首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The death receptor Fas/CD95 initiates apoptosis by engaging diverse cellular organelles including endosomes. The link between Fas signaling and membrane traffic has remained unclear, in part because it may differ in diverse cell types. After a systematic investigation of all known pathways of endocytosis, we have clarified that Fas activation opens clathrin-independent portals in mature T cells. These portals drive rapid internalization of surface proteins such as CD59 and depend upon actin-regulating Rho GTPases, especially CDC42. Fas-enhanced membrane traffic invariably produces an accumulation of endocytic membranes around the Golgi apparatus, in which recycling endosomes concentrate. This peri-Golgi polarization has been documented by colocalization analysis of various membrane markers and applies also to active caspases associated with internalized receptor complexes. Hence, T lymphocytes show a diversion in the traffic of endocytic membranes after Fas stimulation that seems to resemble the polarization of membrane traffic after their activation.  相似文献   

2.
Phenylketonuria (PKU), an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH) gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe). A recent study showed that the mitochondria-mediated (intrinsic) apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic) apoptotic pathway and endoplasmic reticulum (ER) stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h), suggesting involvement of the Fas receptor (FasR)-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.  相似文献   

3.
The Fas receptor is a representative death receptor, and the Fas-associated protein with death domain (FADD) is a crucial adapter protein needed to support the Fas receptor’s activity. The Fas–FADD interactions constitute an important signaling pathway that ultimately induces apoptosis or programmed cell death in biological systems. The interactions responsible for this cell-death process are governed by the binding process of the Fas ligand to the Fas, followed by the caspase cascade activation. Using a computational approach, the present communication explores certain essential structural aspects of the Fas–FADD death domains and their interfacial interactions.  相似文献   

4.
The extrinsic apoptotic pathway is initiated by cell surface death receptors such as Fas. Engagement of Fas by Fas ligand triggers a conformational change that allows Fas to interact with adaptor protein Fas-associated death domain (FADD) via the death domain, which recruits downstream signaling proteins to form the death-inducing signaling complex (DISC). Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells, suggesting a novel role of CaM in Fas-mediated signaling. CaM antagonists induce apoptosis through a Fas-related mechanism in cholangiocarcinoma and other cancer cell lines possibly by inhibiting Fas-CaM interactions. The structural determinants of Fas-CaM interaction and the underlying molecular mechanisms of inhibition, however, are unknown. Here we employed NMR and biophysical techniques to elucidate these mechanisms. Our data show that CaM binds to the death domain of Fas (FasDD) with an apparent dissociation constant (Kd) of ∼2 μm and 2:1 CaM:FasDD stoichiometry. The interactions between FasDD and CaM are endothermic and entropically driven, suggesting that hydrophobic contacts are critical for binding. We also show that both the N- and C-terminal lobes of CaM are important for binding. NMR and surface plasmon resonance data show that three CaM antagonists (N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide, tamoxifen, and trifluoperazine) greatly inhibit Fas-CaM interactions by blocking the Fas-binding site on CaM. Our findings provide the first structural evidence for Fas-CaM interactions and mechanism of inhibition and provide new insight into the molecular basis for a novel role of CaM in regulating Fas-mediated apoptosis.  相似文献   

5.
核受体辅活化子PNRC与孤儿核受体SF1相互作用位点的鉴定   总被引:3,自引:0,他引:3  
为了阐明核受体辅活化子 (proline richnuclearreceptorcoactivatorprotein ,PNRC)在孤儿核受体类固醇生成因子 1(steroidogenicfactor1,SF1)基因表达调控中的作用 ,采用酵母双杂合分析、缺失突变技术和瞬时转染等研究方法鉴定了PNRC与SF1的相互作用位点 .结果显示 ,PNRC中氨基酸 2 78~ 30 0区域是与SF1相互作用的位点 .该区域富含脯氨酸 ,其中有 1个SH3结合模体 (motif) ,单独的SH3模体不足以与SF1产生有效的相互作用 .瞬时转染分析表明 ,PNRC 2 70 32 7对野生型PNRC的辅激活功能具有负显性抑制效应 .研究结果表明 ,含SH3结合模体的PNRC 2 78 30 0区域是与SF1相互作用的位点  相似文献   

6.
LDL, VLDL and other members of the low-density lipoparticles (LLPs) enter cells through a large family of receptors. The actual receptor ligand(s) in apolipoprotein B100, one of the main proteins of LLP, remain(s) unknown. The objective of this study was to identify true receptor ligand(s) in apo B100, a molecule of 4563 residues. Apo B100 contains 33 analogues of Cardin–Weintraub arginine/lysine-based receptor ligand motifs and shares key lysine motifs and sequence similarity with the LDL receptor-associated protein, MESD, and heat shock proteins. Eleven FITC-labeled synthetic peptides of 21–42 residues, with at least one ligand, were tested for binding and internalization using HeLa cells. All peptides bind but display different binding capacities and patterns. Peptides B0013, B0582, B2366, and B2932 mediate endocytosis and appear in distinct sites in the cytoplasm. B0708 and B3181 bind and remain on the cell surface as aggregates/clusters. Peptides B3119 (Site A) and B3347 (Site B), the putative ligands, showed low binding and no cell entry capacity. Apo B100 regions in this study share similarities with related proteins of known function including chaperone proteins and Apo BEC stimulating protein, and not directly related proteins, e.g., the DNA-binding domain of interferon regulatory factors, MSX2-interacting protein, and snake venom Zinc metalloproteinase-disintegrin-like proteins.  相似文献   

7.
Anthony Letai 《Cell》2021,184(12):3081-3083
  相似文献   

8.
通过CaM-Sepharose4B亲和层析方法从云南松花粉中提取出10种CaM结合蛋白。它们均能抑制CaM对PDE的激活,但这种抑制可被随后加入的过量的CaM所消除。酶活测定表明CaM结合蛋白中有Ca2+-依赖的ATPase活力,但无植酸酶、过氧化物酶、酸性磷酸酶和磷脂酶D活性。  相似文献   

9.
Tumor necrosis factor-related apoptosis-inducing ligand or Apo2 ligand is a member of the tumor necrosis factor superfamily of cytokines that induces apoptosis upon binding to its death domain-containing transmembrane receptors, death receptors 4 and 5 (DR4, DR5). However, DR5 is also expressed in the developing CNS where it appears to play a role unrelated to apoptosis, and instead may be involved in the regulation of neurogenesis. We report on the distribution of DR5 expression in mouse hippocampus, cerebellum, and rostral migratory stream (RMS) of olfactory bulb from embryonic (E) day 16 (E16) to postnatal (P) day (P180). At E16, DR5-positive cells were distributed widely in embryonic hippocampus with strong immunostaining in the developing dentate gyrus. In newborn hippocampus, DR5-positive cells were predominantly located in proliferative zones, such as dentate gyrus, subventricular zone, and RMS. After postnatal day 7 (P7), the number of DR5-positive cells decreased, and cells with intense fluorescence were primarily restricted to the subgranular layer (SGL), although the granular cell layer showed weak fluorescence. After P30, only few DR5-positive cells were found in SGL, and mature granule cells were negative for DR5 expression. To address whether DR5 expression is a restricted to progenitor cells and newborn neurons, we performed 5-bromo-deoxyuridine labeling. We report that proliferative cells in the SGL selectively express DR5, with lower levels of expression in cells positive for doublecortin, a marker of newborn neurons. In addition, the stem cells in intestine, cerebellum, and RMS were also demonstrated to be DR5-positive. In the meantime, in cerebellum, DR5-positive cells were also positive for glial fibrillary acidic protein, a marker of proliferative Bergmann cells. We conclude that DR5 is selectively expressed by neuroprogenitor cells and newborn neurons, suggesting that the DR5 death receptor is likely to play a key role in neuroproliferation and differentiation.  相似文献   

10.
11.
用PCR方法从人胎盘cDNA 中获得编码胰岛素受体α亚基中结合胰岛素的相对独立的结构域L1、L2以及人工设计的L1-(Ala)10-L2的基因,克隆入含T7噬菌体RNA聚合酶启动子的表达质粒pET-3a中,转化大肠杆菌BL21(DE3),用IPTG诱导表达成功。DNA测序、氨基酸组成分析以及蛋白质N端测序证明所表达的蛋白质正确。经过包涵体的分离、洗涤、溶解和纯化,得到了纯的变性状态受体的胰岛素高亲  相似文献   

12.
Toll-like receptors (TLRs) act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.  相似文献   

13.
14.
The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DED)s, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156) in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence.  相似文献   

15.
The distribution of nicotinic acetylcholine receptor (AChR) clusters at the cell membrane was studied in CHO-K1/A5 cells using fluorescence microscopy. Di-4-ANEPPDHQ, a fluorescent probe that differentiates between liquid-ordered (Lo) and liquid-disordered (Ld) phases in model membranes, was used in combination with monoclonal anti-AChR antibody labeling of live cells, which induces AChR clustering. The so-called generalized polarization (GP) of di-4-ANEPPDHQ was measured in regions of the cell-surface membrane associated with or devoid of antibody-induced AChR clusters, respectively. AChR clusters were almost equally distributed between Lo and Ld domains, independently of receptor surface levels and agonist (carbamoylcholine and nicotine) or antagonist (α-bungarotoxin) binding. Cholesterol depletion diminished the cell membrane mean di-4-ANEPPDHQ GP and the number of AChR clusters associated with Ld membrane domains increased concomitantly. Depolymerization of the filamentous actin cytoskeleton by Latrunculin A had the opposite effect, with more AChR clusters associated with Lo domains. AChR internalized via small vesicles having lower GP and lower cholesterol content than the surface membrane. Upon cholesterol depletion, only 12% of the AChR-containing vesicles costained with the fluorescent cholesterol analog fPEG-cholesterol, i.e., AChR endocytosis was essentially dissociated from that of cholesterol. In conclusion, the distribution of AChR submicron-sized clusters at the cell membrane appears to be regulated by cholesterol content and cytoskeleton integrity.  相似文献   

16.
The distribution of nicotinic acetylcholine receptor (AChR) clusters at the cell membrane was studied in CHO-K1/A5 cells using fluorescence microscopy. Di-4-ANEPPDHQ, a fluorescent probe that differentiates between liquid-ordered (Lo) and liquid-disordered (Ld) phases in model membranes, was used in combination with monoclonal anti-AChR antibody labeling of live cells, which induces AChR clustering. The so-called generalized polarization (GP) of di-4-ANEPPDHQ was measured in regions of the cell-surface membrane associated with or devoid of antibody-induced AChR clusters, respectively. AChR clusters were almost equally distributed between Lo and Ld domains, independently of receptor surface levels and agonist (carbamoylcholine and nicotine) or antagonist (α-bungarotoxin) binding. Cholesterol depletion diminished the cell membrane mean di-4-ANEPPDHQ GP and the number of AChR clusters associated with Ld membrane domains increased concomitantly. Depolymerization of the filamentous actin cytoskeleton by Latrunculin A had the opposite effect, with more AChR clusters associated with Lo domains. AChR internalized via small vesicles having lower GP and lower cholesterol content than the surface membrane. Upon cholesterol depletion, only 12% of the AChR-containing vesicles costained with the fluorescent cholesterol analog fPEG-cholesterol, i.e., AChR endocytosis was essentially dissociated from that of cholesterol. In conclusion, the distribution of AChR submicron-sized clusters at the cell membrane appears to be regulated by cholesterol content and cytoskeleton integrity.  相似文献   

17.
18.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL; also known as Apo2L) is an apoptotic cytokine that is being developed as a novel anticancer agent. TRAIL mediates its effect via death receptors 4 (DR4) and DR5 and appears to selectively induce apoptosis in cancer cells. The molecular basis of why normal cells seem to better tolerate this novel cytokine remains unknown. Recently, it has been reported that Myc oncoprotein by upregulating DR5 appears to augment cellular susceptibility to TRAIL and to DR5 agonistic antibodies. Several previous studies have already established that various clinically relevant agents by upregulating DR5 sensitize cells to TRAIL. However, the finding that DR5 is upregulated by an oncoprotein that is overexpressed in several tumor types is noteworthy and may spark future investigations aiming to explore the Myc and DR5 expression status of primary tumors and their ultimate vulnerability to DR5-targeted therapeutics.  相似文献   

19.
人血管内皮生长因子受体配体结合域   总被引:1,自引:0,他引:1  
  相似文献   

20.
The major postsynaptic density protein (mPSDp), comprising greater than 50% of postsynaptic density (PSD) protein, is an endogenous substrate for calmodulin-dependent phosphorylation as well as a calmodulin-binding protein in PSD preparations. The results in this investigation indicate that mPSDp is highly homologous with the major calmodulin-binding subunit (p) of tubulin-associated calmodulin-dependent kinase (TACK), and that PSD fractions also contain a protein homologous with the sigma-subunit of TACK. Homologies between mPSDp and a 63,000 dalton PSD protein and the rho- and sigma-subunits of TACK were established by the following criteria: (1) identical apparent molecular weights; (2) identical calmodulin-binding properties; (3) manifestation of Ca2+-calmodulin-stimulated autophosphorylation; (4) identical isoelectric points; (5) identical calmodulin binding and autophosphorylation patterns on two-dimensional gels; (6) homologous two-dimensional tryptic peptide maps; and (7) similar phosphoamino acid-specific phosphorylation of tubulin. The results suggest that mPSDp is a calmodulin-binding protein involved in modulating protein kinase activity in the postsynaptic density and that a tubulin kinase system homologous with TACK exists in a membrane-bound form in the PSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号