首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single-stranded DNA overhangs at the ends of human telomeric repeats are capable of adopting four-stranded G-quadruplex structures, which could serve as potential anticancer targets. Out of the five reported intramolecular human telomeric G-quadruplex structures, four were formed in the presence of K+ ions and only one in the presence of Na+ ions, leading often to a perception that this structural polymorphism occurs exclusively in the presence of K+ but not Na+. Here we present the structure of a new antiparallel (2+2) G-quadruplex formed by a derivative of a 27-nt human telomeric sequence in Na+ solution, which comprises a novel core arrangement distinct from the known topologies. This structure complements the previously elucidated basket-type human telomeric G-quadruplex to serve as reference structures in Na+-containing environment. These structures, together with the coexistence of other conformations in Na+ solution as observed by nuclear magnetic resonance spectroscopy, establish the polymorphic nature of human telomeric repeats beyond the influence of K+ ions.  相似文献   

2.
Human telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. The telomeric sequence shows intrinsic structure polymorphism. Here we report a novel intramolecular G-quadruplex structure formed by a variant human telomeric sequence in K+ solution. This sequence forms a basket-type intramolecular G-quadruplex with only two G-tetrads but multiple-layer capping structures formed by loop residues. While it is shown that this structure can only be detected in the specifically truncated telomeric sequences without any 5′-flanking residues, our results suggest that this two-G-tetrad conformation is likely to be an intermediate form of the interconversion of different telomeric G-quadruplex conformations.  相似文献   

3.
Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). The formation and stabilization of DNA G-quadruplexes in the human telomeric sequence have been shown to inhibit the activity of telomerase, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. However, knowledge of the intact human telomeric G-quadruplex structure(s) formed under physiological conditions is a prerequisite for structure-based rational drug design. Here we report the folding structure of the human telomeric sequence in K+ solution determined by NMR. Our results demonstrate a novel, unprecedented intramolecular G-quadruplex folding topology with hybrid-type mixed parallel/antiparallel G-strands. This telomeric G-quadruplex structure contains three G-tetrads with mixed G-arrangements, which are connected consecutively with a double-chain-reversal side loop and two lateral loops, each consisting of three nucleotides TTA. This intramolecular hybrid-type telomeric G-quadruplex structure formed in K+ solution is distinct from those reported on the 22 nt Tel22 in Na+ solution and in crystalline state in the presence of K+, and appears to be the predominant conformation for the extended 26 nt telomeric sequence Tel26 in the presence of K+, regardless of the presence or absence of Na+. Furthermore, the addition of K+ readily converts the Na+-form conformation to the K+-form hybrid-type G-quadruplex. Our results explain all the reported experimental data on the human telomeric G-quadruplexes formed in the presence of K+, and provide important insights for understanding the polymorphism and interconversion of various G-quadruplex structures formed within the human telomeric sequence, as well as the effects of sequence and cations. This hybrid-type G-quadruplex topology suggests a straightforward pathway for the secondary structure formation with effective packing within the extended human telomeric DNA. The hybrid-type telomeric G-quadruplex is most likely to be of pharmacological relevance, and the distinct folding topology of this G-quadruplex suggests that it can be specifically targeted by G-quadruplex interactive small molecule drugs.  相似文献   

4.
Structural complexity is an inherent feature of the human telomeric sequence, and it presents a major challenge for developing ligands of pharmaceutical interest. Recent studies have pointed out that the induction of a quadruplex or change of a quadruplex conformation on binding may be the most powerful method to exert the desired biological effect. In this study, we demonstrate a quadruplex ligand that binds selectively to different forms of the human telomeric G-quadruplex structure and regulates its conformational switch. The results show that not only can oxazine750 selectively induce parallel quadruplex formation from a random coil telomeric oligonucleotide in the absence of added cations, it also can easily surpass the energy barrier between two structures and change the G-quadruplex conformation in Na+ or K+ solution. The combination of its unique properties, including the size and shape of the G-quadruplex and the small molecule, is proposed as the predominant force for regulating the special structural formation and transitions. These results may stimulate the design of new quadruplex binders that would be capable of discriminating different G-quadruplex structures as well as controlling biological phenomena, functional molecules, and nanomaterials.  相似文献   

5.
Lee JY  Yoon J  Kihm HW  Kim DS 《Biochemistry》2008,47(11):3389-3396
Oxytricha nova telomeric DNA contains guanine-rich short-tandem repeat sequences (GGGGTTTT) n and terminates as a single strand at the 3'-end. This single-stranded overhang forms a novel DNA structure, namely, G-quadruplex, comprising four quartets. In this study, we investigated the structures and dynamics of unimolecular Oxytricha nova ( O. nova) telomeric G-quadruplexes by performing single molecule fluorescence resonance energy transfer (FRET) spectroscopy and bulk circular dichroism (CD) measurements. We observed that unimolecular O. nova G-quadruplexes exhibit structural polymorphism according to monovalent cations. In the presence of Na (+), only antiparallel conformation is detected, which was demonstrated in previous studies; however, in the presence of K (+), they fold into two different conformations, a parallel conformation and an antiparallel one different from that induced by Na (+). Furthermore, these G-quadruplexes show extremely high stability in their dynamics when compared with human G-quadruplexes. While human telomeric G-quadruplexes that possess three quartets display fast dynamic behavior (<100 s) at low K (+) concentrations or high temperatures, O. nova G-quadruplexes maintain their conformational state for a long time (>1000 s), even at the lowest K (+) concentration and the highest temperature investigated. This high stability is primarily due to an extra quartet that results in additional cation coordination. In addition to cation coordination, we propose that other factors such as base stacking and the size of the thymine loop may contribute to the stability of O. nova G-quadruplexes; this is based on the fact that the O. nova G-quadruplexes were observed to be more stable than the human ones in the presence of Li (+), which is known to greatly destabilize G-quadruplexes because of imprecise coordination. This extreme stability of four-quartet G-quadruplexes enables telomere protection even in the absence of protective proteins or in the case of abrupt environmental changes, although only a single G-quadruplex structure can be derived from the short single-stranded overhang.  相似文献   

6.
We report the NMR solution structure of the intramolecular G-quadruplex formed in human telomeric DNA in K+. The hybrid-type telomeric G-quadruplex consists of three G-tetrads linked with mixed parallel–antiparallel G-strands, with the bottom two G-tetrads having the same G-arrangement (anti:anti:syn:anti) and the top G-tetrad having the reversed G-arrangement (syn:syn:anti:syn). The three TTA loop segments adopt different conformations, with the first TTA assuming a double-chain-reversal loop conformation, and the second and third TTA assuming lateral loop conformations. The NMR structure is very well defined, including the three TTA loops and the two flanking sequences at 5′- and 3′-ends. Our study indicates that the three loop regions interact with the core G-tetrads in a specific way that defines and stabilizes the unique human telomeric G-quadruplex structure in K+. Significantly, a novel adenine triple platform is formed with three naturally occurring adenine residues, A21, A3 and A9, capping the top tetrad of the hybrid-type telomeric G-quadruplex. This adenine triple is likely to play an important role in the formation of a stable human telomeric G-quadruplex structure in K+. The unique human telomeric G-quadruplex structure formed in K+ suggests that it can be specifically targeted for anticancer drug design.  相似文献   

7.
Irradiation of G-quadruplex forming human telomeric DNA with ultraviolet B (UVB) light results in the formation of anti cyclobutane pyrimidine dimers (CPDs) between loop 1 and loop 3 in the presence of potassium ions but not sodium ions. This was unexpected because the sequences involved favor the nonphotoreactive hybrid conformations in K+ solution, whereas a potentially photoreactive basket conformation is favored in Na+ solution. To account for these contradictory results, it was proposed that the loops are too far apart in the basket conformation in Na+ solution but close enough in a two G-tetrad basket-like form 3 conformation that can form in K+ solution. In the current study, Na+ was still found to inhibit anti CPD formation in sequences designed to stabilize the form 3 conformation. Furthermore, anti CPD formation in K+ solution was slower for the sequence previously shown to exist primarily in the proposed photoreactive form 3 conformation than the sequence shown to exist primarily in a nonphotoreactive hybrid conformation. These results suggest that the form 3 conformation is not the principal photoreactive conformation, and that G-quadruplexes in K+ solution are dynamic and able to access photoreactive conformations more easily than in Na+ solution.  相似文献   

8.
Guanine-rich telomeric sequences fold into G-quadruplex conformation and are known to bind a variety of ligands including potential drug candidates. By means of CD spectroscopy and fluorescence lifetime measurements we demonstrate that putative anticancer therapeutic sanguinarine (SGR) exhibits two distinct interactions with human telomere d[(TTAGGG)4] (H24) in presence of K+. Up to about 1:2 M ratio of H24:SGR (10 μM H24), two molecules of SGR bind H24. Above this molar ratio, SGR induces a conformational transition in H24 from the K+-form to the Na+-form. The demonstration of SGR-induced conformational transition in a G-quadruplex formed by a human telomeric sequence could provide new insights into interaction of drugs with quadruplex DNA structure.  相似文献   

9.
Intramolecular G-quadruplexes formed by the human telomeric G-rich strand are promising anticancer targets. Here we show that four-repeat human telomeric DNA sequences can adopt two different intramolecular G-quadruplex folds in K+ solution. The two structures contain the (3+1) G-tetrad core, in which three G-tracts are oriented in one direction and the fourth in the opposite direction, with one double-chain-reversal and two edgewise loops, but involve different loop arrangements. This result indicates the robustness of the (3+1) core G-quadruplex topology, thereby suggesting it as an important platform for structure-based drug design. Our data also support the view that multiple human telomeric G-quadruplex conformations coexist in K+ solution. Furthermore, even small changes to flanking sequences can perturb the equilibrium between different coexisting G-quadruplex forms.  相似文献   

10.
Guanine-rich DNA sequences can form G-quadruplexes. These four-stranded structures are known to form in several genomic regions and to influence certain biological activities. Sometimes, the instability of G-quadruplexes causes the abnormal biological processes. Mutation is a culprit for the destabilization of G-quadruplexes, but the details of mutated G-quadruplexes are poorly understood. In this article, we investigated the conformational dynamics of single-base mutated human telomeric G-quadruplexes in the presence of K+ with single-molecule FRET spectroscopy. We observed that the replacement of single guanine by thymine in a G-track induces various folded structures, i.e. structural polymorphism. Moreover, direct observation of their dynamics revealed that a single-base mutation causes fast unfolding of folded states under physiological conditions. Furthermore, we found that the degree of destabilization varies according to mutation positions. When the central guanine of a G-track is replaced, the G-quadruplexes unfold quickly at any K+ concentrations and temperature. Meanwhile, outer-quartet mutated G-quadruplexes have heterogeneous dynamics at intermediate K+ concentrations and longstanding folded states at high K+ concentrations. Several factors such as base-stacking interaction and K+ coordination are responsible for the different dynamics according to the mutation position.  相似文献   

11.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   

12.
G-rich telomeric DNA sequences can form G-quadruplex structures. The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and a shortened derivative (UP1) are active in telomere length regulation, and it has been reported that UP1 can unwind G-quadruplex structures. Here, we investigate the interaction of hnRNP A1 with G-quadruplex DNA structures containing the human telomere repeat (TTAGGG) by gel retardation assays, ensemble fluorescence energy transfer (FRET) spectroscopy, and single molecule FRET microscopy. Our biochemical experiments show that hnRNP A1 binds well to the G-quadruplex telomeric DNA. Ensemble and single molecule FRET measurements provide further insight into molecular conformation: the telomeric DNA overhang is found to be in a folded state in the absence of hnRNP A1 and to remain predominantly in a compact state when complexed with hnRNP A1. This finding is in contrast to the previously reported crystal structures of UP1-telomere DNA complexes where the DNA oligo within the protein-DNA complex is in a fully open conformation.  相似文献   

13.

Background

Stabilization of G-quadruplex helices by small ligands has attracted growing attention because they inhibit the activity of the enzyme telomerase, which is overexpressed in > 80% cancer cells. TMPyP4, one of the most studied G-quadruplex ligands, is used as a model to show that the ligands can exhibit different binding features with different conformations of a human telomeric specific sequence.

Methods

UV–Vis, FRET melting Assay, Isothermal Titration Calorimetry, Time-resolved Fluorescence lifetime, T-Jump and Molecular Dynamics.

Results

TMPyP4 yields two different complexes with two Tel22 telomeric conformations in the presence of Na+ or K+. T-Jump kinetic experiments show that the rates of formation and dissociation of these complexes in the ms time scale differ by one order of magnitude. MD simulations reveal that, in K+ buffer, “hybrid 1” conformation yields kinetic constants on interaction with TMPyP4 one order lower than “hybrid 2”. The binding involves π–π stacking with external loop bases.

Conclusions

For the first time we show that for a particular buffer TMPyP4 interacts in a kinetically different way with the two Tel22 conformations even if the complexes formed are thermodynamically indistinguishable.

General significance

G-quadruplexes, endowed with technological applications and potential impact on regulation mechanisms, define a new research field. The possibility of building different conformations from same sequence is a complex issue that confers G-quadruplexes very interesting features. The obtaining of reliable kinetic data constitutes an efficient tool to determine reaction mechanisms between conformations and small molecules.  相似文献   

14.
Telomeres are guanine-rich sequences that protect the ends of chromosomes. These regions can fold into G-quadruplex structures and their stabilization by G-quadruplex ligands has been employed as an anticancer strategy. Genetic analysis in human telomeres revealed extensive allelic variation restricted to loop bases, indicating that the variant telomeric sequences maintain the ability to fold into G-quadruplex. To assess the effect of mutations in loop bases on G-quadruplex folding and stability, we performed a comprehensive analysis of mutant telomeric sequences by spectroscopic techniques, molecular dynamics simulations and gel electrophoresis. We found that when the first position in the loop was mutated from T to C or A the resulting structure adopted a less stable antiparallel topology; when the second position was mutated to C or A, lower thermal stability and no evident conformational change were observed; in contrast, substitution of the third position from A to C induced a more stable and original hybrid conformation, while mutation to T did not significantly affect G-quadruplex topology and stability. Our results indicate that allelic variations generate G-quadruplex telomeric structures with variable conformation and stability. This aspect needs to be taken into account when designing new potential anticancer molecules.  相似文献   

15.
The leucine transporter (LeuT) is a bacterial homolog of the human monoamine transporters, which are important pharmaceutical targets. There are no high-resolution structures of the human transporters available; however, LeuT has been crystallized in several different conformational states. Recently, an inward-facing conformation of LeuT was solved revealing an unexpectedly large movement of transmembrane helix 1a (TM1a). We have performed molecular dynamics simulations of the mutated and wild-type transporter, with and without the cocrystallized Fab antibody fragment, to investigate the properties of this inward-facing conformation in relation to transport by LeuT within the membrane environment. In all of the simulations, local conformational changes with respect to the crystal structure are consistently observed, especially in TM1a. Umbrella sampling revealed a soft potential for TM1a tilting. Furthermore, simulations of inward-facing LeuT with Na+ ions and substrate bound suggest that one of the Na+ ion binding sites is fully disrupted. Release of alanine and the second Na+ ion is also observed, giving insight into the final stage of the translocation process in atomistic detail.  相似文献   

16.
Structure-specific ligands are convenient tools for the recognition, targeting or probing of non-canonical DNA structures. Porphyrin derivatives exhibit a preference for interaction with G-quadruplex (G4) structures over canonical duplex DNA and are able to cause photoinducible damage to nucleic acids. Here, we show that Zn(II) 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (ZnP1) interacts with different conformations of the telomeric sequence d(TAGGG(TTAGGG)3) at submicromolar concentrations without any detectible disturbance of the particular fold. Among different folds, potassium (3+1) hybrid G4-structure. reveal the highest affinity to ZnP1. The pattern of guanine oxidation is specific for each telomeric DNA conformation and may serve as an additional tool for probing the G4 topology. The potassium (3+1) and parallel G4 conformations are more susceptible to light-induced oxidation than the sodium G4 conformation or double helix of the telomeric DNA. The major products of the guanine modifications are spiroiminodihydantoin (Sp) and 8-oxoguanine (8-oxoG). ZnP1-induced oxidation of guanines results in the structural rearrangement of parallel and (3+1) G4 conformations yielding an antiparallel-like G4 conformation. The mechanism of the observed light-induced conformational changes is discussed.  相似文献   

17.
Formation of the G-quadruplex in the human telomeric sequence can inhibit the activity of telomerase, thus the intramolecular telomeric G-quadruplexes have been considered as an attractive anticancer target. Information of intramolecular telomeric G-quadruplex structures formed under physiological conditions is important for structure-based drug design. Here, we report the first structure of the major intramolecular G-quadruplex formed in a native, non-modified human telomeric sequence in K+ solution. This is a hybrid-type mixed parallel/antiparallel-G-stranded G-quadruplex, one end of which is covered by a novel T:A:T triple capping structure. This structure (Hybrid-2) and the previously reported Hybrid-1 structure differ in their loop arrangements, strand orientations and capping structures. The distinct capping structures appear to be crucial for the favored formation of the specific hybrid-type intramolecular telomeric G-quadruplexes, and may provide specific binding sites for drug targeting. Our study also shows that while the hybrid-type G-quadruplexes appear to be the major conformations in K+ solution, human telomeric sequences are always in equilibrium between Hybrid-1 and Hybrid-2 structures, which is largely determined by the 3-flanking sequence. Furthermore, both hybrid-type G-quadruplexes suggest a straightforward means for multimer formation with effective packing in the human telomeric sequence and provide important implications for drug targeting of G-quadruplexes in human telomeres.  相似文献   

18.
Effects of natural isoflavones on the structural competition of human telomeric G-quadruplex d[AG3(T2AG3)3] and its related Watson–Crick duplex d[AG3(T2AG3)3-(C3TA2)3C3T] are investigated by using circular dichroism (CD), ESI-MS, fluorescence quenching measurement, CD stopped-flow kinetic experiment, UV spectroscopy and molecular modeling methods. It is intriguing to find out that isoflavones can stabilize the G-quadruplex structure but destabilize its corresponding Watson–Crick duplex and this discriminated interaction is intensified by molecular crowding environments. Kinetic experiments indicate that the dissociation rate of quadruplex (kobs290 nm) is decreased by 40.3% at the daidzin/DNA molar ratio of 1.0 in K+, whereas in Na+ the observed rate constant is reduced by about 12.0%. Furthermore, glycosidic daidzin significantly induces a structural transition of the polymorphic G-quadruplex into the antiparallel conformation in K+. This is the first report on the recognition of isoflavones with conformational polymorphism of G-quadruplex, which suggests that natural isoflavone constituents potentially exhibit distinct regulation on the structural competition of quadruplex versus duplex in human telomeric DNA.  相似文献   

19.
Human telomere contains guanine-rich (G-rich) tandem repeats of single-stranded DNA sequences at its 3′ tail. The G-rich sequences can be folded into various secondary structures, termed G-quadruplexes (G4s), by Hoogsteen basepairing in the presence of monovalent cations (such as Na+ and K+). We developed a single-molecule tethered particle motion (TPM) method to investigate the unfolding process of G4s in the human telomeric sequence AGGG(TTAGGG)3 in real time. The TPM method monitors the DNA tether length change caused by formation of the G4, thus allowing the unfolding process and structural conversion to be monitored at the single-molecule level. In the presence of its antisense sequence, the folded G4 structure can be disrupted and converted to the unfolded conformation, with apparent unfolding time constants of 82 s and 3152 s. We also observed that the stability of the G4 is greatly affected by different monovalent cations. The folding equilibrium constant of G4 is strongly dependent on the salt concentration, ranging from 1.75 at 5 mM Na+ to 3.40 at 15 mM Na+. Earlier spectral studies of Na+- and K+-folded states suggested that the spectral conversion between these two different folded structures may go through a structurally unfolded intermediate state. However, our single-molecule TPM experiments did not detect any totally unfolded intermediate within our experimental resolution when sodium-folded G4 DNA molecules were titrated with high-concentration, excess potassium ions. This observation suggests that a totally unfolding pathway is likely not the major pathway for spectral conversion on the timescale of minutes, and that interconversion among folded states can be achieved by the loop rearrangement. This study also demonstrates that TPM experiments can be used to study conformational changes in single-stranded DNA molecules.  相似文献   

20.
The Na+/K+-ATPase generates an electrochemical gradient of Na+ and K+, which is necessary for the functioning of animal cells. During the catalytic act, the enzyme passes through two principal conformational states, E1 and E2. To assess the domain organization of the protein in these conformations, thermal denaturation of Na+/K+-ATPases from duck salt gland and from rabbit kidney has been studied in the absence and in the presence of Na+ or K+, which induce the transition to E1 or E2. The melting curves for the ion-free forms of the two ATPases have different shapes: the rabbit protein shows one transition at 56.1°C, whereas the duck protein shows two transitions, at 49.8 and 56.9°C. Addition of Na+ or K+ ions abolishes the difference in thermal behavior between these enzymes, but through opposite effects. The melting curves for the E2 conformation (K+ bound) in both cases exhibit a single peak of heat absorption at ∼63°C. For the E1 conformation (Na+ bound), each melting curve has three peaks, indicating denaturation of three domains. The difference in the domain organization of Na+/K+-ATPase in the E1 and E2 states may account for the different sensitivity to temperature, proteolysis, and oxidative stress observed for the two enzyme conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号