首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Current antiviral therapy does not cure HIV-infected individuals because the virus establishes lifelong latent infection within long-lived memory T cells as integrated HIV proviral DNA. Here, we report a new therapeutic approach that aims to cure cells of latent HIV infection by rendering latent virus incapable of replication and pathogenesis via targeted cellular mutagenesis of essential viral genes. This is achieved by using a homing endonuclease to introduce DNA double-stranded breaks (dsb) within the integrated proviral DNA, which is followed by triggering of the cellular DNA damage response and error-prone repair. To evaluate this concept, we developed an in vitro culture model of viral latency, consisting of an integrated lentiviral vector with an easily evaluated reporter system to detect targeted mutagenesis events. Using this system, we demonstrate that homing endonucleases can efficiently and selectively target an integrated reporter lentivirus within the cellular genome, leading to mutation in the proviral DNA and loss of reporter gene expression. This new technology offers the possibility of selectively disabling integrated HIV provirus within latently infected cells.  相似文献   

2.
Influenza infections cause airway epithelial inflammation and oxidant-mediated damage. In this setting, cellular antioxidant enzymes may protect airway epithelial cells against damage resulting from toxic oxygen radicals produced by activated leukocytes. Therefore, we tested the effect of influenza virus infection, as well as exposure to human recombinant interferon-γ (IFN-γ), on gene expression for the antioxidant enzymes manganese supeoxide dismutase (MnSOD), copper/zinc superoxide dismutase (Cu/ZnSOD), indoleamine 2,3-dioxygenase (IDO), and catalase in primary cultures of human airway epithelial cells. In these cells, both viral infection and IFN-γ increased MnSOD and IDO mRNAs. In contrast, neither viral infection nor IFN-γ affected Cu/ZnSOD gene expression, and both viral infection and IFN-γ decreased catalase gene expression. The differential effects of viral infection on antioxidant gene expression and their further amplification by IFN-γ are likely to be important protective mechanisms in viral airway infections.  相似文献   

3.
4.
5.
屈亮  李素  仇华吉 《遗传》2020,(3):269-277
单细胞RNA测序(single-cell RNA sequencing, scRNA-seq)技术已经成为不同领域中研究细胞异质性的有效工具。在病毒研究领域中,利用该技术分析病毒和细胞的转录组,可以在单细胞水平上检测病毒感染的动态变化,了解病毒与细胞间复杂的相互作用。本文简述了scRNA-seq技术,着重介绍病毒感染宿主细胞后scRNA-seq研究的最新进展,同时也描述了细胞周期、基因表达、细胞状态等细胞异质性对病毒感染过程的影响,以及病毒变异对其本身感染过程的影响。此外,本文还分析了scRNA-seq在研究病毒–宿主互作动态变化方面具有的独特优势,及其在病毒研究领域中广阔的应用前景,为揭示病毒的感染与致病机制、抗病毒靶标的开发等提供参考。  相似文献   

6.
In addition to productive lytic infections, herpesviruses such as human cytomegalovirus (HCMV) establish a reservoir of latently infected cells that permit lifelong colonization of the host. When latency is established, the viral immediate-early (IE) genes that initiate the lytic replication cycle are not expressed. HCMV IE gene expression at the start of a lytic infection is facilitated by the viral pp71 protein, which is delivered to cells by infectious viral particles. pp71 neutralizes the Daxx-mediated cellular intrinsic immune defense that silences IE gene expression by generating a repressive chromatin structure on the viral major IE promoter (MIEP). In naturally latently infected cells and in cells latently infected in vitro, the MIEP also adopts a similar silenced chromatin structure. Here we analyze the role of Daxx in quiescent HCMV infections in vitro that mimic some, but not all, of the characteristics of natural latency. We show that in these "latent-like" infections, the Daxx-mediated defense that represses viral gene expression is not disabled because pp71 and Daxx localize to different cellular compartments. We demonstrate that Daxx is required to establish quiescent HCMV infections in vitro because in cells that would normally foster the establishment of these latent-like infections, the loss of Daxx causes the lytic replication cycle to be initiated. Importantly, the lytic cycle is inefficiently completed, which results in an abortive infection. Our work demonstrates that, in certain cell types, HCMV must silence its own gene expression to establish quiescence and prevent abortive infection and that the virus usurps a Daxx-mediated cellular intrinsic immune defense mechanism to do so. This identifies Daxx as one of the likely multiple viral and cellular determinants in the pathway of HCMV quiescence in vitro, and perhaps in natural latent infections as well.  相似文献   

7.
ABSTRACT: BACKGROUND: Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. RESULTS: Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3[PRIME] poly(A) sequence identifying the 3[PRIME] end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. CONCLUSIONS: NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein synthesis during infection.  相似文献   

8.
The consequences of a hepatitis A virus (HAV) infection on cell-based antiviral responses and the interactions between virus and host cells resulting in persistent infections are poorly understood. In this report, we show that HAV does inhibit double-stranded (dsRNA)-induced beta interferon (IFN-beta) gene expression by influencing the IFN-beta enhanceosome, as well as dsRNA-induced apoptosis, which suggests that both effects may be connected by shared viral and/or cellular factors. This ability of HAV, which preserves the sites of virus production for a longer time, may allow the virus to establish an infection and may be the presupposition for setting up persistent infections. Our results suggest that the inhibitory effect of HAV on the cellular defense mechanisms might not be sufficient to completely prevent the antiviral reactions, which may be induced by accumulating viral dsRNA, at a later stage of infection. However, HAV seems to counteract this situation by downregulation of viral replication and in the following production of viral dsRNA. This ability of noncytopathogenic HAV acts dominantly on cytopathogenic HAV in trans. The downregulation might ensure the moderate replication which seems necessary for inhibition of the antiviral mechanisms by HAV and therefore for the persistent state of the HAV infection.  相似文献   

9.
10.
Classical antiviral therapies target viral proteins and are consequently subject to resistance. To counteract this limitation, alternative strategies have been developed that target cellular factors. We hypothesized that such an approach could also be useful to identify broad-spectrum antivirals. The influenza A virus was used as a model for its viral diversity and because of the need to develop therapies against unpredictable viruses as recently underlined by the H1N1 pandemic. We proposed to identify a gene-expression signature associated with infection by different influenza A virus subtypes which would allow the identification of potential antiviral drugs with a broad anti-influenza spectrum of activity. We analyzed the cellular gene expression response to infection with five different human and avian influenza A virus strains and identified 300 genes as differentially expressed between infected and non-infected samples. The most 20 dysregulated genes were used to screen the connectivity map, a database of drug-associated gene expression profiles. Candidate antivirals were then identified by their inverse correlation to the query signature. We hypothesized that such molecules would induce an unfavorable cellular environment for influenza virus replication. Eight potential antivirals including ribavirin were identified and their effects were tested in vitro on five influenza A strains. Six of the molecules inhibited influenza viral growth. The new pandemic H1N1 virus, which was not used to define the gene expression signature of infection, was inhibited by five out of the eight identified molecules, demonstrating that this strategy could contribute to identifying new broad anti-influenza agents acting on cellular gene expression. The identified infection signature genes, the expression of which are modified upon infection, could encode cellular proteins involved in the viral life cycle. This is the first study showing that gene expression-based screening can be used to identify antivirals. Such an approach could accelerate drug discovery and be extended to other pathogens.  相似文献   

11.
The influenza A virus NS1 protein, a virus-encoded alpha/beta interferon (IFN-alpha/beta) antagonist, appears to be a key regulator of protein expression in infected cells. We now show that NS1 protein expression results in enhancement of reporter gene activity from transfected plasmids. This effect appears to be mediated at the translational level, and it is reminiscent of the activity of the adenoviral virus-associated I (VAI) RNA, a known inhibitor of the antiviral, IFN-induced, PKR protein. To study the effects of the NS1 protein on viral and cellular protein synthesis during influenza A virus infection, we used recombinant influenza viruses lacking the NS1 gene (delNS1) or expressing truncated NS1 proteins. Our results demonstrate that the NS1 protein is required for efficient viral protein synthesis in COS-7 cells. This activity maps to the amino-terminal domain of the NS1 protein, since cells infected with wild-type virus or with a mutant virus expressing a truncated NS1 protein-lacking approximately half of its carboxy-terminal end-showed similar kinetics of viral and cellular protein expression. Interestingly, no major differences in host cell protein synthesis shutoff or in viral protein expression were found among NS1 mutant viruses in Vero cells. Thus, another viral component(s) different from the NS1 protein is responsible for the inhibition of host protein synthesis during viral infection. In contrast to the earlier proposal suggesting that the NS1 protein regulates the levels of spliced M2 mRNA, no effects on M2 protein accumulation were seen in Vero cells infected with delNS1 virus.  相似文献   

12.
We have demonstrated previously that the cellular HuR protein binds U-rich elements in the 3′ untranslated region (UTR) of Sindbis virus RNA and relocalizes from the nucleus to the cytoplasm upon Sindbis virus infection in 293T cells. In this study, we show that two alphaviruses, Ross River virus and Chikungunya virus, lack the conserved high-affinity U-rich HuR binding element in their 3′ UTRs but still maintain the ability to interact with HuR with nanomolar affinities through alternative binding elements. The relocalization of HuR protein occurs during Sindbis infection of multiple mammalian cell types as well as during infections with three other alphaviruses. Interestingly, the relocalization of HuR is not a general cellular reaction to viral infection, as HuR protein remained largely nuclear during infections with dengue and measles virus. Relocalization of HuR in a Sindbis infection required viral gene expression, was independent of the presence of a high-affinity U-rich HuR binding site in the 3′ UTR of the virus, and was associated with an alteration in the phosphorylation state of HuR. Sindbis virus-induced HuR relocalization was mechanistically distinct from the movement of HuR observed during a cellular stress response, as there was no accumulation of caspase-mediated HuR cleavage products. Collectively, these data indicate that virus-induced HuR relocalization to the cytoplasm is specific to alphavirus infections and is associated with distinct posttranslational modifications of this RNA-binding protein.  相似文献   

13.
14.
15.
Acute cytopathic retroviral infections are accompanied by the accumulation, due to superinfection, of large amounts of unintegrated viral DNA in the cells. The cytopathic effects of human immunodeficiency virus type 1 (HIV-1) infection are specific for cells that express the CD4 viral receptor and consist of syncytium formation and single-cell lysis. Here we investigated the relationship between superinfection and single-cell lysis by HIV-1. Antiviral agents were added to C8166 or Jurkat lymphocytes after HIV-1 infection had occurred. Treatment with azidothymidine or a neutralizing anti-gp120 monoclonal antibody reduced or eliminated, respectively, the formation of unintegrated viral DNA but did not inhibit single-cell killing. Furthermore, in the infected Jurkat cells, the levels of unintegrated viral DNA peaked several days before significant single-cell lysis was observed. Essentially complete superinfection resistance was established before the occurrence of single-cell killing. These results demonstrate that single-cell lysis by HIV-1 can be dissociated from superinfection and unintegrated viral DNA accumulation. These results also indicate that single-cell killing may involve envelope glycoprotein-receptor interactions not accessible to the exterior of the cell.  相似文献   

16.
17.
Bacterial reporter cells (i.e. strains engineered to produce easily measurable signals in response to one or more chemical targets) can principally be used to quantify chemical signals and analytes, physicochemical conditions and gradients on a microscale (i.e. micrometer to submillimeter distances), when the reporter signal is determined in individual cells. This makes sense, as bacterial life essentially thrives in microheterogenic environments and single-cell reporter information can help us to understand the microphysiology of bacterial cells and its importance for macroscale processes like pollutant biodegradation, beneficial bacteria-eukaryote interactions, and infection. Recent findings, however, showed that clonal bacterial populations are essentially always physiologically, phenotypically and genotypically heterogeneous, thus emphasizing the need for sound statistical approaches for the interpretation of reporter response in individual bacterial cells. Serious attempts have been made to measure and interpret single-cell reporter gene expression and to understand variability in reporter expression among individuals in a population.  相似文献   

18.
Human cytomegalovirus (HCMV) selectively relocalizes many DNA repair proteins, thereby avoiding a potentially detrimental damage response. In the present study, we evaluated interactions between HCMV and the homology-directed repair (HDR) pathway. In permissive human foreskin fibroblasts, a fluorescence-based double-stranded break repair assay was used to determine that HCMV stimulated HDR. Repair of both stably integrated and extrachromosomal reporter substrates was observed to increase. HDR was also stimulated through individual expression of the viral immediate-early protein IE1-72, mimicking full virus infection. These experiments further demonstrate HCMV's role in modulating critical cellular processes during a permissive infection.  相似文献   

19.
One of the cellular defenses against virus infection is the silencing of viral gene expression. There is evidence that at least two gene-silencing mechanisms are used against the human immuno-deficiency virus (HIV). Paradoxically, this cellular defense mechanism contributes to viral latency and persistence, and we review here the relationship of viral latency to gene-silencing mechanisms.  相似文献   

20.
Simulations of tissue-specific effects of primary acute viral infections like COVID-19 are essential for understanding disease outcomes and optimizing therapies. Such simulations need to support continuous updating in response to rapid advances in understanding of infection mechanisms, and parallel development of components by multiple groups. We present an open-source platform for multiscale spatiotemporal simulation of an epithelial tissue, viral infection, cellular immune response and tissue damage, specifically designed to be modular and extensible to support continuous updating and parallel development. The base simulation of a simplified patch of epithelial tissue and immune response exhibits distinct patterns of infection dynamics from widespread infection, to recurrence, to clearance. Slower viral internalization and faster immune-cell recruitment slow infection and promote containment. Because antiviral drugs can have side effects and show reduced clinical effectiveness when given later during infection, we studied the effects on progression of treatment potency and time-of-first treatment after infection. In simulations, even a low potency therapy with a drug which reduces the replication rate of viral RNA greatly decreases the total tissue damage and virus burden when given near the beginning of infection. Many combinations of dosage and treatment time lead to stochastic outcomes, with some simulation replicas showing clearance or control (treatment success), while others show rapid infection of all epithelial cells (treatment failure). Thus, while a high potency therapy usually is less effective when given later, treatments at late times are occasionally effective. We illustrate how to extend the platform to model specific virus types (e.g., hepatitis C) and add additional cellular mechanisms (tissue recovery and variable cell susceptibility to infection), using our software modules and publicly-available software repository.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号