首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J E Keller  E A Neale  G Oyler  M Adler 《FEBS letters》1999,456(1):137-142
Primary dissociated fetal mouse spinal cord cultures were used to study the mechanisms underlying the differences in persistence of botulinum neurotoxin A (BoNT/A) and botulinum neurotoxin/E (BoNT/E) activities. Spinal cord cultures were exposed to BoNT/A (0.4 pM) for 2-3 days, which converted approximately half of the SNAP-25 to an altered form lacking the final nine C-terminal residues. The distribution of toxin-damaged to control SNAP-25 remained relatively unchanged for up to 80 days thereafter. Application of a high concentration of BoNT/E (250 pM) either 25 or 60 days following initial intoxication with BoNT/A converted both normal and BoNT/A-truncated SNAP-25 into a single population lacking the final 26 C-terminal residues. Excess BoNT/E was removed by washout, and recovery of intact SNAP-25 was monitored by Western blot analysis. The BoNT/E-truncated species gradually diminished during the ensuing 18 days, accompanied by the reappearance of both normal and BoNT/A-truncated SNAP-25. Return of BoNT/A-truncated SNAP-25 was observed in spite of the absence of BoNT/A in the culture medium during all but the first 3 days of exposure. These results indicate that proteolytic activity associated with the BoNT/A light chain persists inside cells for > 11 weeks, while recovery from BoNT/E is complete in < 3 weeks. This longer duration of enzymatic activity appears to account for the persistence of serotype A action.  相似文献   

2.
Sharma SK  Singh BR 《Biochemistry》2004,43(16):4791-4798
In botulism disease, neurotransmitter release is blocked by a group of structurally related neurotoxin proteins produced by Clostridium botulinum. Botulinum neurotoxins (BoNT, A-G) enter nerve terminals and irreversibly inhibit exocytosis via their endopeptidase activities against synaptic proteins SNAP-25, VAMP, and Syntaxin. Type A C. botulinum secretes the neurotoxin along with 5 other proteins called neurotoxin associated proteins (NAPs). Here, we report that hemagglutinin-33 (Hn-33), one of the NAP components, enhances the endopeptidase activity of not only BoNT/A but also that of BoNT/E, both under in vitro conditions and in rat synaptosomes. BoNT/A endopeptidase activity in vitro is about twice as high as that of BoNT/E under disulfide-reduced conditions. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E (which otherwise have only residual endopeptidase activity) enhanced their in vitro endopeptidase activity by 21- and 25-fold, respectively. Cleavage of rat-brain synaptosome SNAP-25 by BoNTs was used to assay endopeptidase activity under nerve-cell conditions. Reduced BoNT/A and BoNT/E cleaved synaptosomal SNAP-25 by 20% and 15%, respectively. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E enhanced their endopeptidase activities by 13-fold for the cleavage of SNAP-25 in synaptosomes, suggesting a possible functional role of Hn-33 in association with BoNTs. We believe that Hn-33 could be used as an activator in the formulation of the neurotoxin for therapeutic use.  相似文献   

3.
Botulinum neurotoxin serotypes A and E (BoNT/A and BoNT/E) block neurotransmitter release by cleaving the 206-amino-acid SNARE protein, SNAP-25. For each BoNT serotype, cleavage of SNAP-25 results in the loss of intact protein, the production of an N-terminal truncated protein, and the generation of a small C-terminal peptide. Peptides that mimic the C-terminal fragments of SNAP-25 following BoNT/A or BoNT/E cleavage were shown to depress transmitter release in bovine chromaffin cells and in Aplysia buccal ganglion cells. Similarly, the N-terminal–truncated SNAP-25 resulting from BoNT/A or BoNT/E cleavage has been found to inhibit transmitter exocytosis in various systems. With one exception, however, the inhibitory action of truncated SNAP-25 has not been demonstrated at a well-defined cholinergic synapse. The goal of the current study was to determine the level of inhibition of neurotransmitter release by N-terminal BoNT/A- or BoNT/E-truncated SNAP-25 in two different neuronal systems: cholinergically coupled Aplysia neurons and rat hippocampal cell cultures. Both truncated SNAP-25 products inhibited depolarization-dependent glutamate release from hippocampal cultures and depressed synaptic transmission in Aplysia buccal ganglion cells. These results suggest that truncated SNAP-25 can compete with endogenous SNAP-25 for binding with other SNARE proteins involved in transmitter release, thus inhibiting neurotransmitter exocytosis.  相似文献   

4.
Botulinum toxin is an exceedingly potent inhibitor of neurotransmission across the neuromuscular junction, causing flaccid paralysis and death. The potential for misuse of this deadly poison as a bioweapon has added a greater urgency to the search for effective therapeutics. The development of sensitive and efficient cell-based assays for the evaluation of toxin antagonists is crucial to the rapid and successful identification of therapeutic compounds. The authors evaluated the sensitivity of primary cultures from 4 distinct regions of the embryonic chick nervous system to botulinum neurotoxin A (BoNT/A) cleavage of synaptosomal-associated protein of 25 kD (SNAP-25). Although differences in sensitivity were apparent, SNAP-25 cleavage was detectable in neuronal cells from each of the 4 regions within 3 h at BoNT/A concentrations of 1 nM or lower. Co-incubation of chick neurons with BoNT/A and toxin-neutralizing antibodies inhibited SNAP-25 cleavage, demonstrating the utility of these cultures for the assay of BoNT/A antagonists.  相似文献   

5.

Background

There is current interest in understanding the molecular mechanisms of tumor-induced bone pain. Accumulated evidence shows that endogenous formaldehyde concentrations are elevated in the blood or urine of patients with breast, prostate or bladder cancer. These cancers are frequently associated with cancer pain especially after bone metastasis. It is well known that transient receptor potential vanilloid receptor 1 (TRPV1) participates in cancer pain. The present study aims to demonstrate that the tumor tissue-derived endogenous formaldehyde induces bone cancer pain via TRPV1 activation under tumor acidic environment.

Methodology/Principal Findings

Endogenous formaldehyde concentration increased significantly in the cultured breast cancer cell lines in vitro, in the bone marrow of breast MRMT-1 bone cancer pain model in rats and in tissues from breast cancer and lung cancer patients in vivo. Low concentrations (1∼5 mM) of formaldehyde induced pain responses in rat via TRPV1 and this pain response could be significantly enhanced by pH 6.0 (mimicking the acidic tumor microenvironment). Formaldehyde at low concentrations (1 mM to 100 mM) induced a concentration-dependent increase of [Ca2+]i in the freshly isolated rat dorsal root ganglion neurons and TRPV1-transfected CHO cells. Furthermore, electrophysiological experiments showed that low concentration formaldehyde-elicited TRPV1 currents could be significantly potentiated by low pH (6.0). TRPV1 antagonists and formaldehyde scavengers attenuated bone cancer pain responses.

Conclusions/Significance

Our data suggest that cancer tissues directly secrete endogenous formaldehyde, and this formaldehyde at low concentration induces metastatic bone cancer pain through TRPV1 activation especially under tumor acidic environment.  相似文献   

6.

Background

There are currently 7 known serotypes of botulinum neurotoxin (BoNT) classified upon non-cross reactivity of neutralizing immunoglobulins. Non-neutralizing immunoglobulins, however, can exhibit cross-reactivities between 2 or more serotypes, particularly mosaic forms, which can hamper the development of highly specific immunoassays, especially if based on polyclonal antisera. Here we employ facile recombinant antibody technology to subtractively select ligands to each of the 7 BoNT serotypes, resulting in populations with very high specificity for their intended serotype.

Methods and Findings

A single llama was immunized with a cocktail of 7 BoNT toxoids to generate a phage display library of single domain antibodies (sdAb, VHH or nanobodies) which were selected on live toxins. Resulting sdAb were capable of detecting both toxin and toxin complex with the best combinations able to detect 100s-10s of pg per 50 µL sample in a liquid bead array. The most sensitive sdAb were combined in a heptaplex assay to identify each of the BoNT serotypes in buffer and milk and to a lesser extent in carrot juice, orange juice and cola. Several anti-A(1) sdAb recognized A2 complex, showing that subtype cross-reactivity within a serotype was evident. Many of our sdAb could act as both captor and tracer for several toxin and toxin complexes suggesting sdAb can be used as architectural probes to indicate BoNT oligomerisation. Six of 14 anti-A clones exhibited inhibition of SNAP-25 cleavage in the neuro-2A assay indicating some sdAb had toxin neutralizing capabilities. Many sdAb were also shown to be refoldable after exposure to high temperatures in contrast to polyclonal antisera, as monitored by circular dichroism.

Conclusions

Our panel of molecularly flexible antibodies should not only serve as a good starting point for ruggedizing assays and inhibitors, but enable the intricate architectures of BoNT toxins and complexes to be probed more extensively.  相似文献   

7.

Background

Infraorbital nerve constriction (IoNC) is an experimental model of trigeminal neuropathy. We investigated if IoNC is accompanied by dural extravasation and if botulinum toxin type A (BoNT/A) can reduce pain and dural extravasation in this model.

Methodology/Principal Findings

Rats which developed mechanical allodynia 14 days after the IoNC were injected with BoNT/A (3.5 U/kg) into vibrissal pad. Allodynia was tested by von Frey filaments and dural extravasation was measured as colorimetric absorbance of Evans blue - plasma protein complexes. Presence of dural extravasation was also examined in orofacial formalin-induced pain. Unilateral IoNC, as well as formalin injection, produced bilateral dural extravasation. Single unilateral BoNT/A injection bilaterally reduced IoNC induced dural extravasation, as well as allodynia (lasting more than 2 weeks). Similarly, BoNT/A reduced formalin-induced pain and dural extravasation. Effects of BoNT/A on pain and dural extravasation in IoNC model were dependent on axonal transport through sensory neurons, as evidenced by colchicine injections (5 mM, 2 µl) into the trigeminal ganglion completely preventing BoNT/A effects.

Conclusions/Significance

Two different types of pain, IoNC and formalin, are accompanied by dural extravasation. The lasting effect of a unilateral injection of BoNT/A in experimental animals suggests that BoNT/A might have a long-term beneficial effect in craniofacial pain associated with dural neurogenic inflammation. Bilateral effects of BoNT/A and dependence on retrograde axonal transport suggest a central site of its action.  相似文献   

8.
In recent years a growing debate is about whether botulinum neurotoxins are retrogradely transported from the site of injection. Immunodetection of cleaved SNAP-25 (cl-SNAP-25), the protein of the SNARE complex targeted by botulinum neurotoxin serotype A (BoNT/A), could represent an excellent approach to investigate the mechanism of action on the nociceptive pathways at peripheral and/or central level. After peripheral administration of BoNT/A, we analyzed the expression of cl-SNAP-25, from the hindpaw’s nerve endings to the spinal cord, together with the behavioral effects on neuropathic pain. We used the chronic constriction injury of the sciatic nerve in CD1 mice as animal model of neuropathic pain. We evaluated immunostaining of cl-SNAP-25 in the peripheral nerve endings, along the sciatic nerve, in dorsal root ganglia and in spinal dorsal horns after intraplantar injection of saline or BoNT/A, alone or colocalized with either glial fibrillar acidic protein, GFAP, or complement receptor 3/cluster of differentiation 11b, CD11b, or neuronal nuclei, NeuN, depending on the area investigated. Immunofluorescence analysis shows the presence of the cl-SNAP-25 in all tissues examined, from the peripheral endings to the spinal cord, suggesting a retrograde transport of BoNT/A. Moreover, we performed in vitro experiments to ascertain if BoNT/A was able to interact with the proliferative state of Schwann cells (SC). We found that BoNT/A modulates the proliferation of SC and inhibits the acetylcholine release from SC, evidencing a new biological effect of the toxin and further supporting the retrograde transport of the toxin along the nerve and its ability to influence regenerative processes. The present results strongly sustain a combinatorial action at peripheral and central neural levels and encourage the use of BoNT/A for the pathological pain conditions difficult to treat in clinical practice and dramatically impairing patients’ quality of life.  相似文献   

9.
Recent reports indicate that interruption of acetylcholine release by intrastriatal injection of botulinum neurotoxin type A (BoNT/A) in a rat Parkinson’s disease model reduces pathogenic behavior without adverse side effects such as memory dysfunction. Current knowledge suggests that BoNT/A subtype 1 (BoNT/A1) and BoNT/A subtype 2 (BoNT/A2) exert different effects. In the present study, we compared the effects of BoNT/A1 and BoNT/A2 on rotation behavior and in vivo cleavage of presynaptic protein SNAP-25 in a rat unilateral 6-hydroxydopamine-induced Parkinson’s disease model. BoNT/A2 more effectively reduced pathogenic behavior by efficiently cleaving SNAP-25 in the striatum compared with that of BoNT/A1. Our results suggest that BoNT/A2 has greater clinical therapeutic value for treating subjects with Parkinson’s disease compared to that of BoNT/A1.  相似文献   

10.
Botulinum neurotoxin A (BoNT/A), the most acutely poisonous substance to humans known, cleave its SNAP-25 substrate with high specificity. Based on the endopeptidase activity, different methods have been developed to detect BoNT/A, but most lack ideal reproducibility or sensitivity, or suffer from long-term or unwanted interferences. In this study, we developed a simple method to detect and quantitate trace amounts of botulinum neurotoxin A using the IgY antibody against a linear-peptide substrate. The effects of reaction buffer, time, and temperature were analyzed and optimized. When the optimized assay was used to detect BoNT/A, the limit of detection of the assay was 0.01 mouse LD50 (0.04 pg), and the limit of quantitation was 0.12 mouse LD50/ml (0.48 pg). The findings also showed favorable specificity of detecting BoNT/A. When used to detect BoNT/A in milk or human serum, the proposed assay exhibited good quantitative accuracy (88% < recovery < 111%; inter- and intra-assay CVs < 18%). This method of detection took less than 3 h to complete, indicating that it can be a valuable method of detecting BoNT/A in food or clinical diagnosis.  相似文献   

11.
Dolly JO  Wang J  Zurawski TH  Meng J 《The FEBS journal》2011,278(23):4454-4466
A major unmet clinical need exists for long-acting neurotherapeutics to alleviate chronic pain in patients unresponsive to available nonaddictive analgesics. Herein, a new strategy is described for the development of potent and specific inhibitors of the neuronal exocytosis of transmitters and pain mediators that exhibit unique antinociceptive activity. This entailed recombinant production in Escherichia coli of two serotypes of botulinum neurotoxin (BoNT) (BoNT(A) and BoNT(E) ), which are proteins that are known to block the release of transmitters by targeting and entering nerve endings, where their proteases cleave and inactivate a protein, synaptosomal protein of M(r) 25 000 (SNAP-25), that is essential for Ca(2+) -regulated exocytosis. Site-directed mutagenesis of Leu428 and Leu429 in BoNT(A) revealed that the remarkable longevity of its neuroparalytic action is attributable to a dileucine-containing motif. BoNT(E) acts transiently, because it lacks these residues, but is a superior inhibitor of transient receptor potential vanilloid type 1-mediated release of pain peptides from sensory nerves. The advantageous features of each serotype were harnessed by attaching the BoNT(E) protease moiety to an enzymically inactive mutant of BoNT(A) . The resultant purified composite protein could target motoneurons by binding to the BoNT(A) ectoacceptor and persistently produce BoNT(E) -truncated SNAP-25. As this enzyme lasted for more than 1 month (as compared with 5 days for BoNT(E) alone), such a dramatic extension in the lifetime of this BoNT(E) protease is attributable to a stabilizing influence of the BoNT(A) mutant. Most importantly, injecting this novel biotherapeutic into the foot pads of rats resulted in extended amelioration of inflammatory pain. Thus, a new generation of biotherapeutics has been created with the potential to give long-term relief of pain.  相似文献   

12.

Objectives

To evaluate whether botulinum toxin A (BoNT-A) injection and Lipotoxin (liposomes with 200 U of BoNT-A) instillation target different proteins, including P2X3, synaptic vesicle glycoprotein 2A, and SNAP-25, in the bladder mucosa, leading to different treatment outcomes.

Materials and Methods

This was a retrospective study performed in a tertiary teaching hospital. We evaluated the clinical results of 27 OAB patients treated with intravesical BoNT-A injection (n = 16) or Lipotoxin instillation (n = 11). Seven controls were treated with saline. Patients were injected with 100 U of BoNT-A or Lipotoxinin a single intravesical instillation. The patients enrolled in this study all had bladder biopsies performed at baseline and one month after BoNT-A therapy. Treatment outcome was measured by the decreases in urgency and frequency episodes at 1 month. The functional protein expressions in the urothelium were measured at baseline and after 1 month. The Wilcoxon signed-rank test and ordinal logistic regression were used to compare the treatment outcomes.

Results

Both BoNT-A injection and Lipotoxin instillation treatments effectively decreased the frequency of urgency episodes in OAB patients. Lipotoxin instillation did not increase post-void residual volume. BoNT-A injection effectively cleaved SNAP-25 (p < 0.01). Liposome encapsulated BoNT-A decreased urothelial P2X3 expression in the five responders (p = 0.04), while SNAP-25 was not significantly cleaved.

Conclusions

The results of this study provide a possible mechanism for the therapeutic effects of BoNT-A for the treatment of OAB via different treatment forms. BoNT-A and Lipotoxin treatments effectively decreased the frequency of urgency episodes in patients with OAB.  相似文献   

13.
Blockade of neurotransmitter release by botulinum neurotoxin type A (BoNT(A)) underlies the severe neuroparalytic symptoms of human botulism, which can last a few years. The structural basis for this remarkable persistence remains unclear. Herein, recombinant BoNT(A) was found to match the neurotoxicity of that from Clostridium botulinum, producing persistent cleavage of synaptosomal-associated protein of 25 kDa (SNAP-25) and neuromuscular paralysis. When two leucines near the C terminus of the protease light chain of A (LC(A)) were mutated, its inhibition of exocytosis was followed by fast recovery of intact SNAP-25 in cerebellar neurons and neuromuscular transmission in vivo. Deletion of 6-7 N terminus residues diminished BoNT(A) activity but did not alter the longevity of its SNAP-25 cleavage and neuromuscular paralysis. Furthermore, genetically fusing LC(E) to a BoNT(A) enzymically inactive mutant (BoTIM(A)) yielded a novel LC(E)-BoTIM(A) protein that targets neurons, and the BoTIM(A) moiety also delivers and stabilizes the inhibitory LC(E), giving a potent and persistent cleavage of SNAP-25 with associated neuromuscular paralysis. Moreover, its neurotropism was extended to sensory neurons normally insensitive to BoNT(E). LC(E-)BoTIM(A)(AA) with the above-identified dileucine mutated gave transient neuromuscular paralysis similar to BoNT(E), reaffirming that these residues are critical for the persistent action of LC(E)-BoTIM(A) as well as BoNT(A). LC(E)-BoTIM(A) inhibited release of calcitonin gene-related peptide from sensory neurons mediated by transient receptor potential vanilloid type 1 and attenuated capsaicin-evoked nociceptive behavior in rats, following intraplantar injection. Thus, a long acting, versatile composite toxin has been developed with therapeutic potential for pain and conditions caused by overactive cholinergic nerves.  相似文献   

14.
Zhou JY  Wang ZF  Ren XM  Tang MZ  Shi YL 《FEBS letters》2003,555(2):375-379
Toosendanin (TSN), a triterpenoid derivative extracted from Chinese traditional medicine, has been demonstrated to be an effective cure for experimental botulism. This study is designed to explore its antibotulismic mechanism by Western blotting. The results showed that TSN incubation did not change the electrophoresis pattern and the amounts of synaptosomal-associated protein of 25 kDa (SNAP-25), syntaxin and synaptobrevin/vesicle-associated membrane protein in rat cerebral synaptosomes, but made the synaptosomes completely resistant to botulinum neurotoxin A (BoNT/A)-mediated cleavage of SNAP-25. After binding of BoNT/A to synaptosomes, TSN still partially antagonized the toxin-mediated cleavage of SNAP-25. However, TSN-incubated synaptosomal membrane fraction did not resist the cleavage of SNAP-25 by the light chain of BoNT/A. It is suggested that the antibotulismic effect of TSN results from blocking the toxin's approach to its enzymatic substrate.  相似文献   

15.
The widely used botulinum neurotoxin A (BoNT/A) blocks neurotransmission via cleavage of the synaptic protein SNAP-25 (synaptosomal-associated protein of 25 kDa). Recent evidence demonstrating long-distance propagation of SNAP-25 proteolysis has challenged the idea that BoNT/A remains localized to the injection site. However, the extent to which distant neuronal networks are impacted by BoNT/A retrograde trafficking remains unknown. Importantly, no studies have addressed whether SNAP-25 cleavage translates into structural and functional changes in distant intoxicated synapses. Here we show that the BoNT/A injections into the adult rat optic tectum result in SNAP-25 cleavage in retinal neurons two synapses away from the injection site, such as rod bipolar cells and photoreceptors. Retinal endings displaying cleaved SNAP-25 were enlarged and contained an abnormally high number of synaptic vesicles, indicating impaired exocytosis. Tectal injection of BoNT/A in rat pups resulted in appearance of truncated-SNAP-25 in cholinergic amacrine cells. Functional imaging with calcium indicators showed a clear reduction in cholinergic-driven wave activity, demonstrating impairments in neurotransmission. These data provide the first evidence for functional effects of the retrograde trafficking of BoNT/A, and open the possibility of using BoNT/A fragments as drug delivery vehicles targeting the central nervous system.  相似文献   

16.
Oligomerisation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes is required for synaptic vesicle fusion and neurotransmitter release. How these regulate the release of pain peptides elicited by different stimuli from sensory neurons has not been established. Herein, K+ depolarization was found to induce multiple sodium dodecyl sulfate (SDS)-resistant SNARE complexes in sensory neurons exposed to botulinum neurotoxins (BoNTs), with molecular weights ranging from 104–288 k (large) to 38–104 k (small). Isoform 1 of vesicle-associated membrane protein 1 (VAMP 1) assembled into stable complexes upon depolarisation and was required for the participation of intact synaptosome-associated protein of relative molecular mass 25 k (SNAP-25) or BoNT/A-truncated form (SNAP-25A) in the large functional and small inactive SDS-resistant SNARE complexes. Cleaving VAMP 1 decreased SNAP-25A in the functional complexes to a much greater extent than the remaining intact SNAP-25. Syntaxin 1 proved essential for the incorporation of intact and SNAP-25A into the large complexes. Truncation of syntaxin 1 by BoNT/C1 caused /A- and/or /C1-truncated SNAP-25 to appear in non-functional complexes and blocked the release of calcitonin gene-related peptide (CGRP) elicited by capsaicin, ionomycin, thapsigargin or K+ depolarization. Only the latter two were susceptible to /A. Inhibition of CGRP release by BoNT/A was reversed by capsaicin and/or ionomycin, an effect overcome by BoNT/C1. Unlike BoNT/B, BoNT/D cleaved VAMP 1 in addition to 2 and 3 in rat sensory neurons and blocked both CGRP and substance P release. Thus, unlike SNAP-25, syntaxin 1 and VAMP 1 are more suitable targets to abolish functional SNARE complexes and pain peptide release evoked by any stimuli.  相似文献   

17.
Jin R  Sikorra S  Stegmann CM  Pich A  Binz T  Brunger AT 《Biochemistry》2007,46(37):10685-10693
Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote alpha-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the alpha-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.  相似文献   

18.
S Cai  H K Sarkar  B R Singh 《Biochemistry》1999,38(21):6903-6910
Botulinum neurotoxins type A (BoNT/A), the most toxic substance known to man, is produced by Clostridium botulinum type A as a complex with a group of neurotoxin-associated proteins (NAPs), possibly through a polycistronic expression of a clustered group of genes. The botulinum neurotoxin complex is the only known example of a protein complex where a group of proteins (NAPs) protect another protein (BoNT) against acidity and proteases of the GI tract. We now report that NAPs also potentiate the Zn2+ endopeptidase activity of BoNT/A in both in vitro and in vivo assays against its known intracellular target protein, 25 kDa synaptosomal associated protein (SNAP-25). While BoNT/A exhibited no protease activity prior to reduction with dithiothreitol (DTT), the BoNT/A complex exhibited a high protease activity even in its nonreduced form. Our results suggest that the bacterial production of NAPs along with BoNT is designed for the NAPs to play an accessory role in the neurotoxin function, in contrast to their previously known limited role in protecting the neurotoxin in the GI tract and in the external environment. Structural features of BoNT/A change considerably upon disulfide reduction, as revealed by near-UV circular dichroism spectroscopy. BoNT/A in the reduced form adopts a more flexible structure than in the unreduced form, as also indicated by large differences in DeltaH values (155 vs 248 kJ mol-1) of temperature-induced unfolding of BoNT/A.  相似文献   

19.
Puffer EB  Lomneth RB  Sarkar HK  Singh BR 《Biochemistry》2001,40(31):9374-9378
The role of SNAP-25 (synaptosomal associated protein of 25 kDa) isotypes in the neurotransmitter release process was examined by varying their relative abundance during PC12 cell differentiation induced by nerve growth factor (NGF). Norepinephrine release by NGF-differentiated PC12 cells is more sensitive to type A botulinum toxin (BoNT/A) than by nondifferentiated cells, while both differentiated and nondifferentiated PC12 cells are equally sensitive to type E botulinum toxin (BoNT/E). The differential sensitivity to BoNT/A corresponds to an altered susceptibility of SNAP-25 isotypes to BoNT/A cleavage in vitro, whereas both isotypes are equally vulnerable to cleavage by BoNT/E. Using recombinant SNAP-25 preparations, we show that BoNT/A cleaves SNAP-25b (present in differentiated cells) 2-fold more readily than SNAP-25a (present in both differentiated and nondifferentiated cells). Structural studies using far-ultraviolet circular dichroism (UV--CD) and thermal denaturation suggest a difference in the polypeptide folding as the underlying molecular basis for the differential sensitivity of SNAP-25b and SNAP-25a to BoNT/A cleavage. We propose differential roles for SNAP-25b and SNAP-25a in the neurotransmitter release process since our results suggest that BoNT/A inhibits neurotransmitter release by primarily cleaving SNAP-25b.  相似文献   

20.

Background and purpose

TRPV1 is expressed in sensory neurons and vascular smooth muscle cells, contributing to both pain perception and tissue blood distribution. Local desensitization of TRPV1 in sensory neurons by prolonged, high dose stimulation is re-engaged in clinical practice to achieve analgesia, but the effects of such treatments on the vascular TRPV1 are not known.

Experimental approach

Newborn rats were injected with capsaicin for five days. Sensory activation was measured by eye wiping tests and plasma extravasation. Isolated, pressurized skeletal muscle arterioles were used to characterize TRPV1 mediated vascular responses, while expression of TRPV1 was detected by immunohistochemistry.

Key results

Capsaicin evoked sensory responses, such as eye wiping (3.6±2.5 versus 15.5±1.4 wipes, p<0.01) or plasma extravasation (evans blue accumulation 10±3 versus 33±7 µg/g, p<0.05) were reduced in desensitized rats. In accordance, the number of TRPV1 positive sensory neurons in the dorsal root ganglia was also decreased. However, TRPV1 expression in smooth muscle cells was not affected by the treatment. There were no differences in the diameter (192±27 versus 194±8 µm), endothelium mediated dilations (evoked by acetylcholine), norepinephrine mediated constrictions, myogenic response and in the capsaicin evoked constrictions of arterioles isolated from skeletal muscle.

Conclusion and implications

Systemic capsaicin treatment of juvenile rats evokes anatomical and functional disappearance of the TRPV1-expressing neuronal cells but does not affect the TRPV1-expressing cells of the arterioles, implicating different effects of TRPV1 stimulation on the viability of these cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号