首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pathotropic neural stem and/or progenitor cells (NSCs) can potentially deliver therapeutic agents to otherwise inaccessible cancers. In glioma, NSCs are found in close contact with tumor cells, raising the possibility that specificity of NSC contact with glioma targets originates in the tumor cells themselves. Alternatively, target preferences may originate, at least in part, in the tumor microenvironment. To better understand mechanisms underlying NSC interactions with glioma cells, we examined NSC-target cell contacts in a highly simplified 3-dimensional peptide hydrogel (Puramatrix) in which cell behaviors can be studied in the relative absence of external cues. HB1.F3 is an immortalized clonal human NSC line extensively characterized in preclinical investigations. To study contact formation between HB1.F3 NSCs and glioma cells, we first examined co-cultures of eGFP-expressing HB1.F3 (HB1.F3.eGFP) NSCs and dsRed-expressing U251 glioma (U251.dsRed) cells. Using confocal microscopy, HB1.F3.eGFP cells were observed contacting or encircling U251.dsRed glioma cells, but never the reverse. Next, examining specificity of these contacts, no significant quantitative differences in either percentages of HB1.F3 NSCs contacting targets, or in the extent of target cell encirclement, were observed when HB1.F3.eGFP cells were presented with various potential target cells (human glioma and breast cancer cell lines, patient-derived brain tumor lines, non-tumor fibroblasts, primary mouse and human astroglial cells, and primary adult and newborn human dermal fibroblasts) except that interactions between HB1.F3 cells did not progress beyond establishing contacts. Finally cytoskeletal mechanisms employed by HB1.F3.eGFP cells varied with the substrate. When migrating in Puramatrix, HB1.F3 NSCs exhibited intermittent process extension followed by soma translocation, while during encirclement their movements were more amoeboid. We conclude that formation of contacts and subsequent encirclement of target cells by HB1.F3 NSCs is an intrinsic property of these NSCs, and that preferential contact formation with tumor cells in vivo must therefore be highly dependent on microenvironmental cues.  相似文献   

2.
In this study, alpha-bisabolol, a sesquiterpene alcohol present in natural essential oil, was found to have a strong time- and dose-dependent cytotoxic effect on human and rat glioma cells. After 24 h of treatment with 2.5-3.5 microM alpha-bisabolol, the viability of these cells was reduced by 50% with respect to untreated cells. Furthermore, the viability of normal rat glial cells was not affected by treatment with alpha-bisabolol at the same concentrations as above. Glioma cells treated with high concentration of alpha-bisabolol (10 microM) resulted in a 100% cell death. Judging from hypo-G1 accumulation, poly(ADP-ribose) polymerase cleavage, and DNA ladder formation, the cytotoxicity triggered by alpha-bisabolol resulted from apoptosis induction. Moreover, the dissipation of mitochondrial-inner transmembrane potential and the release of cytochrome c from mitochondria indicated that, in these glioma cells, apoptosis occurred through an intrinsic pathway. As pointed out by the experimental results, alpha-bisabolol may be considered a novel compound able to inhibit glioma cell growth and survival.  相似文献   

3.
Transplantation of human neural stem cells (NSCs) and their derivatives is a promising future treatment for neurodegenerative disease and traumatic nervous system lesions. An important issue is what kind of immunological reaction the cellular transplant and host interaction will result in. Previously, we reported that human NSCs, despite expressing MHC class I and class II molecules, do not trigger an allogeneic T cell response. Here, the immunocompetence of human NSCs, as well as differentiated neural cells, was further studied. Astrocytes expressed both MHC class I and class II molecules to a degree equivalent to that of the NSCs, whereas neurons expressed only MHC class I molecules. Neither the NSCs nor the differentiated cells triggered an allogeneic lymphocyte response. Instead, these potential donor NSCs and astrocytes, but not the neurons, exhibited a suppressive effect on an allogeneic immune response. The suppressive effect mediated by NSCs most likely involves cell–cell interaction. When the immunogenicity of human NSCs was tested in an acute spinal cord injury model in rodent, a xenogeneic rejection response was triggered. Thus, human NSCs and their derived astrocytes do not initiate, but instead suppress, an allogeneic response, while they cannot block a graft rejection in a xenogeneic setting.  相似文献   

4.
Human malignant gliomas are highly resistant to current therapeutic approaches. We previously demonstrated that cyclosporine A (CsA) induces an apoptotic cell death in rat C6 glioma cells. In the present study, we found the induction of growth arrest or cell death of human malignant glioma cells exposed to CsA. In studied glioma cells, an accumulation of p21Cip1/Waf1 protein, a cell cycle inhibitor, was observed following CsA treatment, even in the absence of functional p53 tumour suppressor. CsA induced a senescence-associated growth arrest, in U87-MG glioma cells with functional p53, while in U373 and T98G glioma cells with mutated p53, CsA treatment triggered cell death associated with alterations of cell morphology, cytoplasm vacuolation, and condensation of chromatin. In T98G cells this effect was completely abolished by simultaneous treatment with an inhibitor of protein synthesis, cycloheximide (CHX). Moreover, CsA-induced cell death was accompanied by activation of executory caspases followed by PARP cleavage. CsA treatment did not elevate fasL expression and had no effect on mitochondrial membrane potential. We conclude that CsA triggers either growth arrest or non-apoptotic, programmed cell death in human malignant glioma cells. Moreover, CsA employs mechanisms different to those in the action of radio- and chemotherapeutics, and operating even in cells resistant to conventional treatments. Thus, CsA or related drugs may be an effective novel strategy to treat drug-resistant gliomas or complement apoptosis-based therapies.  相似文献   

5.
Photodynamic therapy (PDT) is an innovative strategy for the treatment of solid neoplasms of the brain. Aside from inducing cell death in tumor cells, PDT induces endothelial cell death and promotes formation of blood clots; however, exact mechanisms that trigger these phenomena remain largely unknown. We now used Western blotting to analyze secretion of regulators of angiogenesis to the supernatants of one glioma, one macrophage, and one endothelial cell line following Hypocrellin-A and -B photodynamic therapy. We observed induction of proangiogenic VEGF (vascular endothelial growth factor) and of antiangiogenic sFlt-1, angiostatin, p43, allograft inflammatory factor-1, and connective tissue growth factor. Release of thrombospondin-1 was diminished in a glioma cell line supernatant. Endostatin release was induced in glioma cells and reduced in macrophages and endothelial cells. These data show that a wide range of antiangiogenic factors are secreted by brain tumor cells following Hypocrellin photochemotherapy. However, VEGF release is also induced thus suggesting both favorable and deleterious effects on tumor outgrowth.  相似文献   

6.
《PLoS biology》2021,19(4)
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.

This study shows that neural stem cells are able to transfer functional mitochondria via extracellular vesicles to target cells both in vitro and in vivo, suggesting that functional mitochondrial transfer via extracellular vesicles is a signaling mechanism used by neural stem cells to modulate the physiology and metabolism of target cells.  相似文献   

7.
Kim EH  Choi KS 《Autophagy》2008,4(1):76-78
Mitochondria, which are a major source of intracellular reactive oxygen species (ROS), are extremely vulnerable to oxidative stress. We recently reported that selenite treatment of various glioma cells induced a non-apoptotic cell death accompanied by excessive mitophagy (selective autophagy of damaged mitochondria). Examination of various ROS revealed that the superoxide anion played a key role in selenite-induced mitochondrial damage, mitophagy and cell death. Treatment with superoxide generators (diquat and paraquat) was sufficient to trigger mitophagy in glioma cells. Small interfering RNA-mediated knockdown of ATG6 or ATG7 attenuated selenite-induced mitophagy and cell death, demonstrating that the mitophagic pathway contributes to selenite-induced cell death. The effect of selenite in glioma cells may thus provide an example of superoxide-mediated mitophagic cell death, i.e., cell death caused by excessive mitophagy.  相似文献   

8.
Brain ischemic stroke is one of the most common causes of death and disability, currently has no efficient therapeutic strategy in clinic. Due to irreversible functional neurons loss and neural tissue injury, stem cell transplantation may be the most promising treatment approach. Neural stem cells (NSCs) as the special type of stem cells only exist in the nervous system, can differentiate into neurons, astrocytes, and oligodendrocytes, and have the abilities to compensate insufficient endogenous nerve cells and improve the inflammatory microenvironment of cell survival. In this review, we focused on the important role of NSCs therapy for brain ischemic stroke, mainly introduced the methods of optimizing the therapeutic efficacy of NSC transplantation, such as transfection and overexpression of specific genes, pretreatment of NSCs with inflammatory factors, and co-transplantation with cytokines. Next, we discussed the potential problems of NSC transplantation which seriously limited their rapid clinical transformation and application. Finally, we expected a new research topic in the field of stem cell research. Based on the bystander effect, exosomes derived from NSCs can overcome many of the risks and difficulties associated with cell therapy. Thus, as natural seed resource of nervous system, NSCs-based cell-free treatment is a newly therapy strategy, will play more important role in treating ischemic stroke in the future.  相似文献   

9.

Background

Treatment strategies for the highly invasive brain tumor, glioblastoma multiforme, require that cells which have invaded into the surrounding brain be specifically targeted. The inherent tumor-tropism of neural stem cells (NSCs) to primary and invasive tumor foci can be exploited to deliver therapeutics to invasive brain tumor cells in humans. Use of the strategy of converting prodrug to drug via therapeutic transgenes delivered by immortalized therapeutic NSC lines have shown efficacy in animal models. Thus therapeutic NSCs are being proposed for use in human brain tumor clinical trials. In the context of NSC-based therapies, MRI can be used both to non-invasively follow dynamic spatio-temporal patterns of the NSC tumor targeting allowing for the optimization of treatment strategies and to assess efficacy of the therapy. Iron-labeling of cells allows their presence to be visualized and tracked by MRI. Thus we aimed to iron-label therapeutic NSCs without affecting their cellular physiology using a method likely to gain United States Federal Drug Administration (FDA) approval.

Methodology

For human use, the characteristics of therapeutic Neural Stem Cells must be clearly defined with any pertubation to the cell including iron labeling requiring reanalysis of cellular physiology. Here, we studied the effect of iron-loading of the therapeutic NSCs, with ferumoxide-protamine sulfate complex (FE-Pro) on viability, proliferation, migratory properties and transgene expression, when compared to non-labeled cells. FE-Pro labeled NSCs were imaged by MRI at tumor sites, after intracranial administration into the hemisphere contralateral to the tumor, in an orthotopic human glioma xenograft mouse model.

Conclusion

FE-Pro labeled NSCs retain their proliferative status, tumor tropism, and maintain stem cell character, while allowing in vivo cellular MRI tracking at 7 Tesla, to monitor their real-time migration and distribution at brain tumor sites. Of significance, this work directly supports the use of FE-Pro-labeled NSCs for real-time tracking in the clinical trial under development: “A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically modified Neural Stem Cells Expressing Escherichia coli Cytosine Deaminase for Treatment of Recurrent High-Grade Gliomas”.  相似文献   

10.
《Autophagy》2013,9(1):76-78
Mitochondria, which are a major source of intracellular reactive oxygen species (ROS), are extremely vulnerable to oxidative stress. We recently reported that selenite treatment of various glioma cells induced a non-apoptotic cell death accompanied by excessive mitophagy (selective autophagy of damaged mitochondria). Examination of various ROS revealed that the superoxide anion played a key role in selenite-induced mitochondrial damage, mitophagy and cell death. Treatment with superoxide generators (diquat and paraquat) was sufficient to trigger mitophagy in glioma cells. Small interfering RNA-mediated knockdown of ATG6 or ATG7 attenuated selenite-induced mitophagy and cell death, demonstrating that the mitophagic pathway contributes to selenite-induced cell death. The effect of selenite in glioma cells may thus provide an example of superoxide-mediated mitophagic cell death, i.e., cell death caused by excessive mitophagy.

Addendum to: Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ, Lee SJ, Choi KS. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res 2007; 67:6314-24  相似文献   

11.
To reduce the adverse effects of cancer therapies and increase their efficacy, new delivery agents that specifically target cancer cells are needed. We and others have shown that aptamers can selectively deliver therapeutic oligonucleotides to the endosome and cytoplasm of cancer cells that express a particular cell surface receptor. Identifying a single aptamer that can internalize into many different cancer cell-types would increase the utility of aptamer-mediated delivery of therapeutic agents. We investigated the ability of the nucleolin aptamer (AS1411) to internalize into multiple cancer cell types and observed that it internalizes into a wide variety of cancer cells and migrates to the nucleus. To determine if the aptamer could be utilized to deliver therapeutic oligonucleotides to modulate events in the nucleus, we evaluated the ability of the aptamer to deliver splice-switching oligonucleotides. We observed that aptamer-splice-switching oligonucleotide chimeras can alter splicing in the nuclei of treated cells and are effective at lower doses than the splice switching oligonucleotides alone. Our results suggest that aptamers can be utilized to deliver oligonucleotides to the nucleus of a wide variety of cancer cells to modulate nuclear events such as RNA splicing.  相似文献   

12.
13.
For years, the field of drug delivery has focused on (1) controlling the release of a therapeutic and (2) targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within a particular site. These novel biomaterials, usually termed "smart" or "intelligent", are able to deliver a therapeutic agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH, light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehicles. This review describes the most recent advances in "smart" drug delivery systems that respond to one or multiple stimuli.  相似文献   

14.
Semaphorin 3A (Sema3A) is a secreted guidance molecule initially described in the nervous system. This protein is able to control axon growth but also effects on endothelial cells migration. Here, we report that Sema3A acts as a chemorepellent factor for the rat C6 glioma cells and 3 different human glioma cell lines. Interestingly, Sema3A triggered a chemoattractive response in a fourth human glioma cell line. The nature of the receptor complex ensuring the appropriate signaling was dissected in C6 cells by using function blocking antibodies and gain- or loss-of function experiments using recombinant receptors. Our results demonstrate that neuropilin-1, neuropilin-2 and PlexinA1 are necessary to trigger cell repulsion. The selective blockade of neuropilin-1 or Plexin-A1 switched the chemorepulsive effect of Sema3A into a chemoattractive one. Strikingly, blocking Neuropilin-2 suppressed Sema3A-induced cell migration while over-expression of neuropilin-2 was able to convert the chemorepulsive effect of Sema3A into a chemoattractive one. Our results not only provide additional evidence for a biological function of Sema3A in glioma migration but also reveal part of the receptor complex involved. Hence, our study describes a receptor-based plasticity in cancer cells leading to opposite migration behavior in response to the same extracellular signal.  相似文献   

15.
Tumor cell resistance to chemotherapy constitutes a major problem in the treatment of malignant tumors. We here investigated the role of ceramide metabolism for the resistance of glioma cells to treatment with the chemotherapeutic drug, gemcitabine. Gemcitabine triggers a marked release of ceramide in drug‐sensitive cells, while glioma cells that are resistant to gemcitabine, fail to accumulate ceramide. While the release of ceramide is very similar in gemcitabine‐sensitive and resistant glioma cells upon stimulation, resistant glioma cells rapidly consume ceramide upon gemcitabine treatment or exogenous sphingomyelinase stimulation. Pharmacologic or genetic inhibition of glucosyltransferases prevents ceramide consumption in resistant cells and restores sensitivity of resistant glioma cells to gemcitabine. These data suggest that glioma cell resistance to at least some chemotherapeutic drugs is mediated by rapid consumption of ceramide to prevent cell death. J. Cell. Physiol. 221: 688–695, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Glioma is one of the most common and aggressive tumors in the brain. Significant attention has been paid to the potential use of neural stem/progenitor cells (NSCs/NPCs) as delivery vehicles to cure gliomas. However, whether the NSCs/NPCs or the factors they produced could make a contribution still remains to be seen. In this study, we focused on the inhibitory effects of the factors produced by NSCs/NPCs on the biological behavior of the glioma stem-like cell in vitro. The human glioma cell line U87 was selected and the U87 stem-like cells were addressed. After being cultured in the NSC condition medium (NSC-CM), the viability and proliferation of U87 stem-like cells were significantly reduced. The invasion of U87 stem-like cells and the migration of U87 cells were also significantly decreased. However, no significant change was observed in regard to the astrocytic differentiation of U87 stem-like cells. These indicated that NSCs/NPCs produced some factors and had an inhibitory effect on the growth and invasion but not the terminal differentiation of U87 stem-like cells. It is worth paying attention to NSCs/NPCs as a high-potential candidate for glioma treatment.  相似文献   

17.
BACKGROUNDEmerging evidence suggests that the spread of glioma to the subventricular zone (SVZ) is closely related to glioma recurrence and patient survival. Neural stem cells (NSCs) are the main cell type in the SVZ region and exhibit tumor-homing ability.AIMTo evaluate the effects of conditioned medium (CM) derived from SVZ NSCs on the cancer-related behaviors of glioma cells.METHODSThe characteristics of SVZ hNSCs were identified by immunofluorescence. The normoxic-hNSC-CM and hypoxic-hNSC-CM (3% O2, oxygen-glucose deprived [OGD] culturing) were collected from 80%-90% confluent SVZ NSCs in sterile conditions. The CCK8 and Transwell assays were used to compare and evaluate the effects of normoxic-CM and hypoxic-CM on glioma proliferation and invasion. Then proteins secreted from SVZ NSCs into the CM were investigated by mass spectrometry, and the potential effects of candidate protein NCAN in the regulation of glioma progression were examined by CCK8 and Transwell assays.RESULTSThe CM from SVZ NSCs significantly increased the proliferation and invasion of glioma cells, particularly the CM from OGD NSCs induced under hypoxic conditions. Furthermore, the secreted protein neurocan (NCAN) in CM from OGD NSCs was identified by proteomic analysis. NCAN was expressed in glioma cells and played regulatory roles in mediating the progression of glioma cells mainly via the Rho/Rho-associated protein kinase pathway.CONCLUSIONOur study identified a potential interactive mechanism between SVZ NSCs and glioma cells, in which SVZ NSCs promote glioma progression via the secreted protein NCAN. These findings suggested that exploring the CM derived from cells could be a novel strategy for optimizing treatments and that NCAN derived from SVZ NSCs may be a potential new target in glioma progression.  相似文献   

18.

Background

XIAP (X-linked inhibitor of apoptosis protein) is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC) in glioma cells would cause them to undergo apoptotic death.

Methodology/Principal Findings

We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310). In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP). Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.

Conclusions/Significance

Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant gliomas.  相似文献   

19.
Semaphorin 3A (Sema3A) is a secreted guidance molecule initially described in the nervous system. This protein is able to control axon growth but also effects on endothelial cells migration. Here, we report that Sema3A acts as a chemorepellent factor for the rat C6 glioma cells and three different human glioma cell lines. Interestingly, Sema3A triggered a chemoattractive response in a fourth human glioma cell line. The nature of the receptor complex ensuring the appropriate signaling was dissected in C6 cells by using function blocking antibodies and gain- or loss-of function experiments using recombinant receptors. Our results demonstrate that neuropilin-1, neuropilin-2 and PlexinA1 are necessary to trigger cell repulsion. The selective blockade of neuropilin-1 or Plexin-A1 switched the chemorepulsive effect of Sema3A into a chemoattractive one. Strikingly, blocking Neuropilin-2 suppressed Sema3A-induced cell migration while overexpression of neuropilin-2 was able to convert the chemorepulsive effect of Sema3A into a chemoattractive one. Our results not only provide additional evidence for a biological function of Sema3A in glioma migration but also reveal part of the receptor complex involved. Hence, our study describes a receptor-based plasticity in cancer cells leading to opposite migration behavior in response to the same extracellular signal.Key words: semaphorin, neuropilin, glioma, cell migration, signalling, cancer  相似文献   

20.
Gold nanoshells (AuNSs) are currently being investigated as nanocarriers for drug delivery systems and have both diagnostic and therapeutic applications, including photothermal ablation, hyperthermia, drug delivery, and diagnostic imaging, particularly in oncology. AuNSs are valuable for their localized surface plasmon resonance, biocompatibility, low immunogenicity, and facile functionalization. AuNSs used for drug delivery can be spatially and temporally triggered to release controlled quantities of drugs inside the target cells when illuminated with a near-infrared (NIR) laser. Recently, many research groups have demonstrated that these AuNS complexes are able to deliver antitumor drugs (e.g., doxorubicin, paclitaxel, small interfering RNA, and single-stranded DNA) into cancer cells, which enhances the efficacy of treatment. AuNSs can also be functionalized with active targeting ligands such as antibodies, aptamers, and peptides to increase the particles’ specific binding to the desired targets. This article reviews the current research on NIR light-activatable AuNSs used as nanocarriers for drug delivery systems and cancer theranostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号