首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The cancer/testis antigen lactate dehydrogenase-C4 (LDHC) is a specific isoenzyme of the LDH family that regulates invasion and metastasis in some malignancies; however, little is known regarding its role in progression of lung adenocarcinoma (LUAD). Thus, we investigated LDHC expression by immunohistochemistry, and analyzed its clinical significance in 88 LUAD specimens. The role and molecular mechanisms subserving LDHC in cellular proliferation, migration, and invasion were explored both in vitro and in vivo. As a result, we found that high LDHC expression was significantly correlated with clinicopathological features of aggressive LUAD and a poor prognosis. Overexpression of LDHC induced LUAD cells to produce lactate and ATP, increased their metastatic and invasive potential—, and accelerated xenograft tumor growth. We further demonstrated that overexpression of LDHC affected the expression of cell proliferation-related proteins (cyclin D1 and c-Myc) and epithelial-mesenchymal transition (EMT)-related proteins (MMP-2, MMP-9, E-cadherin, Vimentin, Twist, Slug, and Snail) both in vitro and in vivo. Finally, excessive activation of LDHC enhanced the phosphorylation levels of AKT and GSK-3β, revealing activation of the PI3K/Akt/GSK-3β oncogenic-signaling pathways. Treatment with a PI3K inhibitor reversed the effects of LDHC overexpression by inhibiting cellular proliferation, migration, and invasion, with diminished levels of p-Akt and p-GSK3β. PI3K inhibition also reversed cell proliferation-related and EMT-related proteins in LDHC-overexpressing A549 cells. In conclusion, LDHC promotes proliferation, migration, invasion, and EMT in LUAD cells via activation of the PI3K/Akt/GSK-3β pathway.  相似文献   

3.
BackgroundThe elevated Cyclin B1 expression contributes to various tumorigenesis and poor prognosis. Cyclin B1 expression could be regulated by ubiquitination and deubiquitination. However, the mechanism of how Cyclin B1 is deubiquitinated and its roles in human glioma remain unclear.MethodsCo-immunoprecipitation and other assays were performed to detect the interacting of Cyclin B1 and USP39. A series of in vitro and in vivo experiments were performed to investigate the effect of USP39 on the tumorigenicity of tumor cells.ResultsUSP39 interacts with Cyclin B1 and stabilizes its expression by deubiquitinating Cyclin B1. Notably, USP39 cleaves the K29-linked polyubiquitin chain on Cyclin B1 at Lys242. Additionally, overexpression of Cyclin B1 rescues the arrested cell cycle at G2/M transition and the suppressed proliferation of glioma cells caused by USP39 knockdown in vitro. Furthermore, USP39 promotes the growth of glioma xenograft in subcutaneous and in situ of nude mice. Finally, in human tumor specimens, the expression levels of USP39 and Cyclin B1 are positively relevant.ConclusionOur data support the evidence that USP39 acts a novel deubiquitinating enzyme of Cyclin B1 and promoted tumor cell proliferation at least in part through Cyclin B1 stabilization, represents a promising therapeutic strategy for tumor patients.  相似文献   

4.
Cancer cells with stem cell properties have been acknowledged to be responsible for cancer initiation and progression. Wnt/β-catenin signalling is a major signal pathway promoting the stemness of cancer cells. Anterior gradient 3 (AGR3), a member of the protein disulfide isomerase (PDI) family, was found to be overexpressed in several cancers. However, the roles and mechanisms of AGR3 in colorectal cancer (CRC) have not been previously described. In our study, we find that AGR3 is highly expressed in CRC and associated with poor prognosis. Functional studies show that AGR3 promotes the stemness of CRC cells. Mechanically, AGR3 activates Wnt/β-catenin signalling and promotes the nuclear translocation of β-catenin to upregulate stemness related genes. Wnt/β-catenin signalling inhibition counteracts the promoting effect of AGR3 on cancer stemness. Moreover, the effect of AGR3 on Wnt/β-catenin signalling and cancer stemness depends on the presence of frizzled 4 (FZD4). Thus, our study first uncovers the stemness-promoting role and the oncogenic mechanism of AGR3 in CRC, which might provide a novel target for designing anti-CRC strategies.  相似文献   

5.
MicroRNA-567 (miR-567) plays a decisive role in cancers whereas its role in non-small cell lung cancer (NSCLC) is still unexplored. This study was therefore planned to explore the regulatory function of miR-567 in A549 NSCLC cells and investigate its possible molecular mechanism that may help in NSCLC treatment. In the current study, miR-567 expression was examined by quantitative real time-polymerase chain reaction (qRT-PCR) in different NSCLC cell lines in addition to normal cell line. A549 NSCLC cells were transfected by miR-567 mimic, miR-567 inhibitor, and negative control siRNA. Cell proliferation was evaluated by MTT and 5-bromo-2′deoxyuridine assays. Cell cycle distribution and apoptosis were studied by flow cytometry. Bioinformatics analysis programs were used to expect the putative target of miR-567. The expression of cyclin-dependent kinase 8 (CDK8) gene at mRNA and protein levels were evaluated by using qRT-PCR and western blotting. Our results found that miR-567 expressions decreased in all the studied NSCLC cells as compared to the normal cell line. A549 cell proliferation was suppressed by miR-567 upregulation while cell apoptosis was promoted. Also, miR-567 upregulation induced cell cycle arrest at sub-G1 and S phases. CDK8 was expected as a target gene of miR-567. MiR-567 upregulation decreased CDK8 mRNA and protein expression while the downregulation of miR-567 increased CDK8 gene expression. These findings revealed that miR-567 may be a tumor suppressor in A549 NSCLC cells through regulating CDK8 gene expression and may serve as a novel therapeutic target for NSCLC treatment.  相似文献   

6.
HDAC2, one of the class I histone deacetylase regulates epigenetic landscape through histone modification. Because HDAC2 is overexpressed in many cancers, cancer therapeutics against HDAC2 have been developed. Here we show novel mechanism of HDAC2 regulation by E3 ligase RCHY1. We found inverse correlation RCHY1 and HDAC2 levels in tumor tissue from six independent dataset using meta-analysis. Ectopic expression of RCHY1 decreased the level of HDAC2 from cancer cells including p53 wildtype, mutant and null cells. In addition, HDAC2 was increased by RCHY1 knockdown. RCHY1 directly interacts with HDAC2. Ectopic expression of wild type but not RING mutant RCHY1 increased HDAC2 levels. These data provide an evidence that RCHY1 negatively regulates HDAC2.  相似文献   

7.
Long noncoding RNAs (lncRNAs) play crucial roles in tumor development of osteosarcoma (OS). LncRNA PCAT6 was involved in the progression of multiple human cancers. However, the biological function of PCAT6 in OS remains largely unknown. We found that PCAT6 was elevated in OS tissues relative to that in their adjacent normal tissues. The upregulation of PCAT6 was positively associated with metastasis status and advanced stages and predicted poor overall and progression-free survivals in patients with OS. Functionally, silencing PCAT6 inhibited the proliferation, migration and invasion abilities of OS cells. Mechanistically, PCAT6, acting as a competitive endogenous RNA, upregulated expression of TGFBR1 and TGFBR2 to activate TGF-β pathway via sponging miR-185–5p. This study uncovers a novel underlying molecular mechanism of PCAT6-miR-185-5p-TGFBR1/2-TGF-β signaling axis in promoting tumor progression in OS, which indicates that PCAT6 may serve as a promising prognostic factor and therapeutic target again OS.  相似文献   

8.
Tyrosine kinase inhibitors (TKIs) induce autophagy in many types of cancer cells. We previously reported that gefitinib (GEF) and imatinib (IMA) induce autophagy in epidermal growth factor receptor (EGFR) knock-out A549 and non-BCR-ABL-expressing leukemia cell lines, respectively. This evidence suggests that TKI-induced autophagy is independent of the original target molecules. The present study compared the autophagy-inducing abilities of various TKIs, regardless of their targets, by quantitative autophagy flux assay. We established stable clones expressing the GFP-LC3-mCherry-LC3ΔG plasmid in A549, PC-9, and CAL 27 cell lines and assessed autophagy inducibility by monitoring the fluorescent ratios of GFP-LC3 to mCherry-LC3ΔG using an IncuCyte live cell imaging system during exposure to TKIs viz; GEF, osimertinib (OSI), lapatinib (LAP), lenvatinib (LEN), sorafenib (SOR), IMA, dasatinib (DAS), and tivantinib (TIV). Among these TKIs, DAS, GEF, and SOR exhibited prominent autophagy induction in A549 and PC-9 cells. In CAL 27 cells, IMA, SOR, and LEN, but not GEF, TIV, or OSI, exhibited autophagy induction. In the presence of azithromycin (AZM), which showed an inhibitory effect on autophagy flux, TKIs with prominent autophagy inducibility exhibited enhanced cytotoxicity via non-apoptotic cell death relative to effects of TKI alone. Therefore, autophagy inducibility of TKIs differed in the context of cancer cells. However, once induced, they appeared to have cytoprotective functions. Thus, blocking TKI-induced autophagy with AZM may improve the therapeutic effect of TKIs in cancer cells.  相似文献   

9.
BackgroundPemetrexed plus platinum doublet chemotherapy regimen remains to be the standard first-line treatment for lung adenocarcinoma patients. However, few biomarkers can be used to identify potential beneficiaries with maximal efficacy and minimal toxicity. This study aimed to explore potential biomarker models predictive of efficacy and toxicity after pemetrexed plus platinum chemotherapy based on metabolomics profiling.MethodsA total of 144 patients who received at least two cycles of pemetrexed plus platinum chemotherapy were enroled in the study. Serum samples were collected before initial treatment to perform metabolomics profiling analysis. Logistic regression analysis was performed to establish prediction models.Results157 metabolites were found to be differentially expressed between the response group and the nonresponse group. A panel of Phosphatidylserine 20:4/20:1, Sphingomyelin d18:1/18:0, and Phosphatidic Acid 18:1/20:0 could predict pemetrexed and platinum chemotherapy response with an Area Under the Receiver Operating Characteristic curve (AUROC) of 0.7968. 76 metabolites were associated with hematological toxicity of pemetrexed plus platinum chemotherapy. A panel incorporating triglyceride 14:0/22:3/22:5, 3-(3-Hydroxyphenyl) Propionate Acid, and Carnitine C18:0 was the best predictive ability of hematological toxicity with an AUROC of 0.7954. 54 differential expressed metabolites were found to be associated with hepatotoxicity of pemetrexed plus platinum chemotherapy. A model incorporating stearidonic acid, Thromboxane B3, l-Homocitrulline, and phosphoinositide 20:3/18:0 showed the best predictive ability of hepatotoxicity with an AUROC of 0.8186.ConclusionsThis study established effective and convenient models that can predict the efficacy and toxicity of pemetrexed plus platinum chemotherapy in lung adenocarcinoma patients before treatment delivery.  相似文献   

10.
Intrauterine growth restriction (IUGR) predisposes to chronic kidney disease via activation of proinflammatory pathways, and omega-3 PUFAs (n-3 PUFAs) have anti-inflammatory properties. In female rats, we investigated 1) how an elevated dietary n-3/n-6 PUFA ratio (1:1) during postnatal kidney development modifies kidney phospholipid (PL) and arachidonic acid (AA) metabolite content and 2) whether the diet counteracts adverse molecular protein signatures expected in IUGR kidneys. IUGR was induced by bilateral uterine vessel ligation or intrauterine stress through sham operation 3.5 days before term. Control (C) offspring were born after uncompromised pregnancy. On postnatal (P) days P2–P39, rats were fed control (n-3/n-6 PUFA ratio 1:20) or n-3 PUFA intervention diet (N3PUFA; ratio 1:1). Plasma parameters (P33), kidney cortex lipidomics and proteomics, as well as histology (P39) were studied. We found that the intervention diet tripled PL-DHA content (PC 40:6; P < 0.01) and lowered both PL-AA content (PC 38:4 and lyso-phosphatidylcholine 20:4; P < 0.05) and AA metabolites (HETEs, dihydroxyeicosatrienoic acids, and epoxyeicosatrienoic acids) to 25% in all offspring groups. After ligation, our network analysis of differentially expressed proteins identified an adverse molecular signature indicating inflammation and hypercoagulability. N3PUFA diet reversed 61 protein alterations (P < 0.05), thus mitigating adverse IUGR signatures. In conclusion, an elevated n-3/n-6 PUFA ratio in early diet strongly reduces proinflammatory PLs and mediators while increasing DHA-containing PLs regardless of prior intrauterine conditions. Counteracting a proinflammatory hypercoagulable protein signature in young adult IUGR individuals through early diet intervention may be a feasible strategy to prevent developmentally programmed kidney damage in later life.  相似文献   

11.
We report here that Glypican-6 (GPC6)-null mice display at birth small intestines that are 75% shorter than those of normal littermates. Notably, we demonstrate that the role of GPC6 in intestinal elongation is mediated by both Hedgehog (Hh) and non-canonical Wnt signaling. Based on results from in vitro experiments, we had previously proposed that GPC6 stimulates Hh signaling by interacting with Hh and Patched1 (Ptc1), and facilitating/stabilizing their interaction. Here we provide strong support to this hypothesis by showing that GPC6 binds to Ptc1 in the mesenchymal layer of embryonic intestines. This study also provides experimental evidence that strongly suggests that GPC6 inhibits the activity of Wnt5a on the intestinal epithelium by binding to this growth factor, and reducing its release from the surrounding mesenchymal cells. Finally, we show that whereas the mesenchymal layer of GPC6-null intestines displays reduced cell proliferation and a thinner smooth muscle layer, epithelial cell differentiation is not altered in the mutant gut.  相似文献   

12.
Brain metastases (BMs) of lung cancer are common malignant intracranial tumours associated with severe neurological symptoms and an abysmal prognosis. Prostate-specific membrane antigen (PSMA) has been reported to express significantly in a variety of solid tumours. However, the clinical applications of 68Ga-PSMA PET/CT and the mechanism of PSMA expression in patients with BMs of lung cancer have rarely been reported. Experiments with 68Ga-PSMA PET/CT and immunohistochemical staining were conducted to evaluate the expression of PSMA from seven patients with BMs of lung cancer who accepted surgical treatment in Fudan University Shanghai Cancer Center between October 2020 and October 2021. The mechanism of PSMA expression in BMs of lung cancer was explored by using single-cell RNA sequencing. The median maximum standardized uptake value (SUVmax) in BMs was higher than that in primary lung cancer (8.6 ± 2.8 vs. 3.6 ± 1.3, P < 0.01). The mean SUVmax in BMs was 1.76-fold higher than that in the liver, which indicated the potential of PSMA radioligand therapy (PSMA-RLT) for BMs. BMs showed intense PSMA staining, while normal lung tissue had no PSMA staining and there was only faint primary lung cancer staining by immunohistochemistry (IHC). Single-cell RNA sequencing (scRNA-seq) analysis found that PSMA was mainly expressed in oligodendrocytes of BMs, whereas it was expressed at lower levels in solid cells of lung cancer. PSMA expression in oligodendrocytes might be regulated by the factors ATF3 and NR4A1, which were associated with ER stress.  相似文献   

13.
14.
Calreticulin (CRT), a chaperone typically located in the endoplasmic reticulum (ER), is known to translocate to the cell surface in response to anticancer drugs. Cell surface CRT (ecto-CRT) on apoptotic or pre-apoptotic cells serves as an “eat me” signal that can promote phagocytosis. In this study, we observed the biphasic (early transient and late sustained) increase of ecto-CRT on HT-29 cells after treatment with oxaliplatin (L-OHP). To investigate the role of ecto-CRT that accumulates in the early and late phases as “eat me” signals, we examined the phagocytosis of HT-29 cells by macrophage-like cells and dendritic cell (DC) -like cells prepared from THP-1 cells. The results indicated that the early ecto-CRT-expressed cells were phagocytosed by immature DC-like cells, and the late ecto-CRT-expressed cells were phagocytosed primarily by macrophage-like cells, while mature DC-like cells did not respond to the either class of ecto-CRT-expressed cells. Both types of phagocytotic events were inhibited by CRT Blocking Peptide, suggesting that such events depended on the ecto-CRT. Our results suggested that the early increase of ecto-CRT is related to phagocytosis as part of immunogenic cell death (ICD), while the late increase of ecto-CRT is related to the removal of apoptotic cells by macrophages.  相似文献   

15.
The F-box protein is the substrate recognition subunit of SCF (SKP1/CUL1/F-box) E3 ubiquitin ligase complex, a multicomponent RING-type E3 ligase involved in the regulation of numerous cellular processes by targeting critical regulatory proteins for ubiquitination. However, whether and how F-box proteins are regulated is largely unknown. Here we report that FBXO28, a poorly characterized F-box protein, is a novel substrate of SCF E3 ligase. Pharmaceutical or genetic inhibition of neddylation pathway that is required for the activation of SCF stabilizes FBXO28 and prolongs its half-life. Meanwhile, FBXO28 is subjected to ubiquitination and cullin1-based SCF complex promotes FBXO28 degradation. Moreover, deletion of F-box domain stabilizes FBXO28 and knockdown of endogenous FBXO28 strongly upregulates exogenous FBXO28 expression. Taken together, these data reveal that SCFFBXO28 is the E3 ligase responsible for the self-ubiquitination and proteasomal degradation of FBXO28, providing a new clue for the upstream signaling regulation for F-box proteins.  相似文献   

16.
The inflammatory hypothesis is one of the most important mechanisms of depression. Fucoidan is a bioactive sulfated polysaccharide abundant in brown seaweeds with anti-inflammatory activity. However, the antidepressant effects of fucoidan on chronic stress-induced depressive-like behaviors have not been well elucidated. Here, we used two different depressive-like mouse models, lipopolysaccharide (LPS) and chronic restraint stress (CRS) models, to explore the detailed molecular mechanism underlying its antidepressant-like effects in C57BL/6J mice by combining multiple behavioral, molecular and immunofluorescence experiments. Adenovirus-mediated overexpression of caspase-1 and pharmacological inhibitors were also used to clarify the antidepressant mechanisms of fucoidan. We found that acute administration of fucoidan did not produce antidepressant effects in the tail suspension test (TST) and forced swim test (FST). Interestingly, chronic fucoidan administration not only dose-dependently reduced stress-induced depressive-like behaviors in the TST, FST, sucrose preference test (SPT), and novelty-suppressed feeding test (NSFT), but also alleviated the downregulation of brain-derived neurotrophic factor (BDNF)-dependent synaptic plasticity via inhibiting caspase-1-mediated inflammation in the hippocampus of mice. Moreover, fucoidan significantly ameliorated behavioral and synaptic plasticity abnormalities in the overexpression of caspase-1 in the hippocampus of mice. Furthermore, blocking BDNF abolished the antidepressant-like effects of fucoidan in mice. Therefore, our findings clearly indicate that fucoidan provides a potential supplementary noninvasive treatment for depression by inhibition of hippocampal inflammation.  相似文献   

17.
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.  相似文献   

18.
19.
Sterubin, a flavanone is an active chemical compound that possesses neuroprotective activity. The current investigation was intended to assess the sterubin effect in scopolamine-activated Alzheimer's disease. The rats were induced with scopolamine (1.5 mg/kg) followed by treatment with sterubin (10 mg/kg) for 14 days. Behavioural analysis was predictable by the Y-maze test and Morris water test. Biochemical variables like nitric oxide acetylcholinesterase, Choline acetyltransferase, antioxidant markers like superoxide dismutase, glutathione transferase, malondialdehyde, catalase, and myeloperoxidase activity, neuroinflammatory markers such as tumor necrosis factor-alpha, nuclear factor kappa B, interferon-gamma, interleukin (IL-1β), and IL-6 were measured. The result stated that sterubin reversed the oxidative stress parameters, increased motor performance, and lowered the inflammatory markers in scopolamine-induced rats. The study demonstrated that sterubin possesses neuroprotective, anti-inflammatory, and antioxidant properties which can be used as a beneficial medication in AD.  相似文献   

20.
Pulmonary fibrosis (PF) is a disease that is characterized by abnormal epithelial-mesenchymal transition (EMT) and persistent inflammatory injury, with high mortality and poor prognosis, but the current therapies are accompanied by certain adverse side effects. In this study, we investigated the role of galangin (GA), an anti-inflammatory and anti-tumoral phytochemical extracted from galangal, in preventing and curing bleomycin (BLM)-induced pulmonary fibrosis and the underlying mechanism. Histopathological staining confirmed that GA dramatically moderated bleomycin-induced pulmonary fibrosis in mice. Compared with the vehicle treatment, GA treatment inhibited the expression of vimentin and increased the expression of E-cadherin. The expression of α-Smooth muscle actin (α-SMA), which is a myofibroblast marker, was also suppressed. In addition, GA diminished the increase in the numbers of CD4+CD69+ and CD8+CD69+ T cells and dendritic cells induced by bleomycin, and reduced the residence of inflammatory cells in the lung tissues. Notably, GA inhibited the TGF-β1-induced EMT and fibroblast differentiation in vitro, which further confirmed the potential protective effect of GA on pulmonary fibrosis. Taken together, our results suggest that GA exerts a beneficial effect on bleomycin-induced pulmonary fibrosis by attenuating EMT and inflammatory damage and may have prevent potential of pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号