首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Chiang CT  Way TD  Tsai SJ  Lin JK 《FEBS letters》2007,581(30):5735-5742
Fatty acid synthase (FAS) expression is markedly elevated in HER2-overexpressing breast cancer cells. In this study, diosgenin, a plant-derived steroid, was found to be effective in suppressing FAS expression in HER2-overexpressing breast cancer cells. Diosgenin preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, diosgenin inhibited the phosphorylation of Akt and mTOR, and enhanced phosphorylation of JNK. The use of pharmacological inhibitors revealed that the modulation of Akt, mTOR and JNK phosphorylation was required for diosgenin-induced FAS suppression. Finally, we showed that diosgenin could enhance paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results suggested that diosgenin has the potential to advance as chemopreventive or chemotherapeutic agent for cancers that overexpress HER2.  相似文献   

2.
Activation of p38 mitogen‐activated protein kinase (MAPK) and c‐Jun amino terminal kinase (JNK) is prominent in human crescentic glomerulonephritis. p38 and JNK inhibitors suppress crescentic disease in animal models; however, the upstream mechanisms inducing activation of these kinases in crescentic glomerulonephritis are unknown. We investigated the hypothesis that apoptosis signal‐regulating kinase 1 (ASK1/MAP3K5) promote p38/JNK activation and renal injury in models of nephrotoxic serum nephritis (NTN); acute glomerular injury in SD rats, and crescentic disease in WKY rats. Treatment with the selective ASK1 inhibitor, GS‐444217 or vehicle began 1 hour before nephrotoxic serum injection and continued until animals were killed on day 1 (SD rats) or 14 (WKY rats). NTN resulted in phosphorylation (activation) of p38 and c‐Jun in both models which was substantially reduced by ASK1 inhibitor treatment. In SD rats, GS‐444217 prevented proteinuria and glomerular thrombosis with suppression of macrophage activation on day 1 NTN. In WKY rats, GS‐444217 reduced crescent formation, prevented renal impairment and reduced proteinuria on day 14 NTN. Macrophage activation, T‐cell infiltration and renal fibrosis were also reduced by GS‐444217. In conclusion, GS‐444217 treatment inhibited p38/JNK activation and development of renal injury in rat NTN. ASK1 inhibitors may have therapeutic potential in rapidly progressive glomerulonephritis.  相似文献   

3.
4.
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is associated with a broad range of biological properties including antitumor activity. However, the effect of DHA on gastric cancer has not been clearly clarified. The aim of this study was to investigate the role and mechanism of DHA in human gastric cancer cell line BGC-823. Cell viability was assessed by MTT assay. Cell apoptosis was analyzed with flow cytometry. The expressions of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and their phosphorylated forms as well as apoptosis related proteins were examined by western blot analysis. The results demonstrated that DHA inhibited cell viability of BGC-823 cells in a dose- and time-dependent manner. DHA treatment upregulated the expression of Bax, cleaved caspase-3 and -9, and degraded form of PARP, and downregulated the Bcl-2 expression and Bcl-2/Bax ratio. Meanwhile, DHA increased the phosphorylation of ERK1/2, JNK1/2 and p38 MAPK. Synthetic inhibitors of JNK1/2 or p38 MAPK kinase activity, but not inhibitor of ERK1/2, significantly abolished the DHA-induced activation of caspase-3 and -9. In vivo tumor-suppression assay further indicated that DHA displayed significant inhibitory effect on BGC-823 xenografts in tumor growth. These results indicate that DHA induces apoptosis of BGC-823 cells through JNK1/2 and p38 MAPK signaling pathways and DHA could serve as a potential additional chemotherapeutic agent for treatment of gastric cancer.  相似文献   

5.
Colorectal cancer is a multi-factorial disease involving genetic, environmental and lifestyle risk factors. In recent years, many changes in the bacterial composition of the intestinal microflora have been reported in colorectal cancer, suggesting the involvement of the intestinal microflora in the development and progression of colorectal cancer. Along with these reports, research on lactic acid bacteria that have a beneficial effect on the human body for the purpose of improving the intestinal environment and treating intestinal diseases has advanced. Among these studies, biogenics (defined as a component derived from lactic acid bacteria that acts directly on diseases regardless of the state of intestinal microflora) is a recent concept derived from the work on probiotics. Based on this concept, it is important to evaluate the effectiveness of various components derived from lactic acid bacteria in the treatment to diseases from and apply them in prevention and treatment. In this study, we investigated the antitumor effect of an extract obtained from Lactobacillus plantarum strain 06CC2 on colorectal cancer cells. In in vitro experiments, the extract derived from Lactobacillus plantarum 06CC2 significantly suppressed the proliferation of Caco2 colorectal cancer cells in comparison to control and non-cancer cells. Furthermore, we found that endoplasmic reticulum stress and the JNK/p38 MAPK signaling system are involved in the induction of apoptosis. These findings indicate the direct antitumor effect of the Lactobacillus plantarum 06CC2 extract on Caco2 colorectal cancer cells, and that this extract may have potential application as a biogenics.  相似文献   

6.
Pharmacological modulation of autophagy has been referred to as a promising therapeutic strategy for cancer. Matrine, a main alkaloid extracted from Sophora flavescens Ait, has antitumour activity against acute myelocytic leukaemia (AML). Whether autophagy is involved in antileukaemia activity of matrine remains unobvious. In this study, we demonstrated that matrine inhibited cell viability and colony formation via inducing apoptosis and autophagy in AML cell lines HL‐60, THP‐1 and C1498 as well as primary AML cells. Matrine promoted caspase‐3 and PARP cleavage dose‐dependently. Matrine up‐regulated the level of LC3‐II and down‐regulated the level of SQSTM1/p62 in a dose‐dependent way, indicating that autophagy should be implicated in anti‐AML effect of matrine. Furthermore, the autophagy inhibitor bafilomycin A1 relieved the cytotoxicity of matrine by blocking the autophagic flux, while the autophagy promoter rapamycin enhanced the cytotoxicity of matrine. Additionally, matrine inhibited the phosphorylation of Akt, mTOR and their downstream substrates p70S6K and 4EBP1, which led to the occurrence of autophagy. In vivo study demonstrated that autophagy was involved in antileukaemia effect of matrine in C57BL/6 mice bearing murine AML cell line C1498, and the survival curves showed that mice did benefit from treatment with matrine. Collectively, our findings indicate that matrine exerts antitumour effect through apoptosis and autophagy, and the latter one might be a potential therapeutic strategy for AML.  相似文献   

7.
Human lung neoplasms frequently express mutations that down‐regulate expression of various tumor suppressor molecules, including mitogen‐activated protein kinases such as p38 MAPK. Conversely, activation of p38 MAPK in tumor cells results in cancer cell cycle inhibition or apoptosis initiated by chemotherapeutic agents such as retinoids or cisplatin, and is therefore an attractive approach for experimental anti‐tumor therapies. We now report that 4‐phenyl‐3‐butenoic acid (PBA), an experimental compound that reverses the transformed phenotype at non‐cytotoxic concentrations, activates p38 MAPK in tumorigenic cells at concentrations and treatment times that correlate with decreased cell growth and increased cell‐cell communication. H2009 human lung carcinoma cells and ras‐transformed rat liver epithelial cells treated with PBA showed increased activation of p38 MAPK and its downstream effectors which occurred after 4 h and lasted beyond 48 h. Untransformed plasmid control cells showed low activation of p38 MAPK compared to ras‐transformed and H2009 carcinoma cells, which correlates with the reduced effect of PBA on untransformed cell growth. The p38 MAPK inhibitor, SB203580, negated PBA's activation of p38 MAPK downstream effectors. PBA also increased cell–cell communication and connexin 43 phosphorylation in ras‐transformed cells, which were prevented by SB203580. In addition, PBA decreased activation of JNK, which is upregulated in many cancers. Taken together, these results suggest that PBA exerts its growth regulatory effect in tumorigenic cells by concomitant up‐regulation of p38 MAPK activity, altered connexin 43 expression, and down‐regulation of JNK activity. PBA may therefore be an effective therapeutic agent in human cancers that exhibit down‐regulated p38 MAPK activity and/or activated JNK and altered cell–cell communication. J. Cell. Biochem. 113: 269–281, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
BCR-ABL kinase activates downstream signaling pathways, including the PI3K-Akt/mTOR and the MAPK pathway. IRS1 has been previously described as constitutively phosphorylated and associated with BCR-ABL in K562 cells, suggesting that IRS1 has role in the BCR-ABL signaling pathways. In this study, we analyzed the effect of IRS1 silencing, by shRNA-lentiviral delivery, in K562 cells, a CML cell line that presents the BCR-ABL. IRS1 silencing decreased cell proliferation and colony formation in K562 cells, which correlates with the delay of these cells at the G0/G1 phase and a decrease in the S phase of the cell cycle. Furthermore, IRS1 silencing in K562 cells resulted in a decrease of Akt, P70S6K and ERK1/2 phosphorylation. Nevertheless, apoptosis was unaffected by IRS1 knockdown and no alterations were found in the phosphorylation of BAD and in the expression of BCL2 and BAX. BCR-ABL and CRKL phosphorylation levels remained unaffected upon IRS1 silencing, and no synergistic effect was observed with imatinib treatment and IRS1 knockdown, indicating that IRS1 is downstream from BCR-ABL. In conclusion, we demonstrated that inhibition of IRS1 is capable of inducing the downregulation of Akt/mTOR and MAPK pathways and further decreasing proliferation, and clonogenicity and induces to cell cycle delay at G0/G1 phase in BCR-ABL cells.  相似文献   

9.
10.
《Cytotherapy》2014,16(8):1158-1168
Background aimsWe hypothesized that paracrine factors from human umbilical cord blood mononuclear cells (hUCBC) activate in injured cardiomyocytes the survival protein kinase Akt and limit activation of death protein kinases JNK and p38.MethodsWe treated hUCBC with H2O2 and measured growth factors and cytokines secreted by hUCBC. We then treated cardiomyocytes with H2O2 for 24 h and measured Akt, JNK and p38 activation by means of Western blots. We also measured myocyte viability and apoptosis with the use of fluorescence-activated cell-sorting cytometry. We then investigated myocytes treated for 24 h with H2O2 plus hUCBC and myocytes without hUCBC or H2O2. Four million hUCBC were placed in transwells permeable only to hUCBC paracrine factors, and the transwells were placed in flasks with H2O2+Dulbecco's modified Eagle's medium or in flasks with myocytes plus H2O2+Dulbecco's modified Eagle's medium.ResultshUCBC increased secretion during H2O2 of hepatocyte growth factor by 338%, insulin-like growth factor by 200%, interleukin-4 by 200%, vascular endothelial cell growth factor by 192%, placental growth factor by 150%, interleukin-10 by 150% and angiogenin by 121%. H2O2 increased myocyte JNK activation by 237% and p38 activation by 60%, decreased myocyte viability by 38% and increased necrosis by 34% (all P < 0.01). hUCBC paracrine factors increased in myocytes with H2O2 Akt activation by ≥25%, decreased JNK and p38 activation by >35%, increased viability by >22% and decreased apoptosis by >33% (all P < 0.05). Akt inhibitor API-1 prevented the effects of hUCBC and enhanced H2O2 decrease of myocyte viability. Addition of JNK inhibitor SP600125 or p38 inhibitor SB203580 to myocytes plus H2O2 prevented H2O2 decrease in viability and increased hUCBC beneficial effects.ConclusionsDuring free radical stress, hUCBC paracrine factors activate myocyte Akt, which increases myocyte viability by decreasing activation of death-promoting protein kinases JNK and p38.  相似文献   

11.
Withaferin A (WA) is present abundantly in Withania somnifera, a well-known Indian medicinal plant. Here we demonstrate how WA exhibits a strong growth-inhibitory effect on several human leukemic cell lines and on primary cells from patients with lymphoblastic and myeloid leukemia in a dose-dependent manner, showing no toxicity on normal human lymphocytes and primitive hematopoietic progenitor cells. WA-mediated decrease in cell viability was observed through apoptosis as demonstrated by externalization of phosphatidylserine, a time-dependent increase in Bax/Bcl-2 ratio; loss of mitochondrial transmembrane potential, cytochrome c release, caspases 9 and 3 activation; and accumulation of cells in sub-G0 region based on DNA fragmentation. A search for the downstream pathway further reveals that WA-induced apoptosis was mediated by an increase in phosphorylated p38MAPK expression, which further activated downstream signaling by phosphorylating ATF-2 and HSP27 in leukemic cells. The RNA interference of p38MAPK protected these cells from WA-induced apoptosis. The RNAi knockdown of p38MAPK inhibited active phosphorylation of p38MAPK, Bax expression, activation of caspase 3 and increase in Annexin V positivity. Altogether, these findings suggest that p38MAPK in leukemic cells promotes WA-induced apoptosis. WA caused increased levels of Bax in response to MAPK signaling, which resulted in the initiation of mitochondrial death cascade, and therefore it holds promise as a new, alternative, inexpensive chemotherapeutic agent for the treatment of patients with leukemia of both lymphoid and myeloid origin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
14.
15.
目的:探讨Toll样受体4(TLR4)/P38/JNK信号通路在海马神经元凋亡中的作用及其机制,为神经退行性疾病(ND)的发病机制与防治研究提供新的实验依据。方法:采用体外培养7 d的新生大鼠海马神经元,免疫荧光双标法鉴定海马神经元纯度。用TLR4配体脂多糖(LPS)或TLR4抗体预处理海马神经元,以激活或阻断TLR4的作用。实验1设正常对照组、LPS组及TLR4抗体+ LPS组;免疫荧光法检测P-P38,P-JNK的表达。实验2分为6组:正常对照组,LPS组,TLR4抗体+ LPS组,SB202190(抑制P38) + LPS组,SP600125(抑制JNK) + LPS组,PD98059(抑制ERK) + LPS组;分别用TLR4抗体、P38、JNK及ERK的抑制剂预处理海马神经元后再给以LPS刺激24 h,Western blot法检测Bcl-2,Bax,Active-caspase-3的表达变化;流式细胞术检测海马神经元凋亡率。结果:LPS组海马神经元P-P38、P-JNK的表达明显高于正常对照组(P < 0. 01),TLR4抗体+ LPS组P-P38,P-JNK表达显著低于LPS组(P <0.01)。与正常对照组相比,LPS组海马神经元Bcl-2/Bax表达减少、Active-caspase-3表达增加,海马神经元凋亡率增加(P < 0.01)。而TLR4抗体+ LPS组、SB202190 + LPS组、SP600125 + LPS组Bcl-2/Bax显著高于LPS组、Active cas-pase-3显著低于LPS组(P < 0.01),海马神经元凋亡率显著低于LPS组(P < 0. 05,P < 0. 01)。PD98059 + LPS组与LPS组海马神经元凋亡率无明显差异。结论:①海马神经元中有TLR4介导的P38/JNK信号通路。②海马神经元TLR4激活后,P-P38、P-JNK表达增加,使Bcl-2/Bax的比例降低和Active-caspase-3表达增加,从而促进海马神经元的凋亡。海马神经元凋亡过程中有TLR4介导的P38/JNK信号通路的参与。  相似文献   

16.
The PI3K/Akt/mTOR signaling pathway plays a key regulatory function in cell survival, proliferation, migration, metabolism and apoptosis. Aberrant activation of the PI3K/Akt/mTOR pathway is found in many types of cancer and thus plays a major role in breast cancer cell proliferation. In our previous studies, benzo[b]furan derivatives were evaluated for their anticancer activity and the lead compounds identified were 26 and 36. These observations prompted us to investigate the molecular mechanism and apoptotic pathway of these lead molecules against breast cancer cells. Benzo[b]furan derivatives (26 and 36) were evaluated for their antiproliferative activity against human breast cancer cell lines MCF-7 and MDA MB-231. These compounds (26 and 36) have shown potent efficiency against breast cancer cells (MCF-7) with IC50 values 0.057 and 0.051 μM respectively. Cell cycle analysis revealed that these compounds induced cell cycle arrest at G2/M phase in MCF-7 cells. Western blot analysis revealed that these compounds inhibit the PI3K/Akt/mTOR signaling pathway and induced mitochondrial mediated apoptosis in human breast cancer cells (MCF-7).  相似文献   

17.
18.
19.
20.
Low calcemic analogs of vitamin D are candidates for differentiation therapy of human myeloid leukemias. We report here that the seco-steroid synthesized to have resistance to intracellular degradation and low calcemia-inducing activity, 1alpha-hydroxymethyl-3beta-16-ene-24,24-difluoro-25-hydroxy-vitamin D3 (JKF), induces monocytic differentiation in four established human myeloid leukemia cell lines, HL60, U937, THP-1, NB-4, and murine myeloid leukemia cells WEHI-3B D. JKF has differentiation-inducing potency which is slightly lower than the physiologically active form of vitamin D, 1,25(OH)2vitamin D3 (1,25D). However, simultaneous addition of carnosic acid (CA), an antioxidant, and SB20190 (SB), an inhibitor of p38MAP kinase, increases the differentiation efficiency of JKF to a level similar to the level observed when 1,25D is used in such combinations. We also show for the first time that SB inhibits the phosphorylation of MAPKAPK2, a downstream target of p38MAPK, but upregulates the phosphorylation of at least one of the isoforms of JNK (p46 JNK1) and of c-jun in all four human myeloid cell lines studied here. These studies indicate that the JNK1 pathway is positively associated with monocytic differentiation of several subtypes of myeloid leukemia cells arrested at different developmental stages. Further, since JKF is less calcemic than 1,25D, the data suggest that JKF combined with CA and SB is likely to have a therapeutic advantage over 1,25D-based experimental regimens for myeloid leukemias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号