首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The atypical hemolytic Listeria innocua strains PRL/NW 15B95 and J1-023 were previously shown to contain gene clusters analogous to the pathogenicity island (LIPI-1) present in the related foodborne gram-positive facultative intracellular pathogen Listeria monocytogenes, which causes listeriosis. LIPI-1 includes the hemolysin gene, thus explaining the hemolytic activity of the atypical L. innocua strains. No other L. monocytogenes-specific virulence genes were found to be present. In order to investigate whether any other specific L. monocytogenes genes could be identified, a global approach using a Listeria biodiversity DNA array was applied. According to the hybridization results, the isolates were defined as L. innocua strains containing LIPI-1. Surprisingly, evidence for the presence of the L. monocytogenes-specific inlA gene, previously thought to be absent, was obtained. The inlA gene codes for the InlA protein which enables bacterial entry into some nonprofessional phagocytic cells. PCR and sequence analysis of this region revealed that the flanking genes of the inlA gene at the upstream, 5′-end region were similar to genes found in L. monocytogenes serotype 4b isolates, whereas the organization of the downstream, 3′-end region was similar to that typical of L. innocua. Sequencing of the inlA region identified a small stretch reminiscent of the inlB gene of L. monocytogenes. The presence of two clusters of L. monocytogenes-specific genes makes it unlikely that PRL/NW 15B95 and J1-023 are L. innocua strains altered by horizontal transfer. It is more likely that they are distinct relics of the evolution of L. innocua from an ancestral L. monocytogenes, as postulated by others.  相似文献   

2.
3.
This study investigates the effect of citral on growth and on the occurrence of sublethal damage in Listeria innocua Serovar 6a (CECT 910) and Listeria monocytogenes Serovar 4b (CECT 4032) cells that were exposed to citral as a natural antimicrobial agent. Two initial inoculum concentrations were considered in this investigation: 102 and 106 cfu/mL. Citral exhibited antilisterial activity against L. innocua and L. monocytogenes, and the observed effects were dependent on the concentration of citral present in the culture medium (0, 0.150 and 0.250 μL/mL) (p ≤ 0.05). L. innocua had a shorter lag phase than L. monocytogenes, and the two species had nearly identical maximum specific growth rates. These results indicate that L. innocua could be used as surrogate for L. monocytogenes when testing the effects of this antimicrobial. Significant differences in the lag phase and growth rate were observed between the small and large inoculum concentration (p ≤ 0.05). Citral-treated L. innocua and L. monocytogenes that were recovered on selective medium (i.e., TSA-YE-SC) had a shorter lag phase and a higher maximum specific growth rate than cells that were recovered on non-selective medium (i.e., TSA-YE) (p ≤ 0.05). This result suggests that damage occurs at sublethal concentrations of citral.  相似文献   

4.
Bacterial artificial chromosome (BAC) vectors are important tools for microbial genome research. We constructed a novel BAC vector, pUvBBAC, for replication in both gram-negative and gram-positive bacterial hosts. The pUvBBAC vector was used to generate a BAC library for the facultative intracellular pathogen Listeria monocytogenes EGD-e. The library had insert sizes ranging from 68 to 178 kb. We identified two recombinant BACs from the L. monocytogenes pUvBBAC library that each contained the entire virulence gene cluster (vgc) of L. monocytogenes and transferred them to a nonpathogenic Listeria innocua strain. Recombinant L. innocua strains harboring pUvBBAC+vgc1 and pUvBBAC+vgc2 produced the vgc-specific listeriolysin (LLO) and actin assembly protein ActA and represent the first reported cloning of the vgc locus in its entirety. The use of the novel broad-host-range BAC vector pUvBBAC extends the versatility of this technology and provides a powerful platform for detailed functional genomics of gram-positive bacteria as well as its use in explorative functional metagenomics.  相似文献   

5.
6.
As a pathogenic microorganism, Listeria monocytogenes is widely used in the research of bacterial pathogenesis and host defense. The phagosomal escape of L. monocytogenes is essential for its replication in the cytoplasm of the host. Here, we reported that the protein abundance of the Six-transmembrane epithelial antigen of the prostate 3 (Steap3) was decreased upon L. monocytogenes infection compared to uninfected cells in macrophages. However, the decreased Steap3 abundance was not regulated by the host but was caused by LLO secreted by L. monocytogenes. Functional experiments showed that deletion of Steap3 facilitated entry of L. monocytogenes from the phagosome into the cytoplasm. Then, the comprehensive proteomic analysis revealed that the deletion of Steap3 could affect the proteins abundance of the lysosomal signaling pathway in macrophages. Among these proteins affected by Steap3, we discovered that only the Ganglioside GM2 activator (Gm2a) inhibited the phagosomal escape of L. monocytogenes as Steap3. In summary, we found that the Steap3-Gm2a axis could restrict the phagosomal escape of L. monocytogenes and serve the potential molecular drug targets for antibacterial treatment.  相似文献   

7.
The role of human dendritic cells (DC) in the immune response toward intracellularly growing Listeria was analyzed under in vitro conditions using several morphological and functional methods. DC incubated with Listeria innocua and L. monocytogenes, respectively, readily phagocytosed the bacteria. Listeria did not impair viability and immunogenic potential of human DC. Listerial antigens were found to be processed within the lysosomal compartment of DC and colocalized with major histocompatibility complex (MHC) class II molecules, as shown by fluorescence and transmission electron microscopy. DC challenged with apathogenic L. innocua were highly effective in priming autologous naïve T cells (mainly CD4+) in vitro. The T cells strongly proliferated in the presence of DC incubated with L. innocua, which could be significantly inhibited by anti-MHC II mAb. L. innocua-primed T cells were also successfully stimulated by DC harboring the pathogenic L. monocytogenes, either the wild-type strain EGD or the p60 reduced mutant strain RIII. From our results, we conclude that human DC infected with nonpathogenic intracellular bacteria are able to efficiently prime naïve T cells, which are then suitable for recognition of antigens derived from related virulent bacterial species. This in vitro human model provides an interesting tool for basic research in infectious immunology and possibly for a new immunotherapy.  相似文献   

8.
Listeria monocytogenes is a facultative intracellular bacterial pathogen that spreads cell to cell without exposure to the extracellular environment. Bacterial cell-to-cell spread is mediated in part by two secreted bacterial phospholipases C (PLC), a broad spectrum PLC (PC-PLC) and a phosphatidylinositolspecific PLC (PI-PLC). PI-PLC is secreted in an active state, whereas PC-PLC is secreted as an inactive proenzyme (proPC-PLC) whose activation is mediated in vitro by an L. monocytogenes metalloprotease (Mpl). Analysis of PI-PLC, PC-PLC, and Mpl single and double mutants revealed that Mpl also plays a role in the spread of an infection, but suggested that proPC-PLC has an Mpl-independent activation pathway. Using biochemical and microscopic approaches, we describe three intracellular proteolytic pathways regulating PCPLC activity. Initially, proPC-PLC secreted in the cytosol of infected cells was rapidly degraded in a proteasome-dependent manner. Later during infection, PCPLC colocalized with bacteria in lysosome-associated membrane protein 1–positive vacuoles. Activation of proPC-PLC in vacuoles was mediated by Mpl and an Mpl-independent pathway, the latter being sensitive to inhibitors of cysteine proteases. Lastly, proPC-PLC activation by either pathway was sensitive to bafilomycin A1, a specific inhibitor of vacuolar ATPase, suggesting that activation was dependent on acidification of the vacuolar compartment. These results are consistent with a model in which proPC-PLC activation is compartment specific and controlled by a combination of bacterial and host factors.  相似文献   

9.
Listeria monocytogenes, which is an intracellular pathogen, causes various illnesses in human as well as in animals. The pathogenicity of this organism depends upon the presence of different virulence genes. A total of 324 tropical seafood and fishery environmental samples were screened for L. monocytogenes. The incidence of the human pathogenic species L. monocytogenes was 1.2 % of the samples. Listeria spp. was detected in 32.3, 27.1, and 5 % of fresh, frozen, and dry fish samples, respectively. Listeria innocua was found to be the most prevalent species of Listeria in the tropical seafood and environmental samples of Kerala. Listeria monocytogenes and L. innocua isolates were confirmed by multiplex PCR. L. monocytogenes isolates from the four positive samples showed phosphatidylinositol-specific phospholipase C reaction on Chromocult® Listeria selective agar. Molecular characterization of L. monocytogenes isolates for virulence genes revealed the presence of β-hemolysin (hly), plcA, actA, metalloprotease (mpl), iap and prfA genes in all the isolates recovered from the positive samples.  相似文献   

10.
The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using 13C-labelled glucose or glutamine as carbon tracers. The 13C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.  相似文献   

11.
Bacterial intracellular pathogens can be conceived as molecular tools to dissect cellular signaling cascades due to their capacity to exquisitely manipulate and subvert cell functions which are required for the infection of host target tissues. Among these bacterial pathogens, Listeria monocytogenes is a Gram positive microorganism that has been used as a paradigm for intracellular parasitism in the characterization of cellular immune responses, and which has played instrumental roles in the discovery of molecular pathways controlling cytoskeletal and membrane trafficking dynamics. In this article, we describe a robust microscopical assay for the detection of late cellular infection stages of L. monocytogenes based on the fluorescent labeling of InlC, a secreted bacterial protein which accumulates in the cytoplasm of infected cells; this assay can be coupled to automated high-throughput small interfering RNA screens in order to characterize cellular signaling pathways involved in the up- or down-regulation of infection.  相似文献   

12.
Listeria monocytogenes is a Gram-positive, facultative intracellular pathogen capable of causing severe invasive disease with high mortality rates in humans. While previous studies have largely elucidated the bacterial and host cell mechanisms necessary for invasion, vacuolar escape, and subsequent cell-to-cell spread, the L. monocytogenes factors required for rapid replication within the restrictive environment of the host cell cytosol are poorly understood. In this report, we describe a differential fluorescence-based genetic screen utilizing fluorescence-activated cell sorting (FACS) and high-throughput microscopy to identify L. monocytogenes mutants defective in optimal intracellular replication. Bacteria harboring deletions within the identified gene menD or pepP were defective for growth in primary murine macrophages and plaque formation in monolayers of L2 fibroblasts, thus validating the ability of the screening method to identify intracellular replication-defective mutants. Genetic complementation of the menD and pepP deletion strains rescued the in vitro intracellular infection defects. Furthermore, the menD deletion strain displayed a general extracellular replication defect that could be complemented by growth under anaerobic conditions, while the intracellular growth defect of this strain could be complemented by the addition of exogenous menaquinone. As prior studies have indicated the importance of aerobic metabolism for L. monocytogenes infection, these findings provide further evidence for the importance of menaquinone and aerobic metabolism for L. monocytogenes pathogenesis. Lastly, both the menD and pepP deletion strains were attenuated during in vivo infection of mice. These findings demonstrate that the differential fluorescence-based screening approach provides a powerful tool for the identification of intracellular replication determinants in multiple bacterial systems.  相似文献   

13.
Listeria monocytogenes is a facultative intracellular Gram-positive bacterium responsible for listeriosis. It is able to invade, survive and replicate in phagocytic and non-phagocytic cells. The L. monocytogenes surface protein InlB interacts with c-Met, the hepatocyte growth factor (HGF) receptor, inducing bacterial internalization in numerous non-phagocytic cells. As InlB and HGF are known to trigger similar signaling pathways upon c-Met activation, we investigated the role of CD44, and more specifically its isoform CD44v6, in bacterial internalization in non-phagocytic cells. Indeed, CD44, the hyaluronic acid transmembrane receptor, and more specifically its isoform CD44v6 have been reported as necessary for the activation of c-Met upon the interaction with either the endogenous ligand HGF or the L. monocytogenes surface protein InlB. Our results demonstrate that, in the cell lines that we used, CD44 receptors play no role in the activation of c-Met, neither during L. monocytogenes entry, nor upon HGF activation. Furthermore, none of the CD44 isoforms was recruited at the L. monocytogenes entry site, and depletion by siRNA of total CD44 or of CD44v6 isoform did not reduce bacterial infections. Conversely, the overexpression of CD44 or CD44v6 had no significant effect on L. monocytogenes internalization. Together our results reveal that the activation of c-Met can be largely CD44-independent.  相似文献   

14.
Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts—which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin—served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta.  相似文献   

15.
Bacterial pathogens often interfere with host tyrosine phosphorylation cascades to control host responses and cause infection. Given the role of tyrosine phosphorylation events in different human infections and our previous results showing the activation of the tyrosine kinase Src upon incubation of cells with Listeria monocytogenes, we searched for novel host proteins undergoing tyrosine phosphorylation upon L. monocytogenes infection. We identify the heavy chain of the non-muscle myosin IIA (NMHC-IIA) as being phosphorylated in a specific tyrosine residue in response to L. monocytogenes infection. We characterize this novel post-translational modification event and show that, upon L. monocytogenes infection, Src phosphorylates NMHC-IIA in a previously uncharacterized tyrosine residue (Tyr-158) located in its motor domain near the ATP-binding site. In addition, we found that other intracellular and extracellular bacterial pathogens trigger NMHC-IIA tyrosine phosphorylation. We demonstrate that NMHC-IIA limits intracellular levels of L. monocytogenes, and this is dependent on the phosphorylation of Tyr-158. Our data suggest a novel mechanism of regulation of NMHC-IIA activity relying on the phosphorylation of Tyr-158 by Src.  相似文献   

16.
Infection with Listeria monocytogenes strains that enter the host cell cytosol leads to a robust cytotoxic T cell response resulting in long-lived cell-mediated immunity (CMI). Upon entry into the cytosol, L. monocytogenes secretes cyclic diadenosine monophosphate (c-di-AMP) which activates the innate immune sensor STING leading to the expression of IFN-β and co-regulated genes. In this study, we examined the role of STING in the development of protective CMI to L. monocytogenes. Mice deficient for STING or its downstream effector IRF3 restricted a secondary lethal challenge with L. monocytogenes and exhibited enhanced immunity that was MyD88-independent. Conversely, enhancing STING activation during immunization by co-administration of c-di-AMP or by infection with a L. monocytogenes mutant that secretes elevated levels of c-di-AMP resulted in decreased protective immunity that was largely dependent on the type I interferon receptor. These data suggest that L. monocytogenes activation of STING downregulates CMI by induction of type I interferon.  相似文献   

17.
Production of type I interferons, consisting mainly of multiple IFNα subtypes and IFNβ, represents an essential part of the innate immune defense against invading pathogens. While in most situations, namely viral infections, this class of cytokines is indispensable for host survival they mediate a detrimental effect during infection with L. monocytogenes by rendering macrophages insensitive towards IFNγ signalling which leads to a lethal bacterial pathology in mice. Due to a lack of suitable analytic tools the precise identity of the cell population responsible for type I IFN production remains ill-defined and so far these cells have been described to be macrophages. As in general IFNβ is the first type I interferon to be produced, we took advantage of an IFNβ fluorescence reporter-knockin mouse model in which YFP is expressed from a bicistronic mRNA linked by an IRES to the endogenous ifnb mRNA to assess the IFNβ production on a single cell level in situ. Our results showed highest frequencies and absolute numbers of IFNβ+ cells in the spleen 24 h after infection with L. monocytogenes where they were located predominately in the white pulp within the foci of infection. Detailed FACS surface marker analyses, intracellular cytokine stainings and T cell proliferation assays revealed that the IFNβ+ cells were a phenotypically and functionally further specialized subpopulation of TNF and iNOS producing DCs (Tip-DCs) which are known to be essential for the early containment of L. monocytogenes infection. We proved that the IFNβ+ cells exhibited the hallmark characteristics of Tip-DCs as they produced iNOS and TNF and possessed T cell priming abilities. These results point to a yet unappreciated ambiguous role for a multi-effector, IFNβ producing subpopulation of Tip-DCs in controlling the balance between containment of L. monocytogenes infection and effects detrimental to the host driven by IFNβ.  相似文献   

18.
Listeria monocytogenes is a Gram-positive human intracellular pathogen that infects diverse mammalian cells. Upon invasion, L. monocytogenes secretes multiple virulence factors that target host cellular processes and promote infection. It has been presumed, but was not empirically established, that the Sec translocation system is the primary mediator of this secretion. Here, we validate an important role for SecDF, a component of the Sec system, in the secretion of several critical L. monocytogenes virulence factors. A ΔsecDF mutant is demonstrated to exhibit impaired membrane translocation of listeriolysin O (LLO), PlcA, PlcB, and ActA, factors that mediate L. monocytogenes phagosomal escape and spread from cell to cell. This impaired translocation was monitored by accumulation of the factors on the bacterial membrane and by reduced activity upon secretion. This defect in secretion is shown to be associated with a severe intracellular growth defect of the ΔsecDF mutant in macrophages and a less virulent phenotype in mice, despite normal growth in laboratory medium. We further show that SecDF is upregulated when the bacteria reside in macrophage phagosomes and that it is necessary for efficient phagosomal escape. Taken together, these data support the premise that SecDF plays a role as a chaperone that facilitates the translocation of L. monocytogenes virulence factors during infection.  相似文献   

19.
The human pathogen Listeria monocytogenes is susceptible to the β-lactam antibiotics penicillin G and ampicillin, and these are the drugs of choice for the treatment of listerial infections. However, these antibiotics exert only a bacteriostatic effect on this bacterium and consequently, L. monocytogenes is regarded as β-lactam tolerant. It is widely accepted that the phenomenon of bacterial tolerance to β-lactams is due to the lack of adequate autolysin activity, but the mechanisms of L. monocytogenes tolerance to this class of antibiotics are poorly characterized. A ferritin-like protein (Fri) was recently identified as a mediator of β-lactam tolerance in L. monocytogenes, but its function in this process remains unknown. The present study was undertaken to improve our understanding of L. monocytogenes tolerance to β-lactams and to characterize the role of Fri in this phenomenon. A comparative physiological analysis of wild-type L. monocytogenes and a fri deletion mutant provided evidence of a multilevel mechanism controlling autolysin activity in cells grown under β-lactam pressure, which leads to a reduction in the level and/or activity of cell wall-associated autolysins. This is accompanied by increases in the amount of teichoic acids, cell wall thickness and cell envelope integrity of L. monocytogenes grown in the presence of penicillin G, and provides the basis for the innate β-lactam tolerance of this bacterium. Furthermore, this study revealed the inability of the L. monocytogenes Δ fri mutant to deplete autolysins from the cell wall, to adjust the content of teichoic acids and to maintain their D-alanylation at the correct level when treated with penicillin G, thus providing further evidence that Fri is involved in the control of L. monocytogenes cell envelope structure and stability under β-lactam pressure.  相似文献   

20.
The incidence of Listeria species in raw whole milk from farm bulk tanks and from raw milk in storage at a Swedish dairy plant was studied. Listeria monocytogenes was found in 1.0% and Listeria innocua was found in 2.3% of the 294 farm bulk tank (farm tank) milk specimens. One farm tank specimen contained 60 CFU of L. monocytogenes ml−1. L. monocytogenes was detected in 19.6% and L. innocua was detected in 8.5% of the milk specimens from the silo receiving tanks at the dairy (dairy silos). More dairy silo specimens were positive for both Listeria species during winter than during summer. Restriction enzyme analysis and pulsed-field gel electrophoresis were applied to 65 isolates of L. monocytogenes, resulting in 16 different clonal types. Two clonal types were shared by the farm tank milk and the dairy silo milk. All except one clonal type belonged to serovar 1/2a. In the dairy silo milk five clonal types were found more frequently and for a longer period than the others. No Listeria species were found in any other samples from the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号