首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular genotyping has important biomedical and forensic applications. However, limiting amounts of human biological material often yield genomic DNA (gDNA) in insufficient quantity and of poor quality for a reliable analysis. This motivated the development of an efficient whole genome amplification method with quantitatively unbiased representation usable on fresh and degraded gDNA. Amplification of fresh frozen, formalin-fixed paraffin-embedded (FFPE) and DNase-degraded DNA using degenerate oligonucleotide-primed PCR or primer extension amplification using a short primer sequence bioinformatically optimized for coverage of the human genome was compared with amplification using current primers by chromosome-based and BAC-array comparative genomic hybridization (CGH), genotyping at short tandem repeats (STRs) and single base mutation detection. Compared with current primers, genome amplification using the bioinformatically optimized primer was significantly less biased on CGH in self-self hybridizations, and replicated tumour genome copy number aberrations, even from FFPE tissue. STR genotyping could be performed on degraded gDNA amplified using our technique but failed with multiple displacement amplification. Of the 18 different single base mutations 16 (89.5%) were correctly identified by sequencing gDNA amplified from clinical samples using our technique. This simple and efficient isothermal method should be helpful for genetic research and clinical and forensic applications.  相似文献   

2.
Genetic exchange between isolated populations, or introgression between species, serves as a key source of novel genetic material on which natural selection can act. While detecting historical gene flow from DNA sequence data is of much interest, many existing methods can be limited by requirements for deep population genomic sampling. In this paper, we develop a scalable genealogy-based method to detect candidate signatures of gene flow into a given population when the source of the alleles is unknown. Our method does not require sequenced samples from the source population, provided that the alleles have not reached fixation in the sampled recipient population. The method utilizes recent advances in algorithms for the efficient reconstruction of ancestral recombination graphs, which encode genealogical histories of DNA sequence data at each site, and is capable of detecting the signatures of gene flow whose footprints are of length up to single genes. Further, we employ a theoretical framework based on coalescent theory to test for statistical significance of certain recombination patterns consistent with gene flow from divergent sources. Implementing these methods for application to whole-genome sequences of environmental yeast isolates, we illustrate the power of our approach to highlight loci with unusual recombination histories. By developing innovative theory and methods to analyze signatures of gene flow from population sequence data, our work establishes a foundation for the continued study of introgression and its evolutionary relevance.  相似文献   

3.
Multiple displacement amplification (MDA) is a recently described method of whole-genome amplification (WGA) that has proven efficient in the amplification of small amounts of DNA, including DNA from single cells. Compared with PCR-based WGA methods, MDA generates DNA with a higher molecular weight and shows better genome coverage. This protocol was developed for preimplantation genetic diagnosis, and details a method for performing single-cell MDA using the phi29 DNA polymerase. It can also be useful for the amplification of other minute quantities of DNA, such as from forensic material or microdissected tissue. The protocol includes the collection and lysis of single cells, and all materials and steps involved in the MDA reaction. The whole procedure takes 3 h and generates 1-2 microg of DNA from a single cell, which is suitable for multiple downstream applications, such as sequencing, short tandem repeat analysis or array comparative genomic hybridization.  相似文献   

4.
Malaria has been one of the strongest selective pressures on our species. Many of the best-characterized cases of adaptive evolution in humans are in genes tied to malaria resistance. However, the complex evolutionary patterns at these genes are poorly captured by standard scans for nonneutral evolution. Here, we present three new statistical tests for selection based on population genetic patterns that are observed more than once among key malaria resistance loci. We assess these tests using forward-time evolutionary simulations and apply them to global whole-genome sequencing data from humans, and thus we show that they are effective at distinguishing selection from neutrality. Each test captures a distinct evolutionary pattern, here called Divergent Haplotypes, Repeated Shifts, and Arrested Sweeps, associated with a particular period of human prehistory. We clarify the selective signatures at known malaria-relevant genes and identify additional genes showing similar adaptive evolutionary patterns. Among our top outliers, we see a particular enrichment for genes involved in erythropoiesis and for genes previously associated with malaria resistance, consistent with a major role for malaria in shaping these patterns of genetic diversity. Polymorphisms at these genes are likely to impact resistance to malaria infection and contribute to ongoing host–parasite coevolutionary dynamics.  相似文献   

5.
Andréasson H  Gyllensten U  Allen M 《BioTechniques》2002,33(2):402-4, 407-11
The rapid development of molecular genetic analysis tools has made it possible to analyze most biological materialfound at the scene of a crime. Evidence materials containing DNA quantities too low to be analyzed using nuclear markers can be analyzed using the highly abundant mtDNA. However, there is a shortage of sensitive nDNA and mtDNA quantification assays. In this study, an assay for the quantification of very small amounts of DNA, based on the real-time Taq-Man assay, has been developed. This analysis will provide an estimate of the total number of nDNA copies and the total number of mtDNA molecules in a particular evidence material. The quantification is easy to perform, fast, and requires a minimum of the valuable DNA extracted from the evidence materiaL The results will aid in the evaluation of whether the specific sample is suitable for nDNA or mtDNA analysis. Furthermore, the optimal amount of DNA to be used in further analysis can be estimated ensuring that the analysis is successful and that the DNA is retained for future independent analysis. This assay has significant advantages over existing techniques because of its high sensitivity, accuracy, and the combined analysis of nDNA and mtDNA. Moreover, it has the potential to provide additional information about the presence of inhibitors in forensic samples. Subsequent mitochondrial and nuclear analysis of quantified samples illustrated the potential to predict the number of DNA copies required for a successful analysis in a certain typing assay.  相似文献   

6.
Microorganisms may be responsible for physical and chemical changes in composite materials. Inoculation of a fungal consortium to pre-sterilized coupons of five composites resulted in deep penetration into the interior of all materials at a temperature of approximately 22°C within 5 weeks. Scanning electron microscopy (SEM) showed that the inoculated composites were etched by the microorganisms. None of the five composites tested resisted fungal attack. Inoculation of extracts of these composites with the same fungi resulted in higher growth compared to the control, suggesting that chemical compounds leached from the composites were utilized by microorganisms as a source of carbon and energy. Studies with pure fibers used in the manufacture of composite materials showed that the fungi grew rapidly on both glass and carbon fibers in the presence of the fungal consortium. Our study indicates that microorganisms pose a threat to composite materials. We are currently investigating chemical and physical changes induced in these materials by the growth of fungi.  相似文献   

7.
Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using 29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2% genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small-subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9% of the sequences had significant similarities to known proteins, and “clusters of orthologous groups” (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.  相似文献   

8.
This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto ‘gold standard’ human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid‐1990s. Crime laboratory accreditation ensures that genetic test results have the courts’ confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample handling, evidence testing, statistical analysis and reporting that meet the rules of scientific acceptance, reliability and human forensic identification standards.  相似文献   

9.
Animal genomics is currently undergoing dynamic development, which is driven by the flourishing of high-throughput genome analysis methods. Recently, a large number of animals has been genotyped with the use of whole-genome genotyping assays in the course of genomic selection programmes. The results of such genotyping can also be used for studies on different aspects of livestock genome functioning and diversity. In this article, we review the recent literature concentrating on various aspects of animal genomics, including studies on linkage disequilibrium, runs of homozygosity, selection signatures, copy number variation and genetic differentiation of animal populations. Our work is aimed at providing insight into certain achievements of animal genomics and to arouse interest in basic research on the complexity and structure of the genomes of livestock.  相似文献   

10.

Background

Genome-wide profiling of single-nucleotide polymorphisms is receiving increasing attention as a method of pre-implantation genetic diagnosis in humans and of commercial genotyping of pre-transfer embryos in cattle. However, the very small quantity of genomic DNA in biopsy material from early embryos poses daunting technical challenges. A reliable whole-genome amplification (WGA) procedure would greatly facilitate the procedure.

Results

Several PCR-based and non-PCR based WGA technologies, namely multiple displacement amplification, quasi-random primed library synthesis followed by PCR, ligation-mediated PCR, and single-primer isothermal amplification were tested in combination with different DNA extractions protocols for various quantities of genomic DNA inputs. The efficiency of each method was evaluated by comparing the genotypes obtained from 15 cultured cells (representative of an embryonic biopsy) to unamplified reference gDNA. The gDNA input, gDNA extraction method and amplification technology were all found to be critical for successful genome-wide genotyping. The selected WGA platform was then tested on embryo biopsies (n = 226), comparing their results to that of biopsies collected after birth. Although WGA inevitably leads to a random loss of information and to the introduction of erroneous genotypes, following genomic imputation the resulting genetic index of both sources of DNA were highly correlated (r = 0.99, P<0.001).

Conclusion

It is possible to generate high-quality DNA in sufficient quantities for successful genome-wide genotyping starting from an early embryo biopsy. However, imputation from parental and population genotypes is a requirement for completing and correcting genotypic data. Judicious selection of the WGA platform, careful handling of the samples and genomic imputation together, make it possible to perform extremely reliable genomic evaluations for pre-transfer embryos.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-889) contains supplementary material, which is available to authorized users.  相似文献   

11.
Forensic biology is a sub-discipline of biological science with an amalgam of other branches of science used in the criminal justice system. Any nucleated cell/tissue harbouring DNA, either live or dead, can be used as forensic exhibits, a source of investigation through DNA typing. These biological materials of human origin are rich source of proteins, carbohydrates, lipids, trace elements as well as water and, thus, provide a virtuous milieu for the growth of microbes. The obstinate microbial growth augments the degradation process and is amplified with the passage of time and improper storage of the biological materials. Degradation of these biological materials carriages a huge challenge in the downstream processes of forensic DNA typing technique, such as short tandem repeats (STR) DNA typing. Microbial degradation yields improper or no PCR amplification, heterozygous peak imbalance, DNA contamination from non-human sources, degradation of DNA by microbial by-products, etc. Consequently, the most precise STR DNA typing technique is nullified and definite opinion can be hardly given with degraded forensic exhibits. Thus, suitable precautionary measures should be taken for proper storage and processing of the biological exhibits to minimize their decaying process by micro-organisms.  相似文献   

12.
Progressive heterosis, i.e., the additional hybrid vigor in double-cross tetraploid hybrids not found in their single-cross tetraploid parents, has been documented in a number of species including alfalfa,potato, and maize. In this study, four artificially induced maize tetraploids, directly derived from standard inbred lines, were crossed in pairs to create two single-cross hybrids. These hybrids were then crossed to create double-cross hybrids containing genetic material from all four original lines. Replicated fieldbased phenotyping of the materials over four years indicated a strong progressive heterosis phenotype in tetraploids but not in their diploid counterparts. In particular, the above ground dry weight phenotype of double-cross tetraploid hybrids was on average 34% and 56% heavier than that of the single-cross tetraploid hybrids and the double-cross diploid counterparts, respectively. Additionally,whole-genome resequencing of the original inbred lines and further analysis of these data did not show the expected spectrum of alleles to explain tetraploid progressive heterosis under the complementation of complete recessive model. These results underscore the reality of the progressive heterosis phenotype,its potential utility for increasing crop biomass production, and the need for exploring alternative hypothesis to explain it at a molecular level.  相似文献   

13.
Acoustic signatures are common components of avian vocalizations and are important for the recognition of individuals and groups. The proximate mechanisms by which these signatures develop are poorly understood, however. The development of acoustic signatures in nestling birds is of particular interest, because high rates of extra‐pair paternity or egg dumping can cause nestlings to be unrelated to at least one of the adults that are caring for them. In such cases, nestlings might conceal their genetic origins, by developing acoustic signatures through environmental rather than genetic mechanisms. In a cross‐fostering experiment with tree swallows Tachycineta bicolor, we investigated whether brood signatures of nestlings that were about to fledge were attributable to their genetic/maternal origins or to their rearing environment. We found that the calls of cross‐fostered nestlings did not vary based on their genetic/maternal origin, but did show some variation based on their rearing environment. Control nestlings that were not swapped, however, showed stronger brood signatures than either experimental group, suggesting that acoustic signatures develop through an interaction between rearing environment and genetic/maternal effects.  相似文献   

14.
In the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB) can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI). However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79–100%) compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16–43%), suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.  相似文献   

15.
This review describes recent advances in the analysis of metabolism using quantitative genetics. It focuses on how recent metabolic quantitative trait loci (QTL) studies enhance our understanding of the genetic architecture underlying naturally variable phenotypes and the impact of this fundamental research on agriculture, specifically crop breeding. In particular, the role of whole-genome duplications in generating quantitative genetic variation within a species is highlighted and the potential uses of this phenomenon presented. Additionally, the review describes how new observations from metabolic QTL mapping analyses are helping to shape and expand the concepts of genetic epistasis.  相似文献   

16.
The present work aimed to study the origin of foulant material recovered on membranes used in water treatment. Firstly, sugar signatures were assessed from the monosaccharide composition. As results were not conclusive, a statistical approach using discriminant analysis was applied to the sugar data set in order to predict the origin of the foulant material. Three groups of various origins (algal, microbial, continental dissolved organic matter) were used as sugar references for the prediction. The results of the computation showed that the origin of reverse osmosis (RO) seawater foulant material is influenced by both the location of the water sources and the season. RO brackish water and nanofiltration river water foulant materials had a terrestrial origin. Secondly, bacteriohopanepolyol signatures indicated that RO seawater foulant material had a marine signature, RO brackish water foulant material had both a marine and a terrestrial origin and the nanofiltration river water foulant material contained only a terrestrial signature.  相似文献   

17.
The renewed emphasis on population-specific genetic variation, exemplified most prominently by the International HapMap Project, is complicated by a longstanding, uncritical reliance on existing population categories in genetic research. Race and other pre-existing population definitions (ethnicity, religion, language, nationality, culture and so on) tend to be contentious concepts that have polarized discussions about the ethics and science of research into population-specific human genetic variation. By contrast, a broader consideration of the multiple historical sources of genetic variation provides a whole-genome perspective on the ways i n which existing population definitions do, and do not, account for how genetic variation is distributed among individuals. Although genetics will continue to rely on analytical tools that make use of particular population histories, it is important to interpret findings in a broader genomic context.  相似文献   

18.
19.
Single-stranded (ss) gapped regions in bacterial genomes (gDNA) are formed on W- and C-strands during replication, repair, and recombination. Using non-denaturing bisulfite treatment to convert C to U on ssDNA, combined with deep sequencing, we have mapped gDNA gap locations, sizes, and distributions in Escherichia coli for cells grown in mid-log phase in the presence and absence of UV irradiation, and in stationary phase cells. The fraction of ssDNA on gDNA is similar for W- and C-strands, ∼1.3% for log phase cells, ∼4.8% for irradiated log phase cells, and ∼8.5% for stationary phase cells. After UV irradiation, gaps increased in numbers and average lengths. A monotonic reduction in ssDNA occurred symmetrically between the DNA replication origin of (OriC) and terminus (Ter) for log phase cells with and without UV, a hallmark feature of DNA replication. Stationary phase cells showed no OriC → Ter ssDNA gradient. We have identified a spatially diverse gapped DNA landscape containing thousands of highly enriched ‘hot’ ssDNA regions along with smaller numbers of ‘cold’ regions. This analysis can be used for a wide variety of conditions to map ssDNA gaps generated when DNA metabolic pathways have been altered, and to identify proteins bound in the gaps.  相似文献   

20.
Monozygotic twins share identical genomic DNA and are indistinguishable using conventional genetic markers. Increasing evidence indicates that monozygotic twins are epigenetically distinct, suggesting that a comparison between DNA methylation patterns might be useful to approach this forensic problem. However, the extent of epigenetic discordance between healthy adult monozygotic twins and the stability of CpG loci within the same individual over a short time span at the whole-genome scale are not well understood. Here, we used Infinium HumanMethylation450 Beadchips to compare DNA methylation profiles using blood collected from 10 pairs of monozygotic twins and 8 individuals sampled at 0, 3, 6, and 9 months. Using an effective and unbiased method for calling differentially methylated (DM) CpG sites, we showed that 0.087%–1.530% of the CpG sites exhibit differential methylation in monozygotic twin pairs. We further demonstrated that, on whole-genome level, there has been no significant epigenetic drift within the same individuals for up to 9 months, including one monozygotic twin pair. However, we did identify a subset of CpG sites that vary in DNA methylation over the 9-month period. The magnitude of the intra-pair or longitudinal methylation discordance of the CpG sites inside the CpG islands is greater than those outside the CpG islands. The CpG sites located on shores appear to be more suitable for distinguishing between MZ twins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号