首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a unique global chromatin remodeling process during mammalian spermiogenesis, 90% of the nucleosomal histones are replaced by testis-specific transition proteins, TP1, TP2, and TP4. These proteins are further substituted by sperm-specific protamines, P1 and P2, to form a highly condensed sperm chromatin. In spermatozoa, a small proportion of chromatin, which ranges from 1 to 10% in mammals, retains the nucleosomal architecture and is implicated to play a role in transgenerational inheritance. However, there is still no mechanistic understanding of the interaction of chromatin machinery with histones and transition proteins, which facilitate this selective histone replacement from chromatin. Here, we report the identification of 16 and 19 novel post-translational modifications on rat endogenous transition proteins, TP1 and TP2, respectively, by mass spectrometry. By in vitro assays and mutational analysis, we demonstrate that protein arginine methyltransferase PRMT4 (CARM1) methylates TP2 at Arg71, Arg75, and Arg92 residues, and lysine methyltransferase KMT7 (Set9) methylates TP2 at Lys88 and Lys91 residues. Further studies with modification-specific antibodies that recognize TP2K88me1 and TP2R92me1 modifications showed that they appear in elongating to condensing spermatids and predominantly associated with the chromatin-bound TP2. This work establishes the repertoire of post-translational modifications that occur on TP1 and TP2, which may play a significant role in various chromatin-templated events during spermiogenesis and in the establishment of the sperm epigenome.  相似文献   

2.
Fibrillar type I collagen is the major organic component in bone, providing a stable template for mineralization. During collagen biosynthesis, specific hydroxylysine residues become glycosylated in the form of galactosyl- and glucosylgalactosyl-hydroxylysine. Furthermore, key glycosylated hydroxylysine residues, α1/2-87, are involved in covalent intermolecular cross-linking. Although cross-linking is crucial for the stability and mineralization of collagen, the biological function of glycosylation in cross-linking is not well understood. In this study, we quantitatively characterized glycosylation of non-cross-linked and cross-linked peptides by biochemical and nanoscale liquid chromatography-high resolution tandem mass spectrometric analyses. The results showed that glycosylation of non-cross-linked hydroxylysine is different from that involved in cross-linking. Among the cross-linked species involving α1/2-87, divalent cross-links were glycosylated with both mono- and disaccharides, whereas the mature, trivalent cross-links were primarily monoglycosylated. Markedly diminished diglycosylation in trivalent cross-links at this locus was also confirmed in type II collagen. The data, together with our recent report (Sricholpech, M., Perdivara, I., Yokoyama, M., Nagaoka, H., Terajima, M., Tomer, K. B., and Yamauchi, M. (2012) Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J. Biol. Chem. 287, 22998–23009), indicate that the extent and pattern of glycosylation may regulate cross-link maturation in fibrillar collagen.  相似文献   

3.
The controlled assembly of collagen monomers into fibrils, with accompanying intermolecular cross-linking by lysyl oxidase-mediated bonds, is vital to the structural and mechanical integrity of connective tissues. This process is influenced by collagen-associated proteins, including small leucine-rich proteins (SLRPs), but the regulatory mechanisms are not well understood. Deficiency in fibromodulin, an SLRP, causes abnormal collagen fibril ultrastructure and decreased mechanical strength in mouse tendons. In this study, fibromodulin deficiency rendered tendon collagen more resistant to nonproteolytic extraction. The collagen had an increased and altered cross-linking pattern at an early stage of fibril formation. Collagen extracts contained a higher proportion of stably cross-linked α1(I) chains as a result of their C-telopeptide lysines being more completely oxidized to aldehydes. The findings suggest that fibromodulin selectively affects the extent and pattern of lysyl oxidase-mediated collagen cross-linking by sterically hindering access of the enzyme to telopeptides, presumably through binding to the collagen. Such activity implies a broader role for SLRP family members in regulating collagen cross-linking placement and quantity.  相似文献   

4.
The 14-3-3 family of proteins are multifunctional proteins that interact with many of their cellular targets in a phosphorylation-dependent manner. Here, we determined that 14-3-3 proteins interact with phosphorylated forms of the water channel aquaporin-2 (AQP2) and modulate its function. With the exception of σ, all 14-3-3 isoforms were abundantly expressed in mouse kidney and mouse kidney collecting duct cells (mpkCCD14). Long-term treatment of mpkCCD14 cells with the type 2 vasopressin receptor agonist dDAVP increased mRNA and protein levels of AQP2 alongside 14-3-3β and -ζ, whereas levels of 14-3-3η and -θ were decreased. Co-immunoprecipitation (co-IP) studies in mpkCCD14 cells uncovered an AQP2/14-3-3 interaction that was modulated by acute dDAVP treatment. Additional co-IP studies in HEK293 cells determined that AQP2 interacts selectively with 14-3-3ζ and -θ. Use of phosphatase inhibitors in mpkCCD14 cells, co-IP with phosphorylation deficient forms of AQP2 expressed in HEK293 cells, or surface plasmon resonance studies determined that the AQP2/14-3-3 interaction was modulated by phosphorylation of AQP2 at various sites in its carboxyl terminus, with Ser-256 phosphorylation critical for the interactions. shRNA-mediated knockdown of 14-3-3ζ in mpkCCD14 cells resulted in increased AQP2 ubiquitylation, decreased AQP2 protein half-life, and reduced AQP2 levels. In contrast, knockdown of 14-3-3θ resulted in increased AQP2 half-life and increased AQP2 levels. In conclusion, this study demonstrates phosphorylation-dependent interactions of AQP2 with 14-3-3θ and -ζ. These interactions play divergent roles in modulating AQP2 trafficking, phosphorylation, ubiquitylation, and degradation.  相似文献   

5.
Type I collagen extracted from tendon, skin, and bone of wild type and prolyl 3-hydroxylase 1 (P3H1) null mice shows distinct patterns of 3-hydroxylation and glycosylation of hydroxylysine residues. The A1 site (Pro-986) in the α1-chain of type I collagen is almost completely 3-hydroxylated in every tissue of the wild type mice. In contrast, no 3-hydroxylation of this proline residue was found in P3H1 null mice. Partial 3-hydroxylation of the A3 site (Pro-707) was present in tendon and bone, but absent in skin in both α-chains of the wild type animals. Type I collagen extracted from bone of P3H1 null mice shows a large reduction in 3-hydroxylation of the A3 site in both α-chains, whereas type I collagen extracted from tendon of P3H1 null mice shows little difference as compared with wild type. These results demonstrate that the A1 site in type I collagen is exclusively 3-hydroxylated by P3H1, and presumably, this enzyme is required for the 3-hydroxylation of the A3 site of both α-chains in bone but not in tendon. The increase in glycosylation of hydroxylysine in P3H1 null mice in bone was found to be due to an increased occupancy of normally glycosylated sites. Despite the severe disorganization of collagen fibrils in adult tissues, the D-period of the fibrils is unchanged. Tendon fibrils of newborn P3H1 null mice are well organized with only a slight increase in diameter. The absence of 3-hydroxyproline and/or the increased glycosylation of hydroxylysine in type I collagen disturbs the lateral growth of the fibrils.  相似文献   

6.
7.
蛋白质硫酸化是一种翻译后修饰,该修饰使分泌蛋白或膜蛋白具有成熟的生物学功能,在植物的生长发育中发挥重要的作用。催化这一修饰的酶是酪氨酰蛋白磺基转移酶(tyrosylprotein sulfotransferase, TPST),它将底物3′-磷酸腺苷-5′磷酰硫酸(PAPS)的磺酸基团转移到蛋白质的酪氨酸残基上。近年来,随着植物中TPST的克隆,已有3个家族的植物多肽被发现存在硫酸化修饰。本文综述了植物TPST的生化特性与功能,介绍了植物TPST的3个底物多肽家族及其参与的分子信号途径。  相似文献   

8.
Myopia, the leading cause of visual impairment worldwide, results from an increase in the axial length of the eyeball. Mutations in LEPREL1, the gene encoding prolyl 3-hydroxylase-2 (P3H2), have recently been identified in individuals with recessively inherited nonsyndromic severe myopia. P3H2 is a member of a family of genes that includes three isoenzymes of prolyl 3-hydroxylase (P3H), P3H1, P3H2, and P3H3. Fundamentally, it is understood that P3H1 is responsible for converting proline to 3-hydroxyproline. This limited additional knowledge also suggests that each isoenzyme has evolved different collagen sequence-preferred substrate specificities. In this study, differences in prolyl 3-hydroxylation were screened in eye tissues from P3h2-null (P3h2n/n) and wild-type mice to seek tissue-specific effects due the lack of P3H2 activity on post-translational collagen chemistry that could explain myopia. The mice were viable and had no gross musculoskeletal phenotypes. Tissues from sclera and cornea (type I collagen) and lens capsule (type IV collagen) were dissected from mouse eyes, and multiple sites of prolyl 3-hydroxylation were identified by mass spectrometry. The level of prolyl 3-hydroxylation at multiple substrate sites from type I collagen chains was high in sclera, similar to tendon. Almost every known site of prolyl 3-hydroxylation in types I and IV collagen from P3h2n/n mouse eye tissues was significantly under-hydroxylated compared with their wild-type littermates. We conclude that altered collagen prolyl 3-hydroxylation is caused by loss of P3H2. We hypothesize that this leads to structural abnormalities in multiple eye tissues, but particularly sclera, causing progressive myopia.  相似文献   

9.
Tendons are collagen-based fibrous tissues that connect and transmit forces from muscle to bone. These tissues, which are high in collagen type I content, have been studied extensively to understand collagen fibrillogenesis. Although the mechanisms have not been fully elucidated, our understanding has continued to progress. Here, we review two prevailing models of collagen fibrillogenesis and discuss the regulation of the process by candidate cellular and extracellular matrix molecules. Although numerous molecules have been implicated in the regulation of collagen fibrillogenesis, we focus on those that have been suggested to be particularly relevant to collagen type I fibril formation during tendon development, including members of the collagen and small leucine-rich proteoglycan families, as well as other molecules, including scleraxis, cartilage oligomeric matrix protein, and cytoskeletal proteins.  相似文献   

10.
Nuclear factor κB (NF-κB) is a central coordinator in immune and inflammatory responses. Constitutive NF-κB is often found in some types of cancers, contributing to oncogenesis and tumor progression. Therefore, knowing how NF-κB is regulated is important for its therapeutic control. Post-translational modification of the p65 subunit of NF-κB is a well known approach for its regulation. Here, we reported that in response to interleukin 1β, the p65 subunit of NF-κB is phosphorylated on the novel serine 316. Overexpression of S316A (serine 316 → alanine) mutant exhibited significantly reduced ability to activate NF-κB and decreased cell growth as compared with wtp65 (wild type p65). Moreover, conditioned media from cells expressing the S316A-p65 mutant had a considerably lower ability to induce NF-κB than that of wtp65. Our data suggested that phosphorylation of p65 on Ser-316 controls the activity and function of NF-κB. Importantly, we found that phosphorylation at the novel Ser-316 site and other two known phosphorylation sites, Ser-529 and Ser-536, either individually or cooperatively, regulated distinct groups of NF-κB-dependent genes, suggesting the unique role of each individual phosphorylation site on NF-κB-dependent gene regulation. Our novel findings provide an important piece of evidence regarding differential regulation of NF-κB-dependent genes through phosphorylation of different p65 serine residues, thus shedding light on novel mechanisms for the pathway-specific control of NF-κB. This knowledge is key to develop strategies for prevention and treatment of constitutive NF-κB-driven inflammatory diseases and cancers.  相似文献   

11.
《MABS-AUSTIN》2013,5(7):1219-1232
ABSTRACT

Biotherapeutics may contain a multitude of different post-translational modifications (PTMs) that need to be assessed and possibly monitored and controlled to ensure reproducible product quality. During early development of biotherapeutics, unexpected PTMs might be prevented by in silico identification and characterization together with further molecular engineering. Mass determinations of a human IgG1 (mAb1) and a bispecific IgG-ligand fusion protein (BsAbA) demonstrated the presence of unusual PTMs resulting in major +80 Da, and +16/+32 Da chain variants, respectively. For mAb1, analytical cation exchange chromatography demonstrated the presence of an acidic peak accounting for 20%. A + 79.957 Da modification was localized within the light chain complementarity-determining region-2 and identified as a sulfation based on accurate mass, isotopic distribution, and a complete neutral loss reaction upon collision-induced dissociation. Top-down ultrahigh resolution MALDI-ISD FT-ICR MS of modified and unmodified Fabs allowed the allocation of the sulfation to a specific Tyr residue. An aspartate in amino-terminal position-3 relative to the affected Tyr was found to play a key role in determining the sulfation. For BsAbA, a + 15.995 Da modification was observed and localized to three specific Pro residues explaining the +16 Da chain A, and +16 Da and +32 Da chain B variants. The BsAbA modifications were verified as 4-hydroxyproline and not 3-hydroxyproline in a tryptic peptide map via co-chromatography with synthetic peptides containing the two isomeric forms. Finally, our approach for an alert system based on in-house in silico predictors is presented. This system is designed to prevent these PTMs by molecular design and engineering during early biotherapeutic development.  相似文献   

12.
13.
利用原子力显微镜(AFM)成像技术观察胶原蛋白溶液在UV-B照射前后形态的变化,发现UV-B引起胶原纤维交联度的增加,当交联达一定程度后,照射时间的增加对交联度增加的影响不明显。AFM作为一种高分辨的表面分析仪器,为分子生物学领域的研究提供了一种新的手段。是探讨胶原光作用机理直观、有效的方法。  相似文献   

14.
Many molecular mechanisms underlie the changes in synaptic glutamate receptor content that are required by neuronal networks to generate cellular correlates of learning and memory. During the last decade, posttranslational modifications have emerged as critical regulators of synaptic transmission and plasticity. Notably, phosphorylation, ubiquitination, and palmitoylation control the stability, trafficking, and synaptic expression of glutamate receptors in the central nervous system. In the current review, we will summarize some of the progress made by the neuroscience community regarding our understanding of phosphorylation, ubiquitination, and palmitoylation of the NMDA and AMPA subtypes of glutamate receptors.  相似文献   

15.
TRPM6 and TRPM7 encode channel-kinases. While these channels share electrophysiological properties and cellular functions, TRPM6 and TRPM7 are non-redundant genes raising the possibility that the kinases have distinct substrates. Here, we demonstrate that TRPM6 and TRPM7 phosphorylate the assembly domain of myosin IIA, IIB and IIC on identical residues. Whereas phosphorylation of myosin IIA is restricted to the coiled-coil domain, TRPM6 and TRPM7 also phosphorylate the non-helical tails of myosin IIB and IIC. TRPM7 does not phosphorylate eukaryotic elongation factor-2 (eEF-2) and myosin II is a poor substrate for eEF-2 kinase. In conclusion, TRPM6 and TRPM7 share exogenous substrates among themselves but not with functionally distant alpha-kinases. STRUCTURED SUMMARY:  相似文献   

16.
以30—90妇体重莱芜猪和40—100kg体重鲁莱黑猪共84头去势公猪为试验对象(每组6头),采用相对定量RT-PCR方法,以β-actin作为内标,研究肌肉中编码Ⅲ型胶原的Col3al基因表达的发育性变化及其对肌肉中胶原蛋白含量和性质(溶解度)的影响。结果表明:研究的两个品种猪肌肉中Col3al基因表达的发育性变化基本一致,即随体重的增加,肌肉中Col3al mRNA表达呈逐渐增加趋势,但莱芜猪和鲁莱黑猪分别在70妇和80妇体重组表达量略有下降。总体上莱芜猪肌肉组织Col3al mRNA表达丰度显著高于鲁莱黑猪(P〈0.05)。相关分析表明,莱芜猪肌肉组织Col3al mRNA表达的发育性变化与总胶原和不溶性胶原含量呈极显著正相关(P〈0.01),与胶原溶解度呈极显著负相关(P〈0.01)。鲁莱黑猪肌肉组织Col3al mRNA表达的发育性变化与不溶性胶原和胶原溶解度分别呈显著正相关和负相关妒〈0.05)。研究结果提示:猪肌肉组织中Col3al基因表达具有明显的体重发育和品种特征,其mRNA表达对于肌内胶原的含量和性质有重要影响。  相似文献   

17.
以30~90kg体重莱芜猪和40~100kg体重鲁莱黒猪共84头去势公猪为试验对象(每组6头),采用相对定量RT-PCR方法,以β-actin作为内标,研究肌肉中编码Ⅲ型胶原的Col3a1基因表达的发育性变化及其对肌肉中胶原蛋白含量和性质(溶解度)的影响。结果表明:研究的两个品种猪肌肉中Col3a1基因表达的发育性变化基本一致,即随体重的增加,肌肉中Col3a1 mRNA表达呈逐渐增加趋势,但莱芜猪和鲁莱黑猪分别在70kg和80kg体重组表达量略有下降。总体上莱芜猪肌肉组织Col3a1 mRNA表达丰度显著高于鲁莱黑猪(P<0.05)。相关分析表明,莱芜猪肌肉组织Col3a1 mRNA表达的发育性变化与总胶原和不溶性胶原含量呈极显著正相关(P<0.01),与胶原溶解度呈极显著负相关(P<0.01)。鲁莱黑猪肌肉组织Col3a1 mRNA表达的发育性变化与不溶性胶原和胶原溶解度分别呈显著正相关和负相关(P<0.05)。研究结果提示:猪肌肉组织中Col3a1基因表达具有明显的体重发育和品种特征,其mRNA表达对于肌内胶原的含量和性质有重要影响。  相似文献   

18.
蛋白酶体是真核细胞内介导蛋白质特异性降解的主要复合物,在蛋白质质量控制和细胞稳态维持中发挥关键作用.研究发现,蛋白酶体含量或功能的异常会导致癌症、神经退行性疾病等诸多人类恶性疾病.围绕蛋白酶体的活性调控,已经发展了多种靶向药物,加强对蛋白酶体活性精确调控机制的研究具有重要的学术价值与临床意义.蛋白酶体的含量、组装及其活...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号