首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Aim

To measure and compare the head scatter factor for 7 MV unflattened and 6 MV flattened photon beam using a home-made designed mini phantom.

Background

The head scatter factor (Sc) is one of the important parameters for MU calculation. There are multiple factors that influence the Sc values, like accelerator head, flattening filter, primary and secondary collimators.

Materials and methods

A columnar mini phantom was designed as recommended by AAPM Task Group 74 with high and low atomic number material for measurement of head scatter factors at 10 cm and dmax dose water equivalent thickness.

Results

The Sc values measured with high-Z are higher than the low-Z mini phantoms observed for both 6MV-FB and 7MV-UFB photon energies. Sc values of 7MV-UFB photon beams were smaller than those of the 6MV-FB photon beams (0.6–2.2% (Primus), 0.2–1.4% (Artiste) and 0.6–3.7% (Clinac iX (2300CD))) for field sizes ranging from 10 cm × 10 cm to 40 cm × 40 cm. The SSD had no influence on head scatter for both flattened and unflattened beams. The presence of wedge filters influences the Sc values. The collimator exchange effects showed that the opening of the upper jaw increases Sc irrespective of FF and FFF.

Conclusions

There were significant differences in Sc values measured for 6MV-FB and unflattened 7MV-UFB photon beams over the range of field sizes from 10 cm × 10 cm to 40 cm × 04 cm. Different results were obtained for measurements performed with low-Z and high-Z mini phantoms.  相似文献   

2.

Background

Medical Linear accelerators manufactured without flattening filters are increasing popular in recent days. The removal of flattening filter results in increased dose rate, reduced mean energy, reduction in head leakage and lateral scattering, which have shown advantageous when used for special treatment procedures.

Aim

This study aims to analyze physical parameters of FFF beams and to determine the inflection point for standardizing the beam flatness and penumbra.

Materials and methods

The beam profiles and depth dose patterns were measured using Radiation Field Analyzer (RFA) with 0.13 cc cylindrical ion chamber. The beam energy characteristics, head scatter factor (Sc) were obtained for 6FFF and 10FFF beams and compared with 6 MV and 10 MV photons, respectively. The symmetry and stability of unflattened regions were also analyzed. In addition, the study proposes a simple physical concept for obtaining inflection point for FFF beams and results were compared using the Akima spline interpolation method. The inflection point was used to determine the field size and penumbra of FFF beams.

Results

The Sc varied from 0.922 to 1.044 for 6FFF and from 0.913 to 1.044 for 10FFF with field sizes from 3 cm × 3 cm to 40 cm × 40 cm which is much less than FF beams. The obtained value of field size and penumbra for both simple physical concept and Akima spline interpolation methods is within the ±1.0 mm for the field size and ±2 mm penumbra. The results indicate that FFF beams reduce Sc compared with FF beams due to the absence of a flattening filter.

Conclusion

The proposed simple method to find field size and penumbra using inflection point can be accepted as it is closely approximated to mathematical results. Stability of these parameters was ascertained by repeated measurements and the study indicates good stability for FFF beam similar to that of FF beams.  相似文献   

3.

Aim

The aim of the paper is to examine the relation between the increase of the photon dose in water in the region of electronic disequilibrium – so-called build-up region – and the distance of the bolus from the water surface for the applied parameters of X-ray beams.

Materials and methods

PDD measurements were carried out using the plane-parallel ionization chamber Markus in the automatic water phantom IBA BluePhantom with OmniPro-Accept V7 (IBA Dosimetry GmbH, Schwarzenbruck, Germany). All measurements were performed for different field sizes and for 6 MV and 15 MV X-ray beams, respectively. A water-equivalent RW3 slab (Goettingen White Water) produced by PTW was used as a bolus.

Results

Placing a bolus in an irradiated field changes the shape of the PDD curve in the build-up region in comparison with the one obtained for an open field. All results has been inserted in tables and figures.

Conclusion

The closer the bolus is to the water surface, the smaller the depth of the maximum dose in the phantom for all investigated fields and energies. The changes in the build-up region are important, even if the bolus does not touch the surface of the water phantom. The influence of the bolus can be ignored when the bolus-surface distance equals 25 cm for 6MV X-ray beams and 39 cm for 15 MV X-ray beams.  相似文献   

4.
5.

Aim

To employ the thermal neutron background that affects the patient during a traditional high-energy radiotherapy treatment for BNCT (Boron Neutron Capture Therapy) in order to enhance radiotherapy effectiveness.

Background

Conventional high-energy (15–25 MV) linear accelerators (LINACs) for radiotherapy produce fast secondary neutrons in the gantry with a mean energy of about 1 MeV due to (γ, n) reaction. This neutron flux, isotropically distributed, is considered as an unavoidable undesired dose during the treatment. Considering the moderating effect of human body, a thermal neutron fluence is localized in the tumour area: this neutron background could be employed for BNCT by previously administering 10B-Phenyl-Alanine (10BPA) to the patient.

Materials and methods

Monte Carlo simulations (MCNP4B-GN code) were performed to estimate the total amount of neutrons outside and inside human body during a traditional X-ray radiotherapy treatment.Moreover, a simplified tissue equivalent anthropomorphic phantom was used together with bubble detectors for thermal and fast neutron to evaluate the moderation effect of human body.

Results

Simulation and experimental results confirm the thermal neutron background during radiotherapy of 1.55E07 cm−2 Gy−1.The BNCT equivalent dose delivered at 4 cm depth in phantom is 1.5 mGy-eq/Gy, that is about 3 Gy-eq (4% of X-rays dose) for a 70 Gy IMRT treatment.

Conclusions

The thermal neutron component during a traditional high-energy radiotherapy treatment could produce a localized BNCT effect, with a localized therapeutic dose enhancement, corresponding to 4% or more of photon dose, following tumour characteristics. This BNCT additional dose could thus improve radiotherapy, acting as a localized radio-sensitizer.  相似文献   

6.

Aim

The purpose of the study was to examine the energy dependence of Gafchromic EBT radiochromic dosimetry films, in order to assess their potential use in intensity-modulated radiotherapy (IMRT) verifications.

Materials and methods

The film samples were irradiated with doses from 0.1 to 12 Gy using photon beams from the energy range 1.25 MeV to 25 MV and the film response was measured using a flat-bed scanner. The samples were scanned and the film responses for different beam energies were compared.

Results

A high uncertainty in readout of the film response was observed for samples irradiated with doses lower than 1 Gy. The relative difference exceeds 20% for doses lower than 1 Gy while for doses over 1 Gy the measured film response differs by less than 5% for the whole examined energy range. The achieved uncertainty of the experimental procedure does not reveal any energy dependence of Gafchromic EBT film response in the investigated energy range.

Conclusions

Gafchromic EBT film does not show any energy dependence in the conditions typical for IMRT but the doses measured for pre-treatment plan verifications should exceed 1 Gy.  相似文献   

7.

Aim

The aim of this work was to map the characteristics of (n,γ) and (γ,n) reactions in a high energy photon radiation therapy.

Background

Photoneutrons produced in the high energy X-Ray radiation therapy may damage patients and staff. It is due to high RBE of the produced neutrons according to their energy and isotropic emission. Characterization of the photoneutrons can help us in appropriate shielding.

Materials and methods

This study focused on the photoneutron and capture gamma ray phenomena. Characteristics such as dose value, fluence and spectra of both the neutrons and the by produced prompt gamma ray were described.

Results and discussion

Neutron and prompt gamma spectra in different points showed the neutrons to be thermalized when increasing the distance from the linac. Energy of the neutrons changed from about 0.6 MeV at the isocentre to around 10−08 MeV at the outer door position. Although the neutrons were found as fast neutrons, their spectra showed they were thermal neutrons at the outer door position. Additionally, it was seen that the energy of the gamma rays is higher than the scattered X-ray energy. The energy of gamma rays was seen to be up to 10 MeV while the linac photons had energy lower than 1 MeV. Neutron source strength obtained in this work was in good agreement with the published data, which may be a confirmation of our simulation accuracy.

Conclusion

The study showed that the Monte Carlo simulation can be applied in the radiotherapy and industrial radiation works as a useful and precise estimator. We also concluded that the dose from the prompt gamma ray at the outer door location is higher than the scattered radiation from the linac and should be considered in the shielding.  相似文献   

8.
9.

Aim

To study the use of RapidArc techniques in the treatment of prostate cancer patients with hip prosthesis.

Background

An important aspect of treatment planning is to achieve dose homogeneity inside the planning target volume (PTV). Especially for those patients presenting with hip prosthesis, it becomes a challenging task to achieve dose uniformity inside the PTV.

Materials and methods

Five prostate patients presenting with hip prosthesis who had undergone radical radiotherapy were selected for this study. Depending on the composition of prosthesis, a predefined set of Hounsfield values were assigned to each study set. RapidArc plans were generated on an Eclipse treatment planning system. Two arcs that include clockwise and counter-clockwise arcs were used in all these cases. To avoid beams passing through the prosthesis, a simple structure was defined around it with 1 cm margin and a strict dose constraint applied to the block during VMAT optimization.

Results

The mean D2/D98 ratio of PTV for all the patients was 1.06 ± 0.01. The mean percentage rectum volume receiving 50 Gy, 60 Gy, 70 Gy and 75 Gy for all the patients were 33.1 ± 5.9, 21.7 ± 5.5, 13.8 ± 4.4 and 9.5 ± 3.0, respectively.

Conclusions

This study shows that using a double arc RapidArc technique is a simple and effective treatment method of treating prostate cancer in patients presenting with a hip prosthesis. The definition of a beam avoidance structure encompassing the prosthesis and applying strict dose constraints to it reduces the beam contribution to the prosthesis  相似文献   

10.

Aim

This study compared the dosimetric impact between prostate IMRT and VMAT due to patient''s weight loss.

Background

Dosimetric variation due to change of patient''s body contour is difficult to predict in prostate IMRT and VMAT, since a large number of small and irregular segmental fields is used in the delivery.

Materials and methods

Five patients with prostate volumes ranging from 32.0 to 86.5 cm3 and a heterogeneous pelvis phantom were used for prostate IMRT and VMAT plans using the same set of dose–volume constraints. Doses in IMRT and VMAT plans were recalculated with the patient''s and phantom''s body contour reduced by 0.5–2 cm to mimic size reduction. Dose coverage/criteria of the PTV and CTV and critical organs (rectum, bladder and femoral heads) were compared between IMRT and VMAT.

Results

In IMRT plans, increases of the D99% for the PTV and CTV were equal to 4.0 ± 0.1% per cm of reduced depth, which were higher than those in VMAT plans (2.7 ± 0.24% per cm). Moreover, increases of the D30% of the rectum and bladder per reduced depth in IMRT plans (4.0 ± 0.2% per cm and 3.5 ± 0.5% per cm) were higher than those of VMAT (2.2 ± 0.2% per cm and 2.0 ± 0.6% per cm). This was also true for the increase of the D5% for the right femoral head in a patient or phantom with size reduction due to weight loss.

Conclusions

VMAT would be preferred to IMRT in prostate radiotherapy, when a patient has potential to suffer from weight loss during the treatment.  相似文献   

11.

Background

The aim of the modern radiotherapy is to get a homogenous dose distribution in PTV, which is obtained by using for example physical or dynamic wedges. The using of a physical wedge has provided such isodose distributions but their use resulted in detrimental dosimetric consequences, for example beam hardening effects and practical consequences of filter handling or possible misalignment. Linear accelerators are now equipped with collimator jaws systems and controlled by modern computers and it is possible to generate wedge shaped isodose distributions dynamically. Because of a more comfortable use of a dynamic wedge, there are alternatives to the standard physical wedge. During the treatment, different segments of the treatment field can be exposed to the primary beam at different intervals of time. This process of shrinking the field while modulating the collimator jaw velocity and dose rate creates the desired wedge-shaped isodose gradient across the treatment field. Dynamic wedges can replace physical wedges but they need more precise dosimetry and quality control procedures.

Aim

The aim of this study was to perform a multienergetic verification of dynamic wedge angles using the multichannel detector PTW LA48 linear array.

Material and methods

The measurements of angle value of dynamic wedges were performed for Clinac 2300 C/D accelerators (Varian). The accelerator was equipped with the EDW option for 6 MV and 15 MV photon beams. In this case, 7 wedge angle values were used: 10°, 15°, 20°, 25°, 30°, 45° and 60°. The dynamic wedges are realized by continuous movement of one collimator jaw. The field size is gradually reduced until the collimator is almost completely closed or the field increases, while the beam is on. The measurements were divided in two steps: in the first step, the dynamic wedges were verified with the recommended values and in the second step there the planned and measured angles of dynamic wedges were compared. Measurements were made by means of LA48 linear array of ionization chambers (PTW). The results of the measurements were compared with the reference profile produced by the treatment planning system ECLIPSE 8.5 (Varian).

Results

The results showed differences between measured and calculated angle of dynamic wedges. The differences were observed for both energies in the case of a small angle value. For energies 6 MV and 15 MV, almost all percentage difference between the measured and calculated profile was lower than 5%. The biggest difference was observed in the first step of measurements when the angle of Dynamic Wedge was verified. The comparison between the planned and measured angle value of Dynamic Wedge showed the difference between 0.1% and 4.5%.The difference for 6 MV for the angle value of 10° in orientation IN was 1.1% and for energy 15 MV in the same case the difference was 3.8%. Thinner wedges exhibit less difference.

Conclusion

It is necessary to provide comprehensive quality control procedure for enhanced dynamic wedges. Verification measurements should be an obligatory procedure in the recommendation for the testing of medical accelerators. These results are the preliminary results to provide measurements in other Polish Cancer Centres.  相似文献   

12.
MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed.  相似文献   

13.
14.

Aim

The purpose of this study was to examine the usefulness of using Simultaneous Integrated Boost (SIB) radiotherapy for thyroid cancer treatment.

Background

At our hospital a 3D Conformal RadioTherapy (3D-CRT) technique involving photon and electron beams for the treatment of thyroid cancer was often used.1 High dose to the spinal canal was limiting the total dose of such a treatment. After investigation of Intensity Modulated Radiotherapy (IMRT) technique involving seven photon beams for first course of treatment3 we decided to examine possibility of reducing treatment fractions by using SIB radiotherapy.

Material and methods

Plans for 10 patients were studied. For each patient, IMRT plan for the first course of treatment (50 Gy for PTV), two plans for the second course of treatment (10 Gy for BOOST) and a SIB plan (50 Gy for PTV, 56 Gy for BOOST) were prepared. For all plans, comparisons of dose statistics for the PTV, BOOST, PTV without BOOST (defined as PTV without BOOST with 1 cm margin), spinal canal and Patient Outline (Body) was done.

Results

Minimum dose for BOOST is higher in the SIB technique than in the two course treatment. PTV without BOOST receives the same average dose in SIB and the 1st course IMRT – 50.10 Gy and 49.84 Gy, respectively. In the SIB technique, higher reduction of dose delivered to the spinal canal is possible (27 Gy compared with 30 Gy).

Conclusion

SIB therapy for thyroid cancer with relation to typical two course treatment is a good proposal of reducing the number of fractions with the same dose for BOOST and PTV without BOOST. Additionally, better sparing of the spinal canal is achieved.  相似文献   

15.

Aim

Our aim was to improve dose distribution to the left breast and to determine the dose received by the ipsilateral lung, heart, contralateral lung and contralateral breast during primary left-sided breast irradiation by using intensity modulated radiotherapy (IMRT) techniques compared to conventional tangential techniques (CTT). At the same time, different beams of IMRT plans were compared to each other in respect to CI, HI and organs at risk (OAR) dose.

Background

Conventional early breast cancer treatment consists of lumpectomy followed by whole breast radiation therapy. CTT is a traditional method used for whole breast radiotherapy and includes standard wedged tangents (two opposed wedged tangential photon beams). The IMRT technique has been widely used for many treatment sites, allowing both improved sparing of normal tissues and more conformal dose distributions. IMRT is a new technique for whole breast radiotherapy. IMRT is used to improve conformity and homogeneity and used to reduce OAR doses.

Materials and methods

Thirty patients with left-sided breast carcinoma were treated between 2005 and 2008 using 6, 18 or mixed 6/18 MV photons for primary breast irradiation following breast conserving surgery (BCS). The clinical target volume [CTV] was contoured as a target volume and the contralateral breast, ipsilateral lung, contralateral lung and heart tissues as organs at risk (OAR). IMRT with seven beams (IMRT7), nine beams (IMRT9) and 11 beams (IMRT11) plans were developed and compared with CTT and among each other. The conformity index (CI), homogeneity index (HI), and doses to OAR were compared to each other.

Results

All of IMRT plans significantly improved CI (CTT: 0.76; IMRT7: 0.84; IMRT9: 0.84; IMRT11: 0.85), HI (CTT: 1.16; IMRT7: 1.12; IMRT9: 1.11; IMRT11: 1.11), volume of the ipsilateral lung receiving more than 20 Gy (>V20 Gy) (CTT: 14.6; IMRT7: 9.08; IMRT9: 8.10; IMRT11: 8.60), and volume of the heart receiving more than 30 Gy (>V30 Gy) (CTT: 6.7; IMRT7: 4.04; IMRT9: 2.80; IMRT11: 2.98) compared to CTT. All IMRT plans were found to significantly decrease >V20 Gy and >V30 Gy volumes compared to conformal plans. But IMRT plans increased the volume of OAR receiving low dose radiotherapy: volume of contralateral lung receiving 5 and 10 Gy (CTT: 0.0–0.0; IMRT7: 19.0–0.7; IMRT9: 17.2–0.66; IMRT11: 18.7–0.58, respectively) and volume of contralateral breast receiving 10 Gy (CTT: 0.03; IMRT7: 0.38; IMRT9: 0.60; IMRT11: 0.68). The differences among IMRT plans with increased number of beams were not statistically significant.

Conclusion

IMRT significantly improved conformity and homogeneity index for plans. Heart and lung volumes receiving high doses were decreased, but OAR receiving low doses was increased.  相似文献   

16.

Aim

To validate a pretreatment verification method of dose calculation and dose delivery based on measurements with Metaplex PTW phantom.

Background

The dose-response relationships for local tumor control and radiosensitive tissue complications are strong. It is widely accepted that an accuracy of dose delivery of about 3.5% (one standard deviation) is required in modern radiotherapy. This goal is difficult to achieve. This paper describes our experience with the control of dose delivery and calculations at the ICRU reference point.

Materials and methods

The calculations of dose at the ICRU reference point performed with the treatment planning system CMS XiO were checked by measurements carried out in the PLEXITOM™ phantom.All measurements were performed with the ion chamber positioned in the phantom, at the central axis of the beam, at depth equivalent to the radiological depth (at gantry zero position). The source-to-phantom surface distance was always set to keep the source-to-detector distance equal to the reference point depth defined in the ICRU Report 50 (generally, 100 cm). The dose was measured according to IAEA TRS 398 report for measurements in solid phantoms. The measurement results were corrected with the actual accelerator''s output factor and for the non-full scatter conditions. Measurements were made for 111 patients and 327 fields.

Results

The average differences between measurements and calculations were 0.03% (SD = 1.4%), 0.3% (SD = 1.0%), 0.1% (SD = 1.1%), 0.6% (SD = 1.8%), 0.3% (SD = 1.5%) for all measurements, for total dose, for pelvis, thorax and H&N patients, respectively. Only in 15 cases (4.6%), the difference between the measured and the calculated dose was greater than 3%. For these fields, a detailed analysis was undertaken.

Conclusion

The verification method provides an instantaneous verification of dose calculations before the beginning of a patient''s treatment. It allows to detect differences smaller than 3.5%.  相似文献   

17.

Aim

Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Cancerous lesions in the cervix, esophagus and rectum are examples of such a target lesion.

Background

In this study, the stepping source of a GZP6 afterloading intracavitary brachytherapy unit was simulated using Monte Carlo (MC) simulation and the results were used for the validation of the GZP6 treatment planning system (TPS).

Materials and methods

The stepping source was simulated using MCNPX Monte Carlo code. Dose distributions in the longitudinal plane were obtained by using a matrix shift method for esophageal tumor lengths of 8 and 10 cm. A mesh tally has been employed for the absorbed dose calculation in a cylindrical water phantom. A total of 5 × 108 photon histories were scored and the MC statistical error obtained was at the range of 0.008–3.5%, an average of 0.2%.

Results

The acquired MC and TPS isodose curves were compared and it was shown that the dose distributions in the longitudinal plane were relatively coincidental. In the transverse direction, a maximum dose difference of 7% and 5% was observed for tumor lengths of 8 and 10 cm, respectively.

Conclusion

Considering that the certified source activity is given with ±10% uncertainty, the obtained difference is reasonable. It can be concluded that the accuracy of the dose distributions produced by GZP6 TPS for the stepping source is acceptable for its clinical applications.  相似文献   

18.

Aim

The aim of the present study is to develop and verify the single film calibration procedure used in intensity-modulated radiation therapy (IMRT) quality assurance.

Background

Radiographic films have been regularly used in routine commissioning of treatment modalities and verification of treatment planning system (TPS). The radiation dosimetery based on radiographic films has ability to give absolute two-dimension dose distribution and prefer for the IMRT quality assurance. However, the single therapy verification film gives a quick and significant reliable method for IMRT verification.

Materials and methods

A single extended dose rate (EDR 2) film was used to generate the sensitometric curve of film optical density and radiation dose. EDR 2 film was exposed with nine 6 cm × 6 cm fields of 6 MV photon beam obtained from a medical linear accelerator at 5-cm depth in solid water phantom. The nine regions of single film were exposed with radiation doses raging from 10 to 362 cGy. The actual dose measurements inside the field regions were performed using 0.6 cm3 ionization chamber. The exposed film was processed after irradiation using a VIDAR film scanner and the value of optical density was noted for each region. Ten IMRT plans of head and neck carcinoma were used for verification using a dynamic IMRT technique, and evaluated using the gamma index method with TPS calculated dose distribution.

Results

Sensitometric curve has been generated using a single film exposed at nine field region to check quantitative dose verifications of IMRT treatments. The radiation scattered factor was observed to decrease exponentially with the increase in the distance from the centre of each field region. The IMRT plans based on calibration curve were verified using the gamma index method and found to be within acceptable criteria.

Conclusion

The single film method proved to be superior to the traditional calibration method and produce fast daily film calibration for highly accurate IMRT verification.  相似文献   

19.

Background

Polymer gel dosimetry has been used extensively in radiation therapy for its capability in depicting a three dimensional view of absorbed dose distribution. However, more studies are required to find less toxic and more efficient polymers for application in radiotherapy dosimetry.

Aim

The purpose of this work was to evaluate the N-isopropyl acrylamide (NIPAM) gel dosimetric characteristics and optimize the protocol for X-ray computed tomography (CT) imaging of gel dosimeters for radiation therapy application.

Material and methods

A polymer gel dosimeter based on NIPAM monomer was prepared and irradiated with 60Co photons. The CT number changes following irradiation were extracted from CT images obtained with different sets of imaging parameters.

Results

The results showed the dose sensitivity of ΔNCT (H) = 0.282 ± 0.018 (H Gy−1) for NIPAM gel dosimeter. The optimized set of imaging exposure parameters was 120 kVp and 200 mA with the 10 mm slice thickness. Results of the depth dose measurement with gel dosimeter showed a great discrepancy with the actual depth dose data.

Conclusion

According to the current study, NIPAM-based gel dosimetry with X-ray CT imaging needs more technical development and formulation refinement to be used for radiation therapy application.  相似文献   

20.

Background

In radiation therapy with orthovoltage units, the tube design has a crucial effect on its dosimetric features.

Aim

In this study, the effect of anode angle on photon beam spectra, depth dose and photon fluence per initial electron was studied for a commercial orthovoltage unit of X-RAD320 biological irradiator.

Materials and methods

The MCNPX MC code was used for modeling in the current study. We used the Monte Carlo method to model the X-RAD320 X-ray unit based on the manufacturer provided information. The MC model was validated by comparing the MC calculated photon beam spectra with the results of SpekCalc software. The photon beam spectra were calculated for anode angles from 15 to 35 degrees. We also calculated the percentage depth doses for some angles to verify the impact of anode angle on depth dose. Additionally, the heel effect and its relation with anode angle were studied for X-RAD320 irradiator.

Results

Our results showed that the photon beam spectra and their mean energy are changed significantly with anode angle and the optimum anode angle of 30 degrees was selected based on less heel effect and appropriate depth dose and photon fluence per initial electron.

Conclusion

It can be concluded that the anode angle of 30 degrees for X-RAD320 unit used by manufacturer has been selected properly considering the heel effect and dosimetric properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号