首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Aim

It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere microbial strains.

Methods

Colonization of Bacillus amyloliquefaciens SQR9 (isolated from cucumber rhizosphere) and Bacillus subtilis N11 (isolated from banana rhizosphere) of their original host was found to be more effective as compared to the colonization of the non-host plant. Organic acids in the root exudates of the two plants were identified by High performance liquid chromatography (HPLC). The chemotactic response and effects on biofilm formation were assessed for SQR9 and N11 in response to cucumber and banana root exudates, as well as their organic acids components.

Results

Citric acid detected exclusively in cucumber exudates could both attract SQR9 and induce its biofilm formation, whereas only chemotactic response but not biofilm formation was induced in N11. Fumaric acid that was only detected in banana root exudates revealed both significant roles on chemotaxis and biofilm formation of N11, while showing only effects on biofilm formation but not chemotaxis of SQR9.

Conclusion

The relationship between PGPR strain and root exudates components of its original host might contribute to preferential colonization. This study advances a clearer understanding of the mechanisms relevant to application of PGPR strains in agricultural production.  相似文献   

3.
《New biotechnology》2015,32(6):720-726
Biosurfactants are amphipathic, surface-active molecules of microbial origin which accumulate at interfaces reducing interfacial tension and leading to the formation of aggregated micellular structures in solution. Some biosurfactants have been reported to have antimicrobial properties, the ability to prevent adhesion and to disrupt biofilm formation. We investigated antimicrobial properties and biofilm disruption using sophorolipids at different concentrations. Growth of Gram negative Cupriavidus necator ATCC 17699 and Gram positive Bacillus subtilis BBK006 were inhibited by sophorolipids at concentrations of 5% v/v with a bactericidal effect. Sophorolipids (5% v/v) were also able to disrupt biofilms formed by single and mixed cultures of B. subtilis BBK006 and Staphylococcus aureus ATCC 9144 under static and flow conditions, as was observed by scanning electron microscopy. The results indicated that sophorolipids may be promising compounds for use in biomedical application as adjuvants to other antimicrobial against some pathogens through inhibition of growth and/or biofilm disruption.  相似文献   

4.
5.
Bacteria can either exist in the planktonic (free floating) state or in the biofilm (encased within an organic framework) state. Bacteria biofilms cause industrial concerns and medical complications and there has been a great deal of interest in the discovery of small molecule agents that can inhibit the formation of biofilms or disperse existing structures. Herein we show that, contrary to previously published reports, d-amino acids do not inhibit biofilm formation of Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), and Staphylococcus epidermis (S. epidermis) at millimolar concentrations. We evaluated a diverse set of natural and unnatural d-amino acids and observed no activity from these compounds in inhibiting biofilm formation.  相似文献   

6.
Exopolymeric substances (EPS) are important for biofilm formation and their chemical composition may influence biofilm properties. To explore these relationships the chemical composition of EPS from Bacillus subtilis NCIB 3610 biofilms grown in sucrose-rich (SYM) and sucrose-poor (MSgg and Czapek) media was studied. We observed marked differences in composition of EPS polymers isolated from all three biofilms or from spent media below the biofilms. The polysaccharide levan dominated the EPS of SYM grown biofilms, while EPS from biofilms grown in sucrose-poor media contained significant amounts of proteins and DNA in addition to polysaccharides. The EPS polymers differed also in size with very large polymers (Mw>2000 kDa) found only in biofilms, while small polymers (Mw<200 kD) dominated in the EPS isolated from spent media. Biofilms of the eps knockout were significantly thinner than those of the tasA knockout in all media. The biofilm defective phenotypes of tasA and eps mutants were, however, partially compensated in the sucrose-rich SYM medium. Sucrose supplementation of Czapek and MSgg media increased the thickness and stability of biofilms compared to non-supplemented controls. Since sucrose is essential for synthesis of levan and the presence of levan was confirmed in all biofilms grown in media containing sucrose, this study for the first time shows that levan, although not essential for biofilm formation, can be a structural and possibly stabilizing component of B. subtilis floating biofilms. In addition, we propose that this polysaccharide, when incorporated into the biofilm EPS, may also serve as a nutritional reserve.  相似文献   

7.
The current work deals with the studies on characterization of two biofilm-forming bacteria isolated from the oral cavity. The major constituent of biofilm other than bacterial cells is the extracellular polymeric substance (EPS) matrix, which is secreted by the bacterial cells themselves. Physical properties of biofilms such as attachment, mechanical strength, antibiotic resistance can be attributed to EPS matrix. Molecular phylogeny confirmed these two isolates as Pseudomonas aeruginosa and Bacillus subtilis. It was observed that cell attachment in both the strains was maximal when xylose was used as the sole carbon source. The EPS characterization result indicated the presence of a macromolecular complex constituting of carbohydrate, protein, lipids and nucleic acids. Test for biofilm formation in the presence of metal salts of iron and zinc showed moderate to high inhibition of biofilm formation. However, calcium, iron and copper have been found to enhance biofilm growth significantly. There was more than 50 % increase in biofilm growth by P. aeruginosa with an increase in calcium concentration up to 80 ppm (Two tailed t-test P?<?0.05), whereas ≥ 15 % increase in biofilm growth by B. subtilis was observed in the presence of 80 ppm of calcium. However, variations were significant (Two way ANOVA, P?<?0.01) between different metals in different concentrations. In this study, attempts have been made to examine the effect of different carbon sources and physiological conditions on biofilm growth.  相似文献   

8.
CUP SHAPED COTELYDON 2 (CUC2) was tested as a marker for shoot induction to monitor and facilitate the optimization of in vitro regeneration of Arabidopsis thaliana. The expression of a pCUC2::3XVENUS-N7 fluorescent marker allowed the observation of early steps in the initiation and development of shoots on root explants. The explants were first incubated on an auxin-rich callus induction medium (CIM) and then transferred to a cytokinin-rich shoot induction medium (SIM). CUC2-expression occurred prior to visible shoot formation during the incubation of the root explant on CIM. Shoot formation was invariably preceded by the accumulation of CUC2 expression at dispersed sites along the root explant. These patches of CUC2-expression also marked the site of lateral root primordium formation in root explants that were transferred to hormone free medium. Thus, CUC2 is a predictive marker for the acquisition of root explant competence for root and shoot organogenesis.  相似文献   

9.
[目的]枯草芽胞杆菌ComQ是一种类异戊二烯生物合成酶.利用生物信息学预测分析了ComQ的生物学特性,对comQ基因进行过表达和敲除,构建突变菌,孔板发酵培养验证生物膜形态变化.[方法]运用NCBI (National Center for Biotechnology Information)网站里的Protein数据...  相似文献   

10.
Biofilms are multispecies communities, in which bacteria constantly compete with one another for resources and niches. Bacteria produce many antibiotics and toxins for competition. However, since biofilm cells exhibit increased tolerance to antimicrobials, their roles in biofilms remain controversial. Here, we showed that Bacillus subtilis produces multiple diverse polymorphic toxins, called LXG toxins, that contain N-terminal LXG delivery domains and diverse C-terminal toxin domains. Each B. subtilis strain possesses a distinct set of LXG toxin–antitoxin genes, the number and variation of which is sufficient to distinguish each strain. The B. subtilis strain NCIB3610 possesses six LXG toxin–antitoxin operons on its chromosome, and five of the toxins functioned as DNase. In competition assays, deletion mutants of any of the six LXG toxin–antitoxin operons were outcompeted by the wild-type strain. This phenotype was suppressed when the antitoxins were ectopically expressed in the deletion mutants. The fitness defect of the mutants was only observed in solid media that supported biofilm formation. Biofilm matrix polymers, exopolysaccharides and TasA protein polymers were required for LXG toxin function. These results indicate that LXG toxin-antitoxin systems specifically mediate intercellular competition between B. subtilis strains in biofilms. Mutual antagonism between some LXG toxin producers drove the spatial segregation of two strains in a biofilm, indicating that LXG toxins not only mediate competition in biofilms, but may also help to avoid warfare between strains in biofilms. LXG toxins from strain NCIB3610 were effective against some natural isolates, and thus LXG toxin–antitoxin systems have ecological impact. B. subtilis possesses another polymorphic toxin, WapA. WapA had toxic effects under planktonic growth conditions but not under biofilm conditions because exopolysaccharides and TasA protein polymers inhibited WapA function. These results indicate that B. subtilis uses two types of polymorphic toxins for competition, depending on the growth mode.  相似文献   

11.
The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine and was reported to inhibit biofilm formation via the incorporation of these d-amino acids into the cell wall. Here, we show that l-amino acids were able to specifically reverse the inhibitory effects of their cognate d-amino acids. We also show that d-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding d-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of d-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of d-amino acids without losing the ability to incorporate at least one noncanonical d-amino acid, d-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of d-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis.  相似文献   

12.
13.
Biofilm formation is a general attribute to almost all bacteria 1-6. When bacteria form biofilms, cells are encased in extracellular matrix that is mostly constituted by proteins and exopolysaccharides, among other factors 7-10. The microbial community encased within the biofilm often shows the differentiation of distinct subpopulation of specialized cells 11-17. These subpopulations coexist and often show spatial and temporal organization within the biofilm 18-21.Biofilm formation in the model organism Bacillus subtilis requires the differentiation of distinct subpopulations of specialized cells. Among them, the subpopulation of matrix producers, responsible to produce and secrete the extracellular matrix of the biofilm is essential for biofilm formation 11,19. Hence, differentiation of matrix producers is a hallmark of biofilm formation in B. subtilis.We have used fluorescent reporters to visualize and quantify the subpopulation of matrix producers in biofilms of B. subtilis15,19,22-24. Concretely, we have observed that the subpopulation of matrix producers differentiates in response to the presence of self-produced extracellular signal surfactin 25. Interestingly, surfactin is produced by a subpopulation of specialized cells different from the subpopulation of matrix producers 15.We have detailed in this report the technical approach necessary to visualize and quantify the subpopulation of matrix producers and surfactin producers within the biofilms of B.subtilis. To do this, fluorescent reporters of genes required for matrix production and surfactin production are inserted into the chromosome of B. subtilis. Reporters are expressed only in a subpopulation of specialized cells. Then, the subpopulations can be monitored using fluorescence microscopy and flow cytometry (See Fig 1).The fact that different subpopulations of specialized cells coexist within multicellular communities of bacteria gives us a different perspective about the regulation of gene expression in prokaryotes. This protocol addresses this phenomenon experimentally and it can be easily adapted to any other working model, to elucidate the molecular mechanisms underlying phenotypic heterogeneity within a microbial community.  相似文献   

14.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxSSm) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

15.
16.
The ΔplcR mutant of Bacillus cereus strain ATCC 14579 developed significantly more biofilm than the wild type and produced increased amounts of biosurfactant. Biosurfactant production is required for biofilm formation and may be directly or indirectly repressed by PlcR, a pleiotropic regulator. Coating polystyrene plates with surfactin, a biosurfactant from Bacillus subtilis, rescued the deficiency in biofilm formation by the wild type.  相似文献   

17.
Biofilm formation is a common mechanism for surviving environmental stress and can be triggered by both intraspecies and interspecies interactions. Prolonged predator-prey interactions between the soil bacterium Myxococcus xanthus and Bacillus subtilis were found to induce the formation of a new type of B. subtilis biofilm, termed megastructures. Megastructures are tree-like brachiations that are as large as 500 μm in diameter, are raised above the surface between 150 and 200 μm, and are filled with viable endospores embedded within a dense matrix. Megastructure formation did not depend on TasA, EpsE, SinI, RemA, or surfactin production and thus is genetically distinguishable from colony biofilm formation on MSgg medium. As B. subtilis endospores are not susceptible to predation by M. xanthus, megastructures appear to provide an alternative mechanism for survival. In addition, M. xanthus fruiting bodies were found immediately adjacent to the megastructures in nearly all instances, suggesting that M. xanthus is unable to acquire sufficient nutrients from cells housed within the megastructures. Lastly, a B. subtilis mutant lacking the ability to defend itself via bacillaene production formed megastructures more rapidly than the parent. Together, the results indicate that production of the megastructure facilitates B. subtilis escape into dormancy via sporulation.  相似文献   

18.
19.
Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called locillomycins. The genome of B. subtilis 916 contains four nonribosomal peptide synthase (NRPS) gene clusters, srf, bmy, fen, and loc, which are responsible for the biosynthesis of surfactins, bacillomycin Ls, fengycins, and locillomycins, respectively. By studying B. subtilis 916 mutants lacking production of one, two, or three LPs, we attempted to unveil the connections between LPs and phenotypic features. We demonstrated that bacillomycin Ls and fengycins contribute mainly to antifungal activity. Although surfactins have weak antifungal activity in vitro, the strain mutated in srfAA had significantly decreased antifungal activity. This may be due to the impaired productions of fengycins and bacillomycin Ls. We also found that the disruption of any LP gene cluster other than fen resulted in a change in colony morphology. While surfactins and bacillomycin Ls play very important roles in hemolytic activity, swarming motility, and biofilm formation, the fengycins and locillomycins had little influence on these phenotypic features. In conclusion, B. subtilis 916 coproduces four families of LPs which contribute to the phenotypic features of B. subtilis 916 in an intricate way.  相似文献   

20.
Wild-type Bacillus subtilis ferments 20 g/liter glucose in 48 h, producing lactate and butanediol, but not ethanol or acetate. To construct an ethanologenic B. subtilis strain, homologous recombination was used to disrupt the native lactate dehydrogenase (LDH) gene (ldh) by chromosomal insertion of the Zymomonas mobilis pyruvate decarboxylase gene (pdc) and alcohol dehydrogenase II gene (adhB) under the control of the ldh native promoter. The values of the intracellular PDC and ADHII enzymatic activities of the engineered B. subtilis BS35 strain were similar to those found in an ethanologenic Escherichia coli strain. BS35 produced ethanol and butanediol; however, the cell growth and glucose consumption rates were reduced by 70 and 65%, respectively, in comparison to those in the progenitor strain. To eliminate butanediol production, the acetolactate synthase gene (alsS) was inactivated. In the BS36 strain (BS35 ΔalsS), ethanol production was enhanced, with a high yield (89% of the theoretical); however, the cell growth and glucose consumption rates remained low. Interestingly, kinetic characterization of LDH from B. subtilis showed that it is able to oxidize NADH and NADPH. The expression of the transhydrogenase encoded by udhA from E. coli allowed a partial recovery of the cell growth rate and an early onset of ethanol production. Beyond pyruvate-to-lactate conversion and NADH oxidation, an additional key physiological role of LDH for glucose consumption under fermentative conditions is suggested. Long-term cultivation showed that 8.9 g/liter of ethanol can be obtained using strain BS37 (BS35 ΔalsS udhA+). As far as we know, this is the highest ethanol titer and yield reported with a B. subtilis strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号