cholesterol within the high-P/B group than in the low-P/B group after the intervention. We propose that stratification of humans based simply on their P/B ratio could allow better assessment of possible effects of interventions on the gut microbiota and physiological biomarkers.  相似文献   

20.
Abstract

This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2% (D2), 4% (D4), and 6% BPM (D6), BPM providing up to 20% of total dietary N. Five balance experiments were conducted when the chickens were 3 – 7, 10 – 14, 17 – 21, 23 – 27, and 30 – 34 days old. During the same periods, 22-h respiration experiments (indirect calorimetry) were performed with groups of 6 chickens (period 1), 5 chickens (period 2), and one chicken (periods 3 – 5). After each balance period, one chicken in each cage was killed and the carcass weight was recorded. Chemical analyses were performed on the carcasses from periods 1, 3, and 5. Weight gain, feed intake, and feed conversion rate were found to be similar for all diets. Chickens on D0 retained 1.59 g N · kg?0.75 · d?1, significantly more than chickens on D2, D4, and D6, which retained 1.44 g, 1.52 g, and 1.50 g N · kg?0.75 · d?1, respectively. This was probably caused by the higher nitrogen content of D0. Neither the HE (p = 0.92) nor the retention of energy (p = 0.88) were affected by diet. Carcass composition was similar between diets, in line with the values for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号