首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prothymosin α (ProT) is involved in regulating expression of the oxidative stress-protective genes and it also exerts immunomodulatory activities. In this study, we investigated the therapeutic effects of ProT gene transfer on atherosclerosis in endothelial cells and in ApoE-deficient mice. Adenoviruses encoding mouse ProT (AdProT) were used for the management of atherosclerosis. In vitro, the effects of ProT on antioxidant gene expressions and the protection effect against oxidant-mediated injury in endothelial cells were examined. In vivo, AdProT were administered intraventricularly into the heart of ApoE-/- mice. Histopathological and immunohistochemical assessments of the aortic tissues were performed. Expressions of HO-1 and antioxidant genes in the aortic tissues were also determined. Our results demonstrated that ProT gene transfer increased antioxidant gene expressions, eNOS expression and NO release, as well as reduced the reactive oxygen species production in endothelial cells. Intraventricular administration of AdProT reduced the lesion formation, increased expressions of HO-1 and SOD genes, and reduced infiltrating macrophages in the aorta of ApoE-/- mice. This study suggests that ProT gene transfer may have the therapeutic potential for the management of atherosclerosis via inducing antioxidant gene expressions, eNOS expression and NO release, reducing ROS production and macrophage infiltration in endothelium.  相似文献   

2.
3.
4.
5.
Clinical data have indicated a negative correlation between plasma TGFß1 concentrations and the extent of atherosclerosis and have thus led to the hypothesis that the pleiotropic cytokine may have anti-atherogenic properties. T-cells are currently discussed to significantly participate in atherogenesis, but the precise role of adaptive immunity in atherogenesis remains to be elucidated. TGFß1 is known to strongly modulate the function of T-cells, however, inhibition of TGFß1 signalling in T-cells of atherosclerosis-prone knock-out mice failed to unequivocally clarify the role of the cytokine for the development of atherosclerosis. In the present study, we thus tried to specify the role of TGFß1 in atherogenesis by using the murine CD2-TGFß1 transgenic strain which represents a well characterized model of T-cell specific TGFß1 overexpression. The CD2-TGFß1 transgenic mice were crossed to ApoE knock-out mice and quantity and quality of atherosclerosis regarding number of macrophages, smooth muscle cells, CD3 positive T-cells and collagen was analyzed in CD2-TGFß1 ApoE double mutants as well as non-transgenic ApoE controls on both normal and atherogenic diet of a duration of 8, 16 or 24 weeks, respectively. In all experimental groups investigated, we failed to detect any influence of TGFß1 overexpression on disease. Total number of CD3-positive T-lymphocytes was not significantly different in atherosclerotic lesions of CD2-TGFß1 ApoE−/− females and isogenic ApoE−/− controls, even after 24 weeks on the atherogenic diet. The synopsis of these data and our previous study on TGFß1 overexpressing macrophages suggests that potential effects of TGFß1 on atherosclerosis are most probably mediated by macrophages rather than T-cells.  相似文献   

6.

Background

There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation.

Methods and Results

B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body) to Co60 (γ) (single dose 0, 0.5, and 2 Gy) at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy) at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3–6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05) in a dose-dependent manner 3–6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05) after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008) relative to controls. Percent lesion area increased (p = 0.005) with age of animal, but not with radiation treatment.

Conclusions

Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE−/− mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases.  相似文献   

7.
β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9) in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility.  相似文献   

8.
9.
Multivesicular bodies (MVBs) are endocytic compartments that contain intraluminal vesicles formed by inward budding from the limiting membrane of endosomes. In T lymphocytes, these vesicles contain pro-apoptotic Fas ligand (FasL), which may be secreted as 'lethal exosomes' upon fusion of MVBs with the plasma membrane. Diacylglycerol kinase α (DGKα) regulate the secretion of exosomes, but it is unclear how this control is mediated. T-lymphocyte activation increases the number of MVBs that contain FasL. DGKα is recruited to MVBs and to exosomes in which it has a double function. DGKα kinase activity exerts a negative role in the formation of mature MVBs, as we demonstrate by the use of an inhibitor. Downmodulation of DGKα protein resulted in inhibition of both the polarisation of MVBs towards immune synapse and exosome secretion. The subcellular location of DGKα together with its complex role in the formation and polarised traffic of MVBs support the notion that DGKα is a key regulator of the polarised secretion of exosomes.  相似文献   

10.
Highlights? Irp1 deficiency causes polycythemia and pulmonary hypertension ? Irp1 regulates HIF2α translation and expression of EPO and endothelin 1 ? Irp1 represses erythropoiesis to protect tissue iron levels during iron deficiency ? A low-iron diet worsens polycythemia and causes sudden death in Irp1?/? animals  相似文献   

11.
12.
13.
14.
15.
16.
AMP-activated protein kinase (AMPK) is an energy sensor essential for maintaining cellular energy homeostasis. Here, we report that AMPKα1 is the predominant isoform of AMPK in murine erythrocytes and mice globally deficient in AMPKα1 (AMPKα1−/−), but not in those lacking AMPKα2, and the mice had markedly enlarged spleens with dramatically increased proportions of Ter119-positive erythroid cells. Blood tests revealed significantly decreased erythrocyte and hemoglobin levels with increased reticulocyte counts and elevated plasma erythropoietin concentrations in AMPKα1−/− mice. The life span of erythrocytes from AMPKα1−/− mice was less than that in wild-type littermates, and the levels of reactive oxygen species and oxidized proteins were significantly increased in AMPKα1−/− erythrocytes. In keeping with the elevated oxidative stress, treatment of AMPKα1−/− mice with the antioxidant, tempol, resulted in decreased reticulocyte counts and improved erythrocyte survival. Furthermore, the expression of Foxo3 and reactive oxygen species scavenging enzymes was significantly decreased in erythroblasts from AMPKα1−/− mice. Collectively, these results establish an essential role for AMPKα1 in regulating oxidative stress and life span in erythrocytes.  相似文献   

17.
18.
γ-Herpesviruses (γ-HVs) are notable for their ability to establish latent infections of lymphoid cells1. The narrow host range of human γ-HVs, such as EBV and KSHV, has severely hindered detailed pathogenic studies. Murine γ-herpesvirus 68 (γHV68) shares extensive genetic and biological similarities with human γ-HVs and is a natural pathogen of murid rodents2. As such, evaluation of γHV68 infection of mice inbred strains at different stages of viral infection provides an important model for understanding viral lifecycle and pathogenesis during γ-HVs infection.Upon intranasal inoculation, γHV68 infection results in acute viremia in the lung that is later resolved into a latent infection of splenocytes and other cells, which may be reactivated throughout the life of the host3,4. In this protocol, we will describe how to use the plaque assay to assess infectious virus titer in the lung homogenates on Vero cell monolayers at the early stage (5 - 7 days) of post-intranasal infection (dpi). While acute infection is largely cleared 2 - 3 weeks postinfection, a latent infection of γHV68 is established around 14 dpi and maintained later on in the spleen of the mice. Latent infection usually affects a very small population of cells in the infected tissues, whereby the virus stays dormant and shuts off most of its gene expression. Latently-infected splenocytes spontaneously reactivate virus upon explanting into tissue culture, which can be recapitulated by an infectious center (IC) assay to determine the viral latent load. To further estimate the amount of viral genome copies in the acutely and/or latently infected tissues, quantitative real-time PCR (qPCR) is used for its maximal sensitivity and accuracy. The combined analyses of the results of qPCR and plaque assay, and/or IC assay will reveal the spatiotemporal profiles of viral replication and infectivity in vivo.Download video file.(81M, mov)  相似文献   

19.

Objective

To down-regulate expression of mRNA for the platelet-derived growth factor receptor (PDGFR)-α, block the signalling pathway of PDGF and its receptor, and study their influence on fibroblast transdifferentiation to myofibroblasts in systemic sclerosis (SSc).

Methods

Fibroblasts from skin lesions of SSc patients and health adult controls were cultured in vitro, and α-smooth muscle actin (α-SMA) expression was determined by immunocytochemistry. Both groups of fibroblasts were stimulated with PDGF-AA, transforming growth factor β1 (TGF-β1), and costimulated with PDGF-AA and TGF-β1, then PDGFR-α and α-SMA mRNA and protein expression were detected with RT-PCR and WB respectively. Three pairs of siRNAs targeting different PDGFR-α mRNA sequences were synthesized for RNAi. SSc and control fibroblasts were transfected with PDGFR-α siRNA; stimulated with PDGF-AA; and assessed for PDGFR-α and α-SMA mRNA and protein expression.

Results

Although the fibroblasts from both groups had similar morphology, the SSc skin lesions had significantly more myofibroblasts than control skin lesions. PDGF-AA stimulation, TGF-β1 stimulation, and costimulation significantly up-regulated PDGFR-α and α-SMA mRNA and protein expression in SSc fibroblasts compared to control (P<0.05), and costimulation had the strongest effects (P<0.05). All three pairs of siRNAs suppressed PDGFR-α mRNA and protein expression (P<0.05), but siRNA1495 had the highest gene-silencing efficiency (P<0.05). PDGFR-α siRNA attenuated the effects of PDGF-AA through up-regulating PDGFR-α and α-SMA mRNA and protein expression and inhibiting fibroblast transdifferentiation to myofibroblasts in SSc (P<0.05).

Conclusions

PDGFR-α over-expression in SSc fibroblasts bound PDGF-AA more efficiently and promoted fibroblast transdifferentiation, which was enhanced by TGF-β1. PDGFR-α siRNA down-regulated PDGFR-α expression, blocked binding to PDGF-AA, and inhibited fibroblast transdifferentiation to myofibroblasts.  相似文献   

20.
Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m3 total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1–19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12–14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号