首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F ST estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F ST values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.  相似文献   

2.
The fine-scale genetic structure and how it varies between generations depends on the spatial scale of gene dispersal and other fundamental aspects of species’ biology, such as the mating system. Such knowledge is crucial for the design of genetic conservation strategies. This is particularly relevant for species that are increasingly fragmented such as Boswellia papyrifera. This species occurs in dry tropical forests from Ethiopia, Eritrea and Sudan and is an important source of frankincense, a highly valued aromatic resin obtained from the bark of the tree. This study assessed the genetic diversity and fine-scale spatial genetic structure (FSGS) of two cohorts (adults and seedlings) from two populations (Guba-Arenja and Kurmuk) in Western Ethiopia and inferred intra-population gene dispersal in the species, using microsatellite markers. The expected heterozygosity (H E) was 0.664–0.724. The spatial analyses based on kinship coefficient (F ij) revealed a significant positive genetic correlation up to a distance of 130 m. Spatial genetic structure was relatively weak (Sp = 0.002–0.014) indicating that gene dispersal is extensive within the populations. Based on the FSGS patterns found, we estimate indirectly gene dispersal distances of 103 and 124 m for the two populations studied. The high heterozygosity, the low fixation index and the low Sp values found in this study are consistent with outcrossing as the (predominant) mating system in B. papyrifera. We suggest that seed collection for ex situ conservation and reforestation programmes of B. papyrifera should use trees separated by distances of at least 100 m but preferably 150 m to limit genetic relatedness among seeds from different trees.  相似文献   

3.
Despite the classic population genetic view of a population as a network of sub-populations consisting of randomly mating individuals, the mating system and dispersal patterns of social animals affect the distribution of genetic variation on a local scale. The spatially open, forest-dwelling red deer (Cervus elaphus) population at the Petite Pierre National Reserve in north-eastern France is culled annually, with the management aim of maximising the number of adult males in the population, and is a typical example of an exploited red deer population from continental Europe. Through a change in management policy, the number of adult males in the population has increased over time, leading to a reduction in variance of male reproductive success (Bonenfant et al., 2002). In this study, we investigate the fine-scale genetic structure of the population using 14 microsatellite loci and attempt to find evidence for a change in this genetic structure over time. DNA was extracted from bone powder obtained by drilling into antlers and mandibular condyles. DNA was successfully extracted from up to 30-year-old samples, but it was necessary to genotype samples in duplicate to obtain reliable genetic profiles. Our results point towards a pattern of fine-scale spatial structure amongst female red deer in the study area, but not amongst males, as would be expected for a typical mammalian system with male-biased dispersal and female philopatry. In addition, our results hint at a decrease in spatial genetic structure amongst females over time, which might be related to a change in management policy, but small sample size limited the robustness of this conclusion.  相似文献   

4.
Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.  相似文献   

5.

Background

Data on spatial genetic patterns may provide information about the ecological and behavioural mechanisms underlying population structure. Indeed, social organization and dispersal patterns of species may be reflected by the pattern of genetic structure within a population.

Methodology/Principal Findings

We investigated the fine-scale spatial genetic structure of a roe deer (Capreolus capreolus) population in Trois-Fontaines (France) using 12 microsatellite loci. The roe deer is weakly polygynous and highly sedentary, and can form matrilineal clans. We show that relatedness among individuals was negatively correlated with geographic distance, indicating that spatially proximate individuals are also genetically close. More unusually for a large mammalian herbivore, the link between relatedness and distance did not differ between the sexes, which is consistent with the lack of sex-biased dispersal and the weakly polygynous mating system of roe deer.

Conclusions/Significance

Our results contrast with previous reports on highly polygynous species with male-biased dispersal, such as red deer, where local genetic structure was detected in females only. This divergence between species highlights the importance of socio-spatial organization in determining local genetic structure of vertebrate populations.  相似文献   

6.
Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt’s voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual- and population-level analyses, we found that the majority of Brandt’s vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt’s voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species.  相似文献   

7.
Wild boars Sus scrofa have a social organization based on female groups that can include several generations of adults and offspring, and are thus likely matrilineal. However, little is known about the degree of relatedness between animals living in such groups or occupying the same core area of spatial activity. Also, polygynous male mating combined with matrilineal female groups can have strong influences on the genetic structure of populations. We used microsatellite genotyping combined with behavioral data to investigate the fine-scale population genetic structure and the mating system of wild boars in a multi-year study at Châteauvillain-Arc-en-Barrois (France). According to spatial genetic autocorrelation, females in spatial proximity were significantly inter-related. However, we found that numerous males contributed to the next generation, even within the same social group. Based on our genetic data and behavioral observations, wild boars in this population appear to have a low level of polygyny associated with matrilineal female groups, and infrequent multiple paternity. Mortality due to hunting may facilitate the breakup of what historically has been a more predominantly polygynous mating system, and likely accelerates the turnover of adults within the matrilineal groups.  相似文献   

8.
The spatial extent of Sitka black-tailed deer (Odocoileus hemionus sitkensis) populations below the regional scale is relatively unknown, as is dispersal between populations. Here, we use noninvasive samples to genotype 221 Sitka black-tailed deer in three watersheds on Prince of Wales Island, Alaska, separated by a maximum of 44 km, using traditional and spatial genetic approaches. We find that despite geographic proximity, multiple lines of evidence suggest fine-scale genetic structure among the three study sites. The 2 most geographically distant watersheds differed significantly in genetic composition, suggesting an isolation-by-distance pattern. Within study sites, deer exhibited spatial genetic structure within a radius of 1,000 m. Based on a reduced sample of known-sex individuals, females exhibited positive spatial genetic structure within a radius of 500 m but males showed no structure. Moreover, females were more likely to be related to their 5 nearest female neighbors, regardless of distance, than were males. Evidence indicates dispersal by both sexes although it may be more common, or dispersal distances are greater, in males. Nonetheless, analysis of assignment indices and comparison of sex-specific correlograms found no evidence of sex-biased dispersal between watersheds. Patterns of spatial relatedness and connectivity suggest limited dispersal among Sitka black-tailed deer, creating genetic structure on a fine spatial scale, perhaps as small as the watershed.  相似文献   

9.
Fire promotes an abundance of nest sites for the stem nesting bee Exoneura nigrescens, which remain viable for approximately 10 years. The finite duration of nesting substrate and localized fire events suggest that migration should minimize genetic structure among suitable habitat patches. Exoneura nigrescens was sampled from 7 localities with a known fire history in southwestern Victoria, Australia. Individual bees were genotyped at 8 microsatellite loci and genic and genotypic analyses applied to examine genetic structure among burn patch localities, within burn patches, and within colonies. Despite relatively short-term availability of nesting substrates, remarkably fine-scale genetic structure was observed both among burn patches and within burn patches. The spatial distribution of relatedness shows a strong pattern of isolation-by-distance at geographic distances to 35 km, suggesting that genetic partitioning among burn patches is, at least in part, a result of dispersal ability. Genetic structure within burn patches includes colonies consisting of close kin with genic partitioning among nests. Relatedness structure within colonies suggests that polygamy, multiple breeding pairs, and a lack of inbreeding typifies the mating system.  相似文献   

10.
We combine spatial data on home ranges of individuals and microsatellite markers to examine patterns of fine-scale spatial genetic structure and dispersal within a brush-tailed rock-wallaby (Petrogale penicillata) colony at Hurdle Creek Valley, Queensland. Brush-tailed rock-wallabies were once abundant and widespread throughout the rocky terrain of southeastern Australia; however, populations are nearly extinct in the south of their range and in decline elsewhere. We use pairwise relatedness measures and a recent multilocus spatial autocorrelation analysis to test the hypotheses that in this species, within-colony dispersal is male-biased and that female philopatry results in spatial clusters of related females within the colony. We provide clear evidence for strong female philopatry and male-biased dispersal within this rock-wallaby colony. There was a strong, significant negative correlation between pairwise relatedness and geographical distance of individual females along only 800 m of cliff line. Spatial genetic autocorrelation analyses showed significant positive correlation for females in close proximity to each other and revealed a genetic neighbourhood size of only 600 m for females. Our study is the first to report on the fine-scale spatial genetic structure within a rock-wallaby colony and we provide the first robust evidence for strong female philopatry and spatial clustering of related females within this taxon. We discuss the ecological and conservation implications of our findings for rock-wallabies, as well as the importance of fine-scale spatial genetic patterns in studies of dispersal behaviour.  相似文献   

11.
Although groups of bats may be genetically distinguishable at large spatial scales, the effects of forest disturbances, particularly permanent land use conversions on fine-scale population structure and gene flow of summer aggregations of philopatric bat species are less clear. We genotyped and analyzed variation at 10 nuclear DNA microsatellite markers in 182 individuals of the forest-dwelling northern myotis (Myotis septentrionalis) at multiple spatial scales, from within first-order watersheds scaling up to larger regional areas in West Virginia and New York. Our results indicate that groups of northern myotis were genetically indistinguishable at any spatial scale we considered, and the collective population maintained high genetic diversity. It is likely that the ability to migrate, exploit small forest patches, and use networks of mating sites located throughout the Appalachian Mountains, Interior Highlands, and elsewhere in the hibernation range have allowed northern myotis to maintain high genetic diversity and gene flow regardless of forest disturbances at local and regional spatial scales. A consequence of maintaining high gene flow might be the potential to minimize genetic founder effects following population declines caused currently by the enzootic White-nose Syndrome.  相似文献   

12.
An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go ‘extinct’ during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic structuring or how this changes over time in ephemeral patches. We predicted that species that specialize on ephemeral habitats will delay dispersal to exploit natal habitat patches while resources are plentiful and thus display fine-scale structure. To investigate this idea, we evaluated the effect of frequent colonization of ephemeral habitats on the fine-scale genetic structure of a fire specialist, the black-backed woodpecker (Picoides arcticus) and found a pattern of fine-scale genetic structure. We then tested for differences in spatial structure between sexes and detected a pattern consistent with male-biased dispersal. We also detected a temporal increase in relatedness among individuals within newly burned forest patches. Our results indicate that specialist species that outlive their ephemeral patches can accrue significant fine-scale spatial structure that does not necessarily affect spatial structure at larger scales. This highlights the importance of both spatial and temporal scale considerations in both sampling and data interpretation of molecular genetic results.  相似文献   

13.
In continuous populations, fine-scale genetic structure tends to be stronger in species with restricted pollen and seed dispersal. However, habitat fragmentation and disturbances can affect genetic diversity and spatial genetic structure due to disruption in ecological processes, such as plant reproduction and seed dispersal. In this study, we compared the genetic diversity and fine-scale spatial genetic structure (SGS) in two populations of Annona crassiflora (Annonaceae) in a pristine savanna Reserve (ESECAE) and in a fragmented disturbed savanna area (PABE), both in Cerrado biome in Central Brazil. The analyses were based on the polymorphism at 10 microsatellite loci. Our working hypothesis was that SGS is stronger and genetic diversity is lower in population at fragmented area (PABE) than at pristine area (ESECAE). Both populations presented high levels of polymorphism and genetic diversity and showed no sign of bottleneck for both Wilcoxon sign-rank test for heterozygosity excess (p > 0.05) and coalescent analyses (growth parameter g not different from zero), but population at fragmented area showed higher fixation index and stronger SGS. Besides, populations are significantly differentiated (F ST = 0.239, R ST = 0.483, p < 0.001 for both). Coalescent analyses showed high historical effective population sizes for both populations, high gene flow between ESECAE and PABE and recent time to most recent common ancestor (~37 k year BP). Our results suggest that despite the high genetic diversity, fragmentation and disturbance may have been affecting populations of this species increasing mating between closely related individuals leading to high fixation index and strong SGS.  相似文献   

14.
Dunham SM  O'Dell TE  Molina R 《Mycologia》2006,98(2):250-259
We examined the within-population genetic structure of the Pacific golden chanterelle (Cantharellus formosus) in a 50 y old forest stand dominated by Douglas-fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla) with spatial autocorrelation analysis. We tested the null hypothesis that multilocus genotypes possessed by chanterelle genets were randomly distributed within the study area. Fruit bodies from 203 C. formosus genets were collected from a 50 ha study plot. One hundred six unique multilocus genotypes were identified after scoring these collections at five microsatellite loci. Statistically significant positive spatial autocorrelation was detected indicating the presence of fine-scale genetic structure within the area. Repeated autocorrelation analyses with varied minimum distance classes (50-500 m) detected positive spatial genetic structure up to 400 m. Therefore nonrandom evolutionary processes (e.g., isolation by distance) can cause fine-scale genetic structure in C. formosus. The implications of this research for future broad-scale population studies of this species are that population samples should be separated by at least 400 m to be considered statistically independent. Sampling designs that account for fine-scale genetic structure will better characterize heterogeneity distributed across the landscape by avoiding the effects of pseudo replication.  相似文献   

15.
The genetic diversity of small populations is greatly influenced by local dispersal patterns and genetic connectivity among populations, with pollen dispersal being the major component of gene flow in many plants species. Patterns of pollen dispersal, mating system parameters and spatial genetic structure were investigated in a small isolated population of the emblematic palm Phoenix canariensis in Gran Canaria island (Canary Islands). All adult palms present in the study population (n=182), as well as 616 seeds collected from 22 female palms, were mapped and genotyped at 8 microsatellite loci. Mating system analysis revealed an average of 5.8 effective pollen donors (Nep) per female. There was strong variation in correlated paternity rates across maternal progenies (ranging from null to 0.9) that could not be explained by the location and density of local males around focal females. Paternity analysis revealed a mean effective pollen dispersal distance of ∼71 m, with ∼70% of effective pollen originating from a distance of <75 m, and 90% from <200 m. A spatially explicit mating model indicated a leptokurtic pollen dispersal kernel, significant pollen immigration (12%) from external palm groves and a directional pollen dispersal pattern that seems consistent with local altitudinal air movement. No evidence of inbreeding or genetic diversity erosion was found, but spatial genetic structure was detected in the small palm population. Overall, the results suggest substantial pollen dispersal over the studied population, genetic connectivity among different palm groves and some resilience to neutral genetic erosion and subsequently to fragmentation.  相似文献   

16.
Dispersal is a life history trait that plays a key role in population dynamics, determining gene flow and influencing the size, structure and persistence of populations. For these reasons, the study of the genetic consequences of dispersal can be considered a central topic in both conservation and population genetics. In this study we examine the patterns of fine-scale genetic structure within two populations of the grasshopper Mioscirtus wagneri (Orhoptera: Acrididae). For this purpose, we have used seven species-specific microsatellite markers to type 266 individuals from two populations (Peña Hueca and El Salobral) located in Central Spain. We have found subtle genetic differentiation between some sampling patches and significant kinship structures up to 25 m distance which were particularly patent for females. In Peña Hueca locality, patterns of isolation-by-distance at both the patch scale and the individual level have also revealed an association between genetic differentiation/similarity and geographical distance in females but not in males. Overall, these data suggest a fine-scale spatial genetic substructure in the studied populations which seems to be mainly driven by female philopatry. Such pattern of within population genetic structure together with the inferred restricted dispersal distances is likely to contribute to reduce effective population sizes and inter-population gene flow. This can erode genetic variability and limit the colonization ability of this orthoptera, factors which can ultimately compromise the long-term persistence of their small size and isolated populations.  相似文献   

17.
Fragmented populations at the edges of a species’ distribution can be highly exposed to the loss of genetic variation, unless sufficient gene flow maintains their genetic connectivity. Gene movements leading to successful establishment of external gametes (i.e. effective gene flow) into fragmented populations can solely be assessed by investigating the origin of natural regeneration. This study is focused on studying gene flow patterns in two silver fir stands in Central Apennines, where the species has a highly fragmented distribution. By using nuclear and chloroplast microsatellite markers, we investigated genetic variation, fine-scale spatial genetic structure, effective gene flow rates and large-scale connectivity characterizing both stands. Similar levels of genetic variation and low genetic differentiation between stands (F ST = 0.005) and across generations were found, coupled with low inbreeding and weak to absent SGS in the adult cohort (Sp < 0.003). On the other hand, substantial differences between the two stands in terms of gene flow rates were observed. Irrespective of the parentage approach used, higher gene flow rates were found in the stand located at the upper silver fir altitudinal limit, especially for seed-mediated gene flow (0.79 in the upper stand vs. 0.48 in the lower stand). Conversely, the lower stand was characterized by a higher reproductive dominance of local adults. Our findings suggest that, despite similar levels of genetic variation and generally high gene flow rates, different processes may be acting on the two stands, reflecting varying ecological conditions.  相似文献   

18.
Habitat fragmentation has been shown to disrupt ecosystem processes such as plant-pollinator mutualisms. Consequently, mating patterns in remnant tree populations are expected to shift towards increased inbreeding and reduced pollen diversity, with fitness consequences for future generations. However, mating patterns and phenotypic assessments of open-pollinated progeny have rarely been combined in a single study. Here, we collected seeds from 37 Eucalyptus incrassata trees from contrasting stand densities following recent clearance in a single South Australian population (intact woodland=12.6 trees ha−1; isolated pasture=1.7 trees ha−1; population area=10 km2). 649 progeny from these trees were genotyped at eight microsatellite loci. We estimated genetic diversity, spatial genetic structure, indirect contemporary pollen flow and mating patterns for adults older than the clearance events and open-pollinated progeny sired post-clearance. A proxy of early stage progeny viability was assessed in a common garden experiment. Density had no impact on mating patterns, adult and progeny genetic diversity or progeny growth, but was associated with increased mean pollen dispersal. Weak spatial genetic structure among adults suggests high historical gene flow. We observed preliminary evidence for inbreeding depression related to stress caused by fungal infection, but which was not associated with density. Higher observed heterozygosities in adults compared with progeny may relate to weak selection on progeny and lifetime-accumulated mortality of inbred adults. E. incrassata appears to be resistant to the negative mating pattern and fitness changes expected within fragmented landscapes. This pattern is likely explained by strong outcrossing and regular long-distance pollen flow.  相似文献   

19.
祁彩虹  金则新  李钧敏 《生态学报》2011,31(18):5130-5137
采用空间自相关分析方法对浙江天台山亚热带常绿阔叶林优势种甜槠种群全部个体及不同年龄级个体的小尺度空间遗传结构进行了分析,以探讨甜槠种群内遗传变异的分布特征及其形成机制。根据11个ISSR引物所提供的多态位点,经GenAlEx 6软件计算地理坐标和遗传距离矩阵在10个距离等级下的空间自相关系数。在样地内,甜槠种群内个体在空间距离小于10 m时存在显著的正空间遗传结构,其X-轴截矩为9.945。甜槠种群的空间遗传结构与其种子短距离传播和广泛的花粉传播有关。Ⅰ年龄级、Ⅱ年龄级和III年龄级个体在空间距离小于10 m时存在显著的正空间遗传结构,其X-轴截矩分别为11.820、9.746和9.792。当距离等级为5 m时,其空间自相关系数r分别为0.068、0.054和0.070。Ⅳ年龄级个体在所有空间距离等级中均不存在显著的空间遗传结构。甜槠是多年生、长寿命植物,自疏作用是导致IV年龄级个体空间遗传结构消失的主要原因。  相似文献   

20.
Fine scale patterns of genetic structure and dispersal in Triatoma infestans populations from Argentina was analysed. A total of 314 insects from 22 domestic and peridomestic sites from the locality of San Martín (Capayán department, Catamarca province) were typed for 10 polymorphic microsatellite loci. The results confirm subdivision of T. infestans populations with restricted dispersal among sampling sites and suggest inbreeding and/or stratification within the different domestic and peridomestic structures. Spatial correlation analysis showed that the scale of structuring is approximately of 400 m, indicating that active dispersal would occur within this distance range. It was detected difference in scale of structuring among sexes, with females dispersing over greater distances than males. This study suggests that insecticide treatment and surveillance should be extended within a radius of 400 m around the infested area, which would help to reduce the probability of reinfestation by covering an area of active dispersal. The inferences made from fine-scale spatial genetic structure analyses of T. infestans populations has demonstrated to be important for community-wide control programs, providing a complementary approach to help improve vector control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号