首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Esophageal cancer is the sixth leading cause of cancer-related deaths worldwide. It has been reported that histone demethylases are involved in the carcinogenesis of certain types of tumors. Here, we studied the role of one of the histone lysine demethylases, plant homeodomain finger protein 8 (PHF8), in the carcinogenesis of esophageal squamous cell carcinoma (ESCC). Using short hairpin RNA via lentiviral infection, we established stable ESCC cell lines with constitutive downregulation of PHF8 expression. Knockdown of PHF8 in ESCC cells resulted in inhibition of cell proliferation and an increase of apoptosis. Moreover, there were reductions of both anchorage-dependent and -independent colony formation. In vitro migration and invasion assays showed that knockdown of PHF8 led to a reduction in the number of migratory and invasive cells. Furthermore, downregulation of PHF8 attenuated the tumorigenicity of ESCC cells in vivo. Taken together, our study revealed the oncogenic features of PHF8 in ESCC, suggesting that PHF8 may be a potential diagnostic marker and therapeutic target for ESCC.  相似文献   

2.
3.
Coordinated cell migration during development is crucial for morphogenesis and largely relies on cells of the neural crest lineage that migrate over long distances to give rise to organs and tissues throughout the body. Recent studies of protein arginylation implicated this poorly understood posttranslational modification in the functioning of actin cytoskeleton and in cell migration in culture. Knockout of arginyltransferase (Ate1) in mice leads to embryonic lethality and severe heart defects that are reminiscent of cell migration–dependent phenotypes seen in other mouse models. To test the hypothesis that arginylation regulates cell migration during morphogenesis, we produced Wnt1-Cre Ate1 conditional knockout mice (Wnt1-Ate1), with Ate1 deletion in the neural crest cells driven by Wnt1 promoter. Wnt1-Ate1 mice die at birth and in the first 2–3 weeks after birth with severe breathing problems and with growth and behavioral retardation. Wnt1-Ate1 pups have prominent defects, including short palate and altered opening to the nasopharynx, and cranial defects that likely contribute to the abnormal breathing and early death. Analysis of neural crest cell movement patterns in situ and cell motility in culture shows an overall delay in the migration of Ate1 knockout cells that is likely regulated by intracellular mechanisms rather than extracellular signaling events. Taken together, our data suggest that arginylation plays a general role in the migration of the neural crest cells in development by regulating the molecular machinery that underlies cell migration through tissues and organs during morphogenesis.  相似文献   

4.
5.
《Cell reports》2014,6(5):868-877
  1. Download : Download full-size image
  相似文献   

6.
7.
The extracellular matrix plays a critical role in neural crest (NC) cell migration. In this study, we characterize the contribution of the novel GPI-linked matrix metalloproteinase (MMP) zebrafish mmp17b. Mmp17b is expressed post-gastrulation in the developing NC. Morpholino inactivation of mmp17b function, or chemical inhibition of MMP activity results in aberrant NC cell migration with minimal change in NC proliferation or apoptosis. Intriguingly, a GPI anchored protein with metalloproteinase inhibitor properties, Reversion-inducing-Cysteine-rich protein with Kazal motifs (RECK), which has previously been implicated in NC development, is expressed in close apposition to NC cells expressing mmp17b, raising the possibility that these two gene products interact. Consistent with this possibility, embryos silenced for mmp17b show defective development of the dorsal root ganglia (DRG), a crest-derived structure affected in RECK mutant fish sensory deprived (sdp). Taken together, this study has identified the first pair of MMP, and their putative MMP inhibitor RECK that functions together in NC cell migration.  相似文献   

8.
Kdm3b is a Jumonji C domain-containing protein that demethylates mono- and di-methylated lysine 9 of histone H3 (H3K9me1 and H3K9me2). Although the enzyme activity of Kdm3b is well characterized in vitro, its genetic and physiological function remains unknown. Herein, we generated Kdm3b knockout (Kdm3bKO) mice and observed restricted postnatal growth and female infertility in these mice. We found that Kdm3b ablation decreased IGFBP-3 expressed in the kidney by 53% and significantly reduced IGFBP-3 in the blood, which caused an accelerated degradation of IGF-1 and a 36% decrease in circulating IGF-1 concentration. We also found Kdm3b was highly expressed in the female reproductive organs including ovary, oviduct and uterus. Knockout of Kdm3b in female mice caused irregular estrous cycles, decreased 45% of the ovulation capability and 47% of the fertilization rate, and reduced 44% of the uterine decidual response, which were accompanied with a more than 50% decrease in the circulating levels of the 17beta-estradiol. Importantly, these female reproductive phenotypes were associated with significantly increased levels of H3K9me1/2/3 in the ovary and uterus. These results demonstrate that Kdm3b-mediated H3K9 demethylation plays essential roles in maintenance of the circulating IGF-1, postnatal somatic growth, circulating 17beta-estradiol, and female reproductive function.  相似文献   

9.
10.
目的:研究不同浓度的雷帕霉素对体外培养的人血管内皮细胞(VE)迁移及血管内皮生长因子(VEGF)表达的影响。方法:用含10%胎牛血清的细胞培养基(DMEM)培养正常VE细胞,用10nM,50nM,100nM和200nM的雷帕霉素孵育VE细胞24 h,Western bloting测定雷帕霉素对VE中mTOR和VEGF表达的影响,Transwell迁移模型观察不同浓度的雷帕霉素对内皮细胞迁移影响。结果:①雷帕霉素可显著抑制VE的迁移,除了在100nM之外,基本呈浓度依赖性的。100nM雷帕霉素对VE迁移的抑制作用显著减弱(P<0.01)。②雷帕霉素对mTOR和VEGF165的表达呈浓度依赖性的抑制;而VEGF121的表达则是先升高后降低,在100nM雷帕霉素时表达最高,远远高于该浓度雷帕霉素时VEGF165的表达,可以解释100nM雷帕霉素时VE迁移抑制显著减轻的现象。结论:雷帕霉素抑制了VEGF165的表达,并且其对VE迁移抑制的效应主要由VEGF165表达减少所介导。VEGF121的表达在一定雷帕霉素浓度范围内可显著上调,从而显著改善了雷帕霉素诱导的VEGF165表达减少所致的内皮细胞迁移抑制。  相似文献   

11.
张慧敏  韩雅玲  陶杰  闫承慧 《生物磁学》2011,(22):4209-4211,4228
目的:研究不同浓度的雷帕霉素对体外培养的人血管内皮细胞(rE)4移及血管内皮生长因子(VEGF)表达的影响。方法:用含10%胎牛血清的细胞培养基(DMEM)培养正常VE细胞,用10nM,50nM,100nM和200nM的雷帕霉素孵育vE细胞24h,Westernbloting测定雷帕霉素对VE中mTOR和VEGF表达的影响,Transwell迁移模型观察不同浓度的雷帕霉素对内皮细胞迁移影响。结果:①雷帕霉素可显著抑制VE的迁移,除了在100riM之外,基本呈浓度依赖性的。100nM雷帕霉素对VE迁移的抑制作用显著减弱(P〈0.01)。②雷帕霉素对mTOR和VEGF165的表达呈浓度依赖性的抑制;而VEGF121的表达则是先升高后降低,在100nM雷帕霉素时表达最高,远远高于该浓度雷帕霉素时VEGF165的表达,可以解释100nM雷帕霉素时VE迁移抑制显著减轻的现象。结论:雷帕霉素抑制了VEGF165的表达,并且其对VE迁移抑制的效应主要由VEGF165表达减少所介导。VEGF121的表达在一定雷帕霉素浓度范围内可显著上调,从而显著改善了雷帕霉素诱导的VEGF165表达减少所致的内皮细胞迁移抑制。  相似文献   

12.
13.
14.
We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling.  相似文献   

15.
16.
17.

Background

Heparan sulfate (HS) is an important regulator of the assembly and activity of various angiogenic signalling complexes. However, the significance of precisely defined HS structures in regulating cytokine-dependent angiogenic cellular functions and signalling through receptors regulating angiogenic responses remains unclear. Understanding such structure-activity relationships is important for the rational design of HS fragments that inhibit HS-dependent angiogenic signalling complexes.

Methodology/Principal Findings

We synthesized a series of HS oligosaccharides ranging from 7 to 12 saccharide residues that contained a repeating disaccharide unit consisting of iduronate 2-O-sulfate linked to glucosamine with or without N-sulfate. The ability of oligosaccharides to compete with HS for FGF2 and VEGF165 binding significantly increased with oligosaccharide length and sulfation. Correspondingly, the inhibitory potential of oligosaccharides against FGF2- and VEGF165-induced endothelial cell responses was greater in longer oligosaccharide species that were comprised of disaccharides bearing both 2-O- and N-sulfation (2SNS). FGF2- and VEGF165-induced endothelial cell migration were inhibited by longer 2SNS oligosaccharide species with 2SNS dodecasaccharide activity being comparable to that of receptor tyrosine kinase inhibitors targeting FGFR or VEGFR-2. Moreover, the 2SNS dodecasaccharide ablated FGF2- or VEGF165-induced phosphorylation of FAK and assembly of F-actin in peripheral lamellipodia-like structures. In contrast, FGF2-induced endothelial cell proliferation was only moderately inhibited by longer 2SNS oligosaccharides. Inhibition of FGF2- and VEGF165-dependent endothelial tube formation strongly correlated with oligosaccharide length and sulfation with 10-mer and 12-mer 2SNS oligosaccharides being the most potent species. FGF2- and VEGF165-induced activation of MAPK pathway was inhibited by biologically active oligosaccharides correlating with the specific phosphorylation events in FRS2 and VEGFR-2, respectively.

Conclusion/Significance

These results demonstrate structure-function relationships for synthetic HS saccharides that suppress endothelial cell migration, tube formation and signalling induced by key angiogenic cytokines.  相似文献   

18.
19.
20.
Persistent cellular migration requires efficient protrusion of the front of the cell, the leading edge where the actin cytoskeleton and cell-substrate adhesions undergo constant rearrangement. Rho family GTPases are essential regulators of the actin cytoskeleton and cell adhesion dynamics. Here, we examined the role of the RhoGEF TEM4, an activator of Rho family GTPases, in regulating cellular migration of endothelial cells. We found that TEM4 promotes the persistence of cellular migration by regulating the architecture of actin stress fibers and cell-substrate adhesions in protruding membranes. Furthermore, we determined that TEM4 regulates cellular migration by signaling to RhoC as suppression of RhoC expression recapitulated the loss-of-TEM4 phenotypes, and RhoC activation was impaired in TEM4-depleted cells. Finally, we showed that TEM4 and RhoC antagonize myosin II-dependent cellular contractility and the suppression of myosin II activity rescued the persistence of cellular migration of TEM4-depleted cells. Our data implicate TEM4 as an essential regulator of the actin cytoskeleton that ensures proper membrane protrusion at the leading edge of migrating cells and efficient cellular migration via suppression of actomyosin contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号