首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that glycosphingolipids are internalized from the plasma membrane of human skin fibroblasts by a clathrin-independent, caveolar-related mechanism and are subsequently transported to the Golgi apparatus by a process that is dependent on microtubules, phosphatidylinositol 3-kinase, Rab7, and Rab9. Here we characterized the early steps of intracellular transport of a fluorescent glycosphingolipid analog, BODIPY-lactosylceramide (LacCer), and compared this to fluorescent transferrin (Tfn), a well established marker for the clathrin pathway. Although these two markers were initially internalized into separate vesicles by distinct mechanisms, they became co-localized in early endosomes within 5 min. These results demonstrate that glycosphingolipid-containing vesicles derived from caveolar-related endocytosis fuse with the classical endosomal system. However, in contrast to Tfn, internalization and trafficking of LacCer was independent of Rab5a, a key regulator of transport to early endosomes. By taking advantage of the monomer/excimer properties of the fluorescent lipid analog, we were also able to visualize LacCer segregation into distinct microdomains of high (red emission) and low (green emission) concentrations in the early endosomes of living cells. Interestingly, the high concentration "red" microdomains co-localized with fluorescent Tfn upon exit from early endosomes and passed through Rab11-positive "recycling endosomes" prior to being transported back to the plasma membrane. These results together with our previous studies suggest that glycosphingolipids internalized by caveolar endocytosis are rapidly delivered to early endosomes where they are fractionated into two major pools, one that is transported via late endosomes to the Golgi apparatus and the other that is returned to the plasma membrane via the recycling compartment.  相似文献   

2.
The retromer complex mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network (TGN). Mammalian retromer is composed of a sorting nexin (SNX) dimer that binds to phosphatidylinositol 3-phosphate–enriched endosomal membranes and a vacuolar protein sorting (Vps) 26/29/35 trimer that participates in cargo recognition. The mammalian SNX dimer is necessary but not sufficient for recruitment of the Vps26/29/35 trimer to membranes. In this study, we demonstrate that the guanosine triphosphatase Rab7 contributes to this recruitment. The Vps26/29/35 trimer specifically binds to Rab7–guanosine triphosphate (GTP) and localizes to Rab7-containing endosomal domains. Interference with Rab7 function causes dissociation of the Vps26/29/35 trimer but not the SNX dimer from membranes. This blocks retrieval of mannose 6-phosphate receptors to the TGN and impairs cathepsin D sorting. Rab5-GTP does not bind to the Vps26/29/35 trimer, but perturbation of Rab5 function causes dissociation of both the SNX and Vps26/29/35 components from membranes through inhibition of a pathway involving phosphatidylinositol 3-kinase. These findings demonstrate that Rab5 and Rab7 act in concert to regulate retromer recruitment to endosomes.  相似文献   

3.
The retromer complex facilitates the sorting of integral membrane proteins from the endosome to the late Golgi. In mammalian cells, the efficient recruitment of retromer to endosomes requires the lipid phosphatidylinositol 3-phosphate (PI3P) as well as Rab5 and Rab7 GTPases. However, in yeast, the role of Rabs in recruiting retromer to endosomes is less clear. We identified novel physical interactions between retromer and the Saccharomyces cerevisiae VPS9-domain Rab5-family guanine nucleotide exchange factors (GEFs) Muk1 and Vps9. Furthermore, we identified a new yeast VPS9 domain-containing protein, VARP-like 1 (Vrl1), which is related to the human VARP protein. All three VPS9 domain–containing proteins show localization to endosomes, and the presence of any one of them is necessary for the endosomal recruitment of retromer. We find that expression of an active VPS9-domain protein is required for correct localization of the phosphatidylinositol 3-kinase Vps34 and the production of endosomal PI3P. These results suggest that VPS9 GEFs promote retromer recruitment by establishing PI3P-enriched domains at the endosomal membrane. The interaction of retromer with distinct VPS9 GEFs could thus link GEF-dependent regulatory inputs to the temporal or spatial coordination of retromer assembly or function.  相似文献   

4.
The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions.  相似文献   

5.
It is well established that the spatial- and temporal-restricted generation and turnover of phosphoinositides (PIs) by a cascade of PI-metabolizing enzymes is a key regulatory mechanism in the endocytic pathway. Here, we demonstrate that the Sac1 domain–containing protein Sac2 is a PI 4-phosphatase that specifically hydrolyzes phosphatidylinositol 4-phosphate in vitro. We further show that Sac2 colocalizes with early endosomal markers and is recruited to transferrin (Tfn)-containing vesicles during endocytic recycling. Exogenous expression of the catalytically inactive mutant Sac2C458S resulted in altered cellular distribution of Tfn receptors and delayed Tfn recycling. Furthermore, genomic ablation of Sac2 caused a similar perturbation on Tfn and integrin recycling as well as defects in cell migration. Structural characterization of Sac2 revealed a unique pleckstrin-like homology Sac2 domain conserved in all Sac2 orthologues. Collectively, our findings provide evidence for the tight regulation of PIs by Sac2 in the endocytic recycling pathway.  相似文献   

6.
Autophagy is a bulk degradation process characterized by the formation of double membrane vesicles called autophagosomes. The exact molecular mechanism of autophagosome formation and the origin of the autophagosomal membrane remain unclear. We screened 38 human Tre-2/Bub2/Cdc16 domain-containing Rab guanosine triphosphatase-activating proteins (GAPs) and identified 11 negative regulators of starvation-induced autophagy. One of these putative RabGAPs, TBC1D14, colocalizes and interacts with the autophagy kinase ULK1. Overexpressed TBC1D14 tubulates ULK1-positive recycling endosomes (REs), impairing their function and inhibiting autophagosome formation. TBC1D14 binds activated Rab11 but is not a GAP for Rab11, and loss of Rab11 prevents TBC1D14-induced tubulation of REs. Furthermore, Rab11 is required for autophagosome formation. ULK1 and Atg9 are found on Rab11- and transferrin (Tfn) receptor (TfnR)-positive recycling endosomes. Amino acid starvation causes TBC1D14 to relocalize from REs to the Golgi complex, whereas TfnR and Tfn localize to forming autophagosomes, which are ULK1 and LC3 positive. Thus, TBC1D14- and Rab11-dependent vesicular transport from REs contributes to and regulates starvation-induced autophagy.  相似文献   

7.
The glucagon receptor (GCGR) activated by the peptide hormone glucagon is a seven-transmembrane G protein–coupled receptor (GPCR) that regulates blood glucose levels. Ubiquitination influences trafficking and signaling of many GPCRs, but its characterization for the GCGR is lacking. Using endocytic colocalization and ubiquitination assays, we have identified a correlation between the ubiquitination profile and recycling of the GCGR. Our experiments revealed that GCGRs are constitutively ubiquitinated at the cell surface. Glucagon stimulation not only promoted GCGR endocytic trafficking through Rab5a early endosomes and Rab4a recycling endosomes, but also induced rapid deubiquitination of GCGRs. Inhibiting GCGR internalization or disrupting endocytic trafficking prevented agonist-induced deubiquitination of the GCGR. Furthermore, a Rab4a dominant negative (DN) that blocks trafficking at recycling endosomes enabled GCGR deubiquitination, whereas a Rab5a DN that blocks trafficking at early endosomes eliminated agonist-induced GCGR deubiquitination. By down-regulating candidate deubiquitinases that are either linked with GPCR trafficking or localized on endosomes, we identified signal-transducing adaptor molecule–binding protein (STAMBP) and ubiquitin-specific protease 33 (USP33) as cognate deubiquitinases for the GCGR. Our data suggest that USP33 constitutively deubiquitinates the GCGR, whereas both STAMBP and USP33 deubiquitinate agonist-activated GCGRs at early endosomes. A mutant GCGR with all five intracellular lysines altered to arginines remains deubiquitinated and shows augmented trafficking to Rab4a recycling endosomes compared with the WT, thus affirming the role of deubiquitination in GCGR recycling. We conclude that the GCGRs are rapidly deubiquitinated after agonist-activation to facilitate Rab4a-dependent recycling and that USP33 and STAMBP activities are critical for the endocytic recycling of the GCGR.  相似文献   

8.
Nerve growth factor (NGF) induces neurite outgrowth and differentiation in a process that involves NGF binding to its receptor TrkA and endocytosis of the NGF-TrkA complex into signaling endosomes. Here, we find that biogenesis of signaling endosomes requires inactivation of Rab5 to block early endosome fusion. Expression of dominant-negative Rab5 mutants enhanced NGF-mediated neurite outgrowth, whereas a constitutively active Rab5 mutant or Rabex-5 inhibited this process. Consistently, inactivation of Rab5 sustained TrkA activation on the endosomes. Furthermore, NGF treatment rapidly decreased cellular level of active Rab5-GTP, as shown by pull-down assays. This Rab5 down-regulation was mediated by RabGAP5, which was shown to associate with TrkA by coimmunoprecipitation assays. Importantly, RNA interference of RabGAP5 as well as a RabGAP5 truncation mutant containing the TrkA-binding domain blocked NGF-mediated neurite outgrowth, indicating a requirement for RabGAP5 in this process. Thus, NGF signaling down-regulates Rab5 activity via RabGAP5 to facilitate neurite outgrowth and differentiation.  相似文献   

9.
Rabex-5 targets to early endosomes and functions as a guanine nucleotide exchange factor for Rab5. Membrane targeting is critical for Rabex-5 to activate Rab5 on early endosomes in the cell. Here, we report the identification of Rab22 as a binding site on early endosomes for direct recruitment of Rabex-5 and activation of Rab5, establishing a Rab22-Rab5 signaling relay to promote early endosome fusion. Rab22 in guanosine 5′-O-(3-thio)triphosphate-loaded form, but not guanosine diphosphate-loaded form, binds to the early endosomal targeting domain (residues 81-230) of Rabex-5 in pull-down assays. Rabex-5 targets to Rab22-containing early endosomes, and Rab22 knockdown by short hairpin RNA abrogates the membrane targeting of Rabex-5 in the cell. In addition, coexpression of Rab22 and Rab5 shows synergistic enlargement of early endosomes, and this synergy is dependent on Rabex-5, providing further support for the collaboration of the two Rab GTPases in regulation of endosome dynamics. This novel Rab22–Rabex-5–Rab5 cascade is functionally important for the endocytosis and degradation of epidermal growth factor.  相似文献   

10.
G-protein coupled receptors activate heterotrimeric G proteins at the plasma membrane in which most of their effectors are intrinsically located or transiently associated as the external signal is being transduced. This paradigm has been extended to the intracellular compartments by studies in yeast showing that trafficking of Gα activates phosphatidylinositol 3-kinase (PI3K) at endosomal compartments, suggesting that vesicle trafficking regulates potential actions of Gα and possibly Gβγ at the level of endosomes. Here, we show that Gβγ interacts with Rab11a and that the two proteins colocalize at early and recycling endosomes in response to activation of lysophosphatidic acid (LPA) receptors. This agonist-dependent association of Gβγ to Rab11a-positive endosomes contributes to the recruitment of PI3K and phosphorylation of AKT at this intracellular compartment. These events are sensitive to the expression of a dominant-negative Rab11a mutant or treatment with wortmannin, suggesting that Rab11a-dependent Gβγ trafficking promotes the activation of the PI3K/AKT signaling pathway associated with endosomal compartments. In addition, RNA interference-mediated Rab11a depletion, or expression of a dominant-negative Rab11a mutant attenuated LPA-dependent cell survival and proliferation, suggesting that endosomal activation of the PI3K/AKT signaling pathway in response to Gβγ trafficking, via its interaction with Rab11, is a relevant step in the mechanism controlling these fundamental events.  相似文献   

11.
In mammalian cells, internalized receptors such as transferrin (Tfn) receptor are presumed to pass sequentially through early endosomes (EEs) and perinuclear recycling endosomes (REs) before returning to the plasma membrane. Whether passage through RE is obligatory, however, remains unclear. Kinetic analysis of endocytosis in CHO cells suggested that the majority of internalized Tfn bypassed REs returning to the surface from EEs. To determine directly if REs are dispensable for recycling, we studied Tfn recycling in cytoplasts microsurgically created to contain peripheral EEs but to exclude perinuclear REs. The cytoplasts actively internalized and recycled Tfn. Surprisingly, they also exhibited spatially and temporally distinct endosome populations. The first appeared to correspond to EEs, labeling initially with Tfn, being positive for early endosomal antigen 1 (EEA-1) and containing only small amounts of Rab11, an RE marker. The second was EEA-1 negative and with time recruited Rab11, suggesting that cytoplasts assembled functional REs. These results suggest that although perinuclear REs are not essential components of the Tfn recycling pathway, they are dynamic structures which preexist in the peripheral cytoplasm or can be regenerated from EE- and cytosol-derived components such as Rab11.  相似文献   

12.
Polarized epithelial cells coexpress two almost identical AP-1 clathrin adaptor complexes: the ubiquitously expressed AP-1A and the epithelial cell–specific AP-1B. The only difference between the two complexes is the incorporation of the respective medium subunits μ1A or μ1B, which are responsible for the different functions of AP-1A and AP-1B in TGN to endosome or endosome to basolateral membrane targeting, respectively. Here we demonstrate that the C-terminus of μ1B is important for AP-1B recruitment onto recycling endosomes. We define a patch of three amino acid residues in μ1B that are necessary for recruitment of AP-1B onto recycling endosomes containing phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3]. We found this lipid enriched in recycling endosomes of epithelial cells only when AP-1B is expressed. Interfering with PI(3,4,5)P3 formation leads to displacement of AP-1B from recycling endosomes and missorting of AP-1B–dependent cargo to the apical plasma membrane. In conclusion, PI(3,4,5)P3 formation in recycling endosomes is essential for AP-1B function.  相似文献   

13.
Previous studies showed that loss of the T-cell protein tyrosine phosphatase (TC-PTP) induces Rab4a-dependent recycling of the platelet-derived growth factor (PDGF) β-receptor in mouse embryonic fibroblasts (MEFs). Here we identify protein kinase C (PKC) α as the critical signaling component that regulates the sorting of the PDGF β-receptor at the early endosomes. Down-regulation of PKC abrogated receptor recycling by preventing the sorting of the activated receptor into EGFP-Rab4a positive domains on the early endosomes. This effect was mimicked by inhibition of PKCα, using myristoylated inhibitory peptides or by knockdown of PKCα with shRNAi. In wt MEFs, short-term preactivation of PKC by PMA caused a ligand-induced PDGF β-receptor recycling that was dependent on Rab4a function. Together, these observations demonstrate that PKC activity is necessary for recycling of ligand-stimulated PDGF β-receptor to occur. The sorting also required Rab4a function as it was prevented by expression of EGFP-Rab4aS22N. Preventing receptor sorting into recycling endosomes increased the rate of receptor degradation, indicating that the sorting of activated receptors at early endosomes directly regulates the duration of receptor signaling. Activation of PKC through the LPA receptor also induced PDGF β-receptor recycling and potentiated the chemotactic response to PDGF-BB. Taken together, our present findings indicate that sorting of PDGF β-receptors on early endosomes is regulated by sequential activation of PKCα and Rab4a and that this sorting step could constitute a point of cross-talk with other receptors.  相似文献   

14.
An integral part of cell division is the separation of daughter cells via cytokinesis. There is now good evidence that the completion of cytokinesis requires coordinated membrane trafficking to deliver new membrane to the tip of the furrow and to complete the abscission. Here we have examined membrane traffic in cytokinesis and describe several novel observations. First, we show that Rab11- and FIP3-containing recycling endosomes accumulate near the cleavage furrow and are required for successful completion of cytokinesis. Second, we demonstrate that the Rab11-FIP3 protein complex is intimately involved in the delivery of endosomes to the cleavage furrow. Significantly, although FIP3 recruitment to endosomes is Rab11 dependent, we find that the targeting of FIP3 to the midbody is independent of Rab11. Third, we show that the Rab11-FIP3 complex is required for a late stage of cytokinesis, possibly abscission. Finally, we demonstrate that localization of FIP3 is subject to substantial spatial and temporal regulation. These data provide the first detailed analysis of recycling endosomes in cell division and provide a new model for membrane traffic to the furrow. We propose that the dynamic Rab11-FIP3 interaction controls the delivery, targeting, and fusion of recycling endosomes with furrow during late cytokinesis and abscission.  相似文献   

15.
Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network–recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner.  相似文献   

16.
Transport within the endocytic pathway depends on a consecutive function of the endosomal Rab5 and the late endosomal/lysosomal Rab7 GTPases to promote membrane recycling and fusion in the context of endosomal maturation. We previously identified the hexameric BLOC-1 complex as an effector of the yeast Rab5 Vps21, which also recruits the GTPase-activating protein (GAP) Msb3. This raises the question of when Vps21 is inactivated on endosomes. We provide evidence for a Rab cascade in which activation of the Rab7 homologue Ypt7 triggers inactivation of Vps21. We find that the guanine nucleotide exchange factor (GEF) of Ypt7 (the Mon1-Ccz1 complex) and BLOC-1 both localize to the same endosomes. Overexpression of Mon1-Ccz1, which generates additional Ypt7-GTP, or overexpression of activated Ypt7 promotes relocalization of Vps21 from endosomes to the endoplasmic reticulum (ER), which is indicative of Vps21 inactivation. This ER relocalization is prevented by loss of either BLOC-1 or Msb3, but it also occurs in mutants lacking endosome–vacuole fusion machinery such as the HOPS tethering complex, an effector of Ypt7. Importantly, BLOC-1 interacts with the HOPS on vacuoles, suggesting a direct Ypt7-dependent cross-talk. These data indicate that efficient Vps21 recycling requires both Ypt7 and endosome–vacuole fusion, thus suggesting extended control of a GAP cascade beyond Rab interactions.  相似文献   

17.
During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55Gag is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4+ T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55Gag membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55Gag with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication.  相似文献   

18.
Cell function requires the integration of cytoskeletal organization and membrane trafficking. Small GTP-binding proteins are key regulators of these processes. We find that EPI64, an apical microvillar protein with a Tre-2/Bub2/Cdc16 (TBC) domain that stabilizes active Arf6 and has RabGAP activity, regulates Arf6-dependent membrane trafficking. Expression of EPI64 in HeLa cells induces the accumulation of actin-coated vacuoles, a distinctive phenotype seen in cells expressing constitutively active Arf6. Expression of EPI64 with defective RabGAP activity does not induce vacuole formation. Coexpression of Rab8a suppresses the vacuole phenotype induced by EPI64, and EPI64 expression lowers the level of Rab8-GTP in cells, strongly suggesting that EPI64 has GAP activity toward Rab8a. JFC1, an effector for Rab8a, colocalizes with and binds directly to a C-terminal region of EPI64. Together this region and the N-terminal TBC domain of EPI64 are required for the accumulation of vacuoles. Through analysis of mutants that uncouple JFC1 from either EPI64 or from Rab8-GTP, our data suggest a model in which EPI64 binds JFC1 to recruit Rab8a-GTP for deactivation by the RabGAP activity of EPI64. We propose that EPI64 regulates membrane trafficking both by stabilizing Arf6-GTP and by inhibiting the recycling of membrane through the tubular endosome by decreasing Rab8a-GTP levels.  相似文献   

19.
Endocytosis is required for efficient mitogen-activated protein kinase (MAPK) activation by activated growth factor receptors. We examined if H-Ras and K-Ras proteins, which are distributed across different plasma membrane microdomains, have equal access to the endocytic compartment and whether this access is necessary for downstream signaling. Inhibition of endocytosis by dominant interfering dynamin-K44A blocked H-Ras but not K-Ras-mediated PC12 cell differentiation and selectively inhibited H-Ras- but not K-Ras-mediated Raf-1 activation in BHK cells. H-Ras- but not K-Ras-mediated Raf-1 activation was also selectively dependent on phosphoinositide 3-kinase activity. Stimulation of endocytosis and endocytic recycling by wild-type Rab5 potentiated H-Ras-mediated Raf-1 activation. In contrast, Rab5-Q79L, which stimulates endocytosis but not endocytic recycling, redistributed activated H-Ras from the plasma membrane into enlarged endosomes and inhibited H-Ras-mediated Raf-1 activation. Rab5-Q79L expression did not cause the accumulation of wild-type H-Ras in enlarged endosomes. Expression of wild-type Rab5 or Rab5-Q79L increased the specific activity of K-Ras-activated Raf-1 but did not result in any redistribution of K-Ras from the plasma membrane to endosomes. These results show that H-Ras but not K-Ras signaling though the Raf/MEK/MAPK cascade requires endocytosis and endocytic recycling. The data also suggest a mechanism for returning Raf-1 to the cytosol after plasma membrane recruitment.  相似文献   

20.
Modulation of cellular cholesterol transport and homeostasis by Rab11   总被引:11,自引:5,他引:6       下载免费PDF全文
To analyze the contribution of vesicular trafficking pathways in cellular cholesterol transport we examined the effects of selected endosomal Rab proteins on cholesterol distribution by filipin staining. Transient overexpression of Rab11 resulted in prominent accumulation of free cholesterol in Rab11-positive organelles that sequestered transferrin receptors and internalized transferrin. Sphingolipids were selectively redistributed as pyrene-sphingomyelin and sulfatide cosequestered with Rab11-positive endosomes, whereas globotriaosyl ceramide and GM2 ganglioside did not. Rab11 overexpression did not perturb the transport of 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine-perchlorate–labeled low-density lipoprotein (LDL) to late endosomes or the Niemann-Pick type C1 (NPC1)-induced late endosomal cholesterol clearance in NPC patient cells. However, Rab11 overexpression inhibited cellular cholesterol esterification in an LDL-independent manner. This effect could be overcome by introducing cholesterol to the plasma membrane by using cyclodextrin as a carrier. These results suggest that in Rab11-overexpressing cells, deposition of cholesterol in recycling endosomes results in its impaired esterification, presumably due to defective recycling of cholesterol to the plasma membrane. The findings point to the importance of the recycling endosomes in regulating cholesterol and sphingolipid trafficking and cellular cholesterol homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号