首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
糖尿病视网膜疾病是导致成年人失明的主要因素,是糖尿病的一种令人恐惧的并发症,高血糖被认为是促进其发展的主要原因。高血糖不断地破坏视网膜的微血管系统最终导致视网膜的许多代谢,结构和功能的紊乱。视网膜微血管内皮细胞在微脉管系统中形成树枝状供应视网膜神经,这些内皮细胞的解剖和生理符合重要视觉保护的营养需求[1]。一方面,内皮组织务必确保氧的供应和代谢活跃的视网膜营养供应;另一方面,内皮细胞有助于血-视网膜屏障将循环产生的毒素分子,白细胞促炎性物质排出体外来保护视网膜,这种特性也可能会引起疾病,比如:视网膜血管的渗漏和新生血管,炎性物质转移,因此,视网膜内皮细胞在视网膜缺血性病变,血管炎中起到重要作用,包括糖尿病视网膜病变和视网膜炎症或感染尤其是后葡萄膜炎。使用基因表达和蛋白质组学分析等研究方法,有助于了解这些疾病的发病机制。为了进一步开展对糖尿病视网膜疾病的研究,有必要就目前有关糖尿病视网膜病变患者微血管内皮细胞的研究进展予以综述,旨在为糖尿病视网膜病变的深入研究提供参考依据。  相似文献   

2.
Diabetic retinopathy is a chronic low-grade inflammatory disease; however, the mechanisms remain elusive. In the present study, we demonstrated that endoplasmic reticulum (ER) stress was activated in the retina in animal models of diabetes and oxygen-induced retinopathy (OIR). Induction of ER stress by tunicamycin resulted in significantly increased expression of inflammatory molecules in the retina. Inhibition of ER stress by chemical chaperone 4-phenyl butyric acid ameliorated inflammation in cultured human retinal endothelial cells exposed to hypoxia, and in the retinas of diabetic and OIR mice. These findings indicate that ER stress is a potential mediator of retinal inflammation in diabetic retinopathy.  相似文献   

3.

Purpose

Pharmacologic inhibition of aldose reductase (AR) previously has been studied with respect to diabetic retinopathy with mixed results. Since drugs can have off-target effects, we studied the effects of AR deletion on the development and molecular abnormalities that contribute to diabetic retinopathy. Since recent data suggests an important role for leukocytes in the development of the retinopathy, we determined also if AR in leukocytes contributes to leukocyte-mediated death of retinal endothelial cells in diabetes.

Methods

Wild-type (WT; C57BL/6J) and AR deficient (AR−/−) mice were made diabetic with streptozotocin. Mice were sacrificed at 2 and 10 months of diabetes to evaluate retinal vascular histopathology, to quantify retinal superoxide production and biochemical and physiological abnormalities in the retina, and to assess the number of retinal endothelial cells killed by blood leukocytes in a co-culture system.

Results

Diabetes in WT mice developed the expected degeneration of retinal capillaries, and increased generation of superoxide by the retina. Leukocytes from diabetic WT mice also killed more retinal endothelial cells than did leukocytes from nondiabetic animals (p<0.0001). Deletion of AR largely (P<0.05) inhibited the diabetes-induced degeneration of retinal capillaries, as well as the increase in superoxide production by retina. AR-deficiency significantly inhibited the diabetes-induced increase in expression of inducible nitric oxide synthase (iNOS) in retina, but had no significant effect on expression of intercellular adhesion molecule-1 (ICAM-1), phosphorylated p38 MAPK, or killing of retinal endothelial cells by leukocytes.

Conclusions

AR contributes to the degeneration of retinal capillaries in diabetic mice. Deletion of the enzyme inhibits the diabetes-induced increase in expression of iNOS and of superoxide production, but does not correct a variety of other pro-inflammatory abnormalities associated with the development of diabetic retinopathy.  相似文献   

4.
5.
Diabetic retinopathy is one of the main microvascular complications of diabetes and remains one of the leading causes of blindness worldwide. Recent studies have revealed an important role of inflammatory and proangiogenic high mobility group 1 (HMGB-1) cytokine in diabetic retinopathy. To elucidate cellular mechanisms of HMGB-1 activity in the retina, we performed this study. The histological features of diabetic retinopathy include loss of blood-vessel pericytes and endothelial cells, as well as abnormal new blood vessel growth. To establish the role of HMGB-1 in vulnerability of endothelial cells and pericytes, cultures of these cells, or co-cultures with glial cells, were treated with HMGB-1 and assessed for survival after 24 hours. The expression levels of the cytokines, chemokines, and cell adhesion molecules in glial and endothelial cells were tested by quantitative RT-PCR to evaluate changes in these cells after HMGB-1 treatment. Animal models of neovascularization were also used to study the role of HMGB-1 in the retina. We report that pericyte death is mediated by HMGB-1-induced cytotoxic activity of glial cells, while HMGB-1 can directly mediate death of endothelial cells. We also found that HMGB-1 affects endothelial cell activity. However, we did not observe a difference in the levels of neovascularization between HMGB-1-treated eyes compared to the control eyes, nor in the levels of proangiogenic cytokine VEGF-A expression between glial cells treated with HMGB-1 and control cells. Our data also indicate that HMGB-1 is not involved in retinal neovascularization in the oxygen-induced retinopathy model. Thus, our data suggest that retinal pericyte and endothelial injury and death in diabetic retinopathy may be due to HMGB-1-induced cytotoxic activity of glial cells as well as the direct effect of HMGB-1 on endothelial cells. At the same time, our findings indicate that HMGB-1 plays an insignificant role in retinal and choroidal neovascularization.  相似文献   

6.
7.
Diabetic retinopathy represents the most common causes of vision loss in patients affected by diabetes mellitus. The cause of vision loss in diabetic retinopathy is complex and remains incompletely understood. One of the earliest changes in the development of retinopathy is the accelerated apoptosis of retinal microvascular cells and the formation of acellular capillaries by unknown mechanism. Results of a recent research suggest an important role of matrix metalloproteinases (MMPs) in the development of diabetic retinopathy. MMPs are a large family of proteinases that remodel extracellular matrix components, and under pathological condition, its induction is considered as a negative regulator of cell survival; and in diabetes, latent MMPs are activated in the retina and its capillary cells, and activation of MMP-2 and -9 induces apoptosis of retinal capillary cells. This review will focus on the MMP-2 and MMP-9 in the diabetic retina with special reference to oxidative stress, mitochondria dysfunction, inflammation and angiogenesis, as well as summarizing the current information linking these proteins to pathogenesis of diabetic retinopathy.  相似文献   

8.
Angiotensin and diabetic retinopathy   总被引:2,自引:0,他引:2  
Diabetic retinopathy develops in patients with both type 1 and type 2 diabetes and is the major cause of vision loss and blindness in the working population. In diabetes, damage to the retina occurs in the vasculature, neurons and glia resulting in pathological angiogenesis, vascular leakage and a loss in retinal function. The renin-angiotensin system is a causative factor in diabetic microvascular complications inducing a variety of tissue responses including vasoconstriction, inflammation, oxidative stress, cell hypertrophy and proliferation, angiogenesis and fibrosis. All components of the renin-angiotensin system including the angiotensin type 1 and angiotensin type 2 receptors have been identified in the retina of humans and rodents. There is evidence from both clinical and experimental models of diabetic retinopathy and hypoxic-induced retinal angiogenesis that the renin-angiotensin system is up-regulated. In these situations, retinal dysfunction has been linked to angiotensin-mediated induction of growth factors including vascular endothelial growth factor, platelet-derived growth factor and connective tissue growth factor. Evidence to date indicates that blockade of the renin-angiotensin system can confer retinoprotection in experimental models of diabetic retinopathy and ischemic retinopathy. This review examines the role of the renin-angiotensin system in diabetic retinopathy and the potential of its blockade as a treatment strategy for this vision-threatening disease.  相似文献   

9.
10.
Diabetic retinopathy is a disease of the retinal microvasculature that develops as a complication of diabetes mellitus and constitutes a major cause of blindness in adults of all ages. Diabetic retinopathy is characterized by the loss of capillary cells leading to increased vasopermeability, ischemia, and hypoxia that trigger the excessive formation of new blood vessels in the retina. The influence of the pituitary gland in the pathophysiology of diabetic retinopathy was recognized nearly six decades ago, but the contribution of pituitary hormones to this disease remains unclear. Recent studies have shown that the pituitary hormone prolactin is proteolytically cleaved to vasoinhibins, a family of peptides with potent antivasopermeability, vasoconstrictive, and antiangiogenic actions that can protect the eye against the deleterious effects of the diabetic state. In this review, we summarize what is known about the changes in the circulating levels of prolactin and vasoinhibins during diabetes and diabetic retinopathy as well as the implications of these changes for the development and progression of the disease with particular attention to hyperprolactinemia in pregnancy and postpartum. We discuss the effects of prolactin and vasoinhibins that may impact diabetic retinopathy and suggest these hormones as important targets for therapeutic interventions.  相似文献   

11.
Retinal glutamate in diabetes and effect of antioxidants   总被引:7,自引:0,他引:7  
Diabetes results in various biochemical abnormalities in the retina, but which of these abnormalities are critical in the development of retinopathy is not known. The aim of this study is to examine the effect of antioxidant supplementation on diabetes-induced alterations of retinal glutamate, and to explore the inter-relationship between alterations of retinal glutamate, oxidative stress, and nitric oxide (NO) in diabetes. Glutamate was measured in the retina at 2 months of diabetes in rats receiving diets supplemented with or without a mixture of antioxidants containing ascorbic acid, Trolox, DL alpha-tocopherol acetate, N-acetyl cysteine, beta-carotene and selenium. The relationship between glutamate, oxidative stress and NO was evaluated using both bovine retinal endothelial cells and normal rat retina. In diabetes, retinal glutamate was elevated by 40, thiobarbituric acid-reactive substances (TBARS) by 100, and NO by 70%, respectively. Administration of antioxidants inhibited the diabetes-induced increases in glutamate, TBARS and NO. Incubation of bovine retinal endothelial cells or normal rat retina with glutamate significantly increased TBARS and NO, and addition of either antioxidant (N-acetyl cysteine) or a NO synthase inhibitor prevented the glutamate-induced elevation in oxidative stress and NO. Incubation of retina with a glutamate agonist, likewise elevated oxidative stress and NO, and memantine inhibited such elevations. Thus, the alterations of retinal glutamate, oxidative stress and NO appear to be inter-related in diabetes, and antioxidant therapy may be a suitable approach to determine the roles of these abnormalities in the development of diabetic retinopathy.  相似文献   

12.
13.
Diabetes mellitus is a metabolic disease that leads to several complications which include retinopathy. Multiple biochemical abnormalities have been proposed to explain the development of retinopathy, including oxidative stress. Although the existence of oxidative stress has been established in the retina from long standing diabetic animals, pathogenesis and progression of retinopathy remain unclear. In order to gain insight into the pathogenesis of diabetic retinopathy, we analyzed the levels of different oxidative stress biomarkers in the retina at early stages during the progress of streptozotocin-induced diabetes. No significant changes in glutathione content, expression of NADPH-oxidase, levels of lipid peroxidation, nor production of free radicals were observed in the retina up to 45 days of diabetes induction. Likewise, a transient decrease in aconitase activity, parallel to an increase in the superoxide dismutase activity was observed at 20 days of hyperglycemia, suggesting a high capacity of retina to maintain its redox homeostasis, at least at early stages of diabetes. Nonetheless, we found an early and time-dependent increase in the levels of oxidized proteins, which was not affected by the administration of the antioxidant quercetin. Also, positive immunoreactivity to the reticulum stress protein CHOP was found in glial Müller cells of diabetic rat retinas. These findings suggest the occurrence of endoplasmic reticulum stress as a primary event in retina pathogenesis in diabetes.  相似文献   

14.
Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Available treatments are not completely effective. We analyzed the effect of environmental enrichment on retinal damage induced by experimental diabetes in adult Wistar rats. Diabetes was induced by an intraperitoneal injection of streptozotocin. Three days after vehicle or streptozotocin injection, animals were housed in enriched environment or remained in a standard environment. Retinal function (electroretinogram, and oscillatory potentials), retinal morphology, blood-retinal barrier integrity, synaptophysin, astrocyte and Müller cell glial fibrillary acidic protein, vascular endothelial growth factor, tumor necrosis factor-α, and brain-derived neurotrophic factor levels, as well as lipid peroxidation were assessed in retina from diabetic animals housed in standard or enriched environment. Environmental enrichment preserved scotopic electroretinogram a-wave, b-wave and oscillatory potential amplitude, avoided albumin-Evan''s blue leakage, prevented the decrease in retinal synaptophysin and astrocyte glial fibrillary acidic protein levels, the increase in Müller cell glial fibrillary acidic protein, vascular endothelial growth factor and tumor necrosis factor-α levels, as well as oxidative stress induced by diabetes. In addition, enriched environment prevented the decrease in retinal brain-derived neurotrophic factor levels induced by experimental diabetes. When environmental enrichment started 7 weeks after diabetes onset, retinal function was significantly preserved. These results indicate that enriched environment could attenuate the early diabetic damage in the retina from adult rats.  相似文献   

15.
16.
17.
Apoptosis of retinal endothelial cells and pericytes is postulated to contribute to the development of retinopathy in diabetes. The goal of this study is to investigate diabetes-induced activation of retinal caspase-3, an apoptosis executer enzyme, in retina, and examine the effects of antioxidants on the activation. Caspase-3 activation was determined in the retina of alloxan diabetic rats (2-14 months duration) and in the isolated retinal capillary cells (endothelial cells and pericytes) by measuring cleavage of caspase-3 specific fluorescent substrate, and cleavage of caspase-3 holoenzyme and poly (ADP ribosyl) polymerase. Effect of antioxidants on the activation of caspase-3 was determined by feeding a group of diabetic rats diet supplemented with a comprehensive mixture of antioxidants, including Trolox, alpha-tocopherol, N-acetyl cysteine, ascorbic acid, beta-carotene and selenium for 2-14 months, and also under in vitro conditions by incubating isolated retinal capillary cells with antioxidants with wide range of actions. Caspase-3 was activated in the rat retina at 14 months of diabetes (P < 0.05 vs. normal), but not at 2 months of diabetes, and administration of antioxidants for the entire duration inhibited this activation. In the isolated retinal capillary cells incubated in 25 mM glucose medium, caspase-3 activity was increased by 50% compared to the cells incubated in 5 mM glucose (P < 0.02), and antioxidants or caspase-3 inhibitor inhibited this increase. Our results suggest that increased oxidative stress in diabetes is involved in the activation of retinal caspase-3 and apoptosis of endothelial cells and pericytes. Antioxidants might be inhibiting the development of diabetic retinopathy by inhibiting microvascular apoptosis.  相似文献   

18.
Altered insulin signaling in retinal tissue in diabetic states   总被引:3,自引:0,他引:3  
Both type 1 and type 2 diabetes can lead to altered retinal microvascular function and diabetic retinopathy. Insulin signaling may also play a role in this process, and mice lacking insulin receptors in endothelial cells are protected from retinal neovascularization. To define the role of diabetes in retinal function, we compared insulin signaling in the retinal vasculature of mouse models of type 1 (streptozotocin) and type 2 diabetes (ob/ob). In streptozotocin mice, in both retina and liver, insulin receptor (IR) and insulin receptor substrate (IRS)-2 protein and tyrosine phosphorylation were increased by insulin, while IRS-1 protein and its phosphorylation were maintained. By contrast, in ob/ob mice, there was marked down-regulation of IR, IRS-1, and IRS-2 protein and phosphorylation in liver; these were maintained or increased in retina. In both mice, Phosphatidylinositol 3,4,5-trisphosphate generation by acute insulin stimulation was enhanced in retinal endothelial cells. On the other hand, protein levels and phosphorylation of PDK1 and Akt were decreased in retina of both mice. Interestingly, phosphorylation of p38 mitogen-activated protein kinase and ERK1 were responsive to insulin in retina of both mice but were unresponsive in liver. HIF-1alpha and vascular endothelial growth factor were increased and endothelial nitric-oxide synthase was decreased in retina. These observations indicate that, in both insulin-resistant and insulin-deficient diabetic states, there are alterations in insulin signaling, such as impaired PDK/Akt responses and enhanced mitogen-activated protein kinases responses that could contribute to the retinopathy. Furthermore, insulin signaling in retinal endothelial cells is differentially altered in diabetes and is also differentially regulated from insulin signaling in classical target tissues such as liver.  相似文献   

19.
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Early stage DR involves inflammation, vascular leakage, apoptosis of vascular cells and neurodegeneration. In this study, we hypothesized that cells derived from the stromal fraction of adipose tissue (ASC) could therapeutically rescue early stage DR features. Streptozotocin (STZ) induced diabetic athymic nude rats received single intravitreal injection of human ASC into one eye and saline into the other eye. Two months post onset of diabetes, administration of ASC significantly improved “b” wave amplitude (as measured by electroretinogram) within 1–3 weeks of injection compared to saline treated diabetic eyes. Subsequently, retinal histopathological evaluation revealed a significant decrease in vascular leakage and apoptotic cells around the retinal vessels in the diabetic eyes that received ASC compared to the eyes that received saline injection. In addition, molecular analyses have shown down-regulation in inflammatory gene expression in diabetic retina that received ASC compared to eyes that received saline. Interestingly, ASC were found to be localized near retinal vessels at higher densities than seen in age matched non-diabetic retina that received ASC. In vitro, ASC displayed sustained proliferation and decreased apoptosis under hyperglycemic stress. In addition, ASC in co-culture with retinal endothelial cells enhance endothelial survival and collaborate to form vascular networks. Taken together, our findings suggest that ASC are able to rescue the neural retina from hyperglycemia-induced degeneration, resulting in importantly improved visual function. Our pre-clinical studies support the translational development of adipose stem cell-based therapy for DR to address both retinal capillary and neurodegeneration.  相似文献   

20.
Diabetic retinopathy is thought to result from chronic changes in the metabolic pathways of the retina. Hyperglycemia leads to increased intracellular glucose concentrations, alterations in glucose degradation and an increase in lactate/pyruvate ratio. We measured lactate content in retina and other ocular and non-ocular tissues from normal and diabetic rats in the early stages of streptozotocin-induced diabetes. The intracellular redox state was calculated from the cytoplasmic [lactate]/[pyruvate] ratio.Elevated lactate concentration were found in retina and cerebral cortex from diabetic rats. These concentrations led to a significant and progressive decrease in the NAD+/NADH ratio, suggesting that altered glucose metabolism is an initial step of retinopathy. It is thus possible that tissues such as cerebral cortex have mechanisms that prevent the damaging effect of lactate produced by hyperglycemia and/or alterations of the intracellular redox state  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号