首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.Subject terms: Extracellular signalling molecules, Rheumatoid arthritis  相似文献   

2.
3.
4.
5.
6.
UPF1 is proved to dysregulate in multiple tumors and influence carcinogenesis. However, the role of UPF1 in oxaliplatin resistance in colorectal cancer (CRC) remains unknown. In our study, UPF1 is upregulated in CRC in mRNA and protein levels and overexpression of UPF1 predicts a poor overall survival (OS) and recurrence-free survival (RFS) in CRC patients and is an independent risk factor for recurrence. UPF1 promotes chemoresistance to oxaliplatin in vitro and in vivo. UPF1-induced oxaliplatin resistance can be associated with interaction between zinc finger of UPF1 and Toprim of TOP2A and increasing phosphorylated TOP2A in a SMG1-dependent manner. Moreover, UPF1 maintains stemness in a TOP2A-dependent manner in CRC. Taken together, UPF1 was overexpressed and predicted a poor prognosis in CRC. UPF1 enhanced chemoresistance to oxaliplatin in CRC, which may result from regulation of TOP2A activity and maintenance of stemness. Our findings could provide a new therapy strategy for chemoresistance to oxaliplatin in CRC patients.Subject terms: Prognostic markers, Oncogenes  相似文献   

7.
8.
IntroductionOur previous proteomic study on fibroblast-like synoviocytes (FLSs) derived from the synovial tissues found that the expression of KIAA1199 was higher in rheumatoid arthritis (RA) patients than in healthy controls. The aim of this study was to examine the biological function of KIAA1199 and evaluate its clinical diagnosis value in RA.MethodsThe over-expression of KIAA1199 was verified by quantitative real-time polymerase chain reaction (qPCR), Immunohistochemistry, Immunofluorescence and enzyme linked immunosorbent assay (ELISA) in inactive and active RA patients and healthy controls. The effect of KIAA1199 expression on FLSs proliferation, angiogenesis and related pathway were analyzed by MTT, cell migration, tube formation, chorioallantoic membrane (CAM) assay, qPCR and western-blotting after KIAA1199 knockdown and over-expression.ResultsThe verification results show the up-regulation of KIAA1199 in RA patients at mRNA and protein level as compared to that in healthy controls. ELISA and receiver operator characteristic (ROC) analysis shows that KIAA1199 concentration in serum, synovial fluid and synovial tissues could be used as dependable biomarkers for the diagnosis of active RA, provided an area under roc curve (AUC) of 0.83, 0.92 and 0.92. Sensitivity and specificity, which were determined by cut-off points, reached 72% 84% and 80% in sensitivity and 80%, 93.3%, 93.3% in specificity, respectively. Moreover, KIAA1199 also enhance the proliferation and angiogenesis of synovial membrane, and KIAA1199/ PLXNB3/ SEMA5A/CTGF axis may be a newly found pathway enhancing cell proliferation and angiogenesis.ConclusionKIAA1199 may be a potential diagnostic biomarker of RA related to angiogenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0637-y) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
Recently, we disclosed that KIAA1199-mediated hyaluronan (HA) depolymerization requires an acidic cellular microenvironment (e.g. clathrin-coated vesicles or early endosomes), but no information about the structural basis underlying the cellular targeting and functional modification of KIAA1199 was available. Here, we show that the cleavage of N-terminal 30 amino acids occurs in functionally matured KIAA1199, and the deletion of the N-terminal portion results in altered intracellular trafficking of the molecule and loss of cellular HA depolymerization. These results suggest that the N-terminal portion of KIAA1199 functions as a cleavable signal sequence required for proper KIAA1199 translocation and KIAA1199-mediated HA depolymerization.  相似文献   

11.
The aim of the study was to research the biological functions of circRNA (hsa_circ_0079662) and its underlying mechanism in colorectal cancer. Drug‐resistant cell lines (HT29‐LOHP, HCT116‐LOHP, HCT8‐LOHP) were separately dealt with oxaliplatin concentration gradient (0.1‐10 μmol/L). Real‐time PCR, Western blotting, dual‐luciferase assay, miRNA pull‐down assay, coimmunoprecipitation and ELASA were performed to explore the mechanism of chemotherapy drug oxaliplatin resistance in CRC. The results showed that the expression of hsa_circ_0079662 was increased in drug‐resistant cell lines by RT‐PCR. The expression of HOXA9, TRIP6, Vcam‐1, VEGFC, MMP3, MMP9 and MMP14 was higher by Western blotting. Interaction between HOXA9 and TRIP6 in CO‐IP detection. Additionally, the cytokines TNF‐α, IL‐1 and IL‐6 were also found. In conclusion, hsa_circ_0079662, as a ceRNA binding with hsa‐mir‐324‐5p, can regulate target gene HOXA9 and induced the mechanism of chemotherapy drug oxaliplatin resistance in CRC through the TNF‐α pathway in human colon cancer.  相似文献   

12.
Oxaliplatin is a key drug in chemotherapy of colorectal cancer (CRC). However, its efficacy is unsatisfied due to drug resistance of cancer cells. In this study, we tested whether a natural agent, ursolic acid, was able to enhance the efficacy of oxaliplatin for CRC. Four CRC cell lines including SW480, SW620, LoVo, and RKO were used as in vitro models, and a SW620 xenograft mouse model was used in further in vivo study. We found that ursolic acid inhibited proliferation and induced apoptosis of all four cells and enhanced the cytotoxicity of oxaliplatin. This effect was associated with down-regulation of Bcl-xL, Bcl-2, survivin, activation of caspase-3, 8, 9, and inhibition of KRAS expression and BRAF, MEK1/2, ERK1/2, p-38, JNK, AKT, IKKα, IκBα, and p65 phosphorylation of the MAPK, PI3K/AKT, and NF-κB signaling pathways. The two agents also showed synergistic effects against tumor growth in vivo. In addition, ursolic acid restored liver function and body weight of the mice treated with oxaliplatin. Thus, we concluded that ursolic acid could enhance the therapeutic effects of oxaliplatin against CRC both in vitro and in vivo, which offers an effective strategy to minimize the burden of oxaliplatin-induced adverse events and provides the groundwork for a new clinical strategy to treat CRC.  相似文献   

13.
14.
Sphingolipid metabolic dysregulation has increasingly been considered to be a drug-resistance mechanism for a variety of tumors. In this study, through an LC–MS assay, LIM and SH3 protein 1 (LASP1) was identified as a sphingolipid-metabolism-involved protein, and short-chain enoyl-CoA hydratase (ECHS1) was identified as a new LASP1-interacting protein through a protein assay in colorectal cancer (CRC). Gain- and loss-of-function analyses demonstrated the stimulatory role played by ECHS1 in CRC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistic studies of the underlying tumor-supportive oncometabolism indicate that ECHS1 enables altering ceramide (Cer) metabolism that increases glycosphingolipid synthesis (HexCer) by promoting UDP-glucose ceramide glycosyltransferase (UGCG). Further analysis showed that ECHS1 promotes CRC progression and drug resistance by releasing reactive oxygen species (ROS) and interfering mitochondrial membrane potential via the PI3K/Akt/mTOR-dependent signaling pathway. Meanwhile, the phenomenon of promoting the survival and drug resistance of CRC cells caused by ECHS1 could be reversed by Eliglustat, a specific inhibitor of UCCG, in vitro and in vivo. IHC assay showed that ECHS1 was overexpressed in CRC tissues, which was related to the differentiation and poor prognosis of CRC patients. This study provides new insight into the mechanism by which phospholipids promote drug resistance in CRC and identifies potential targets for future therapies.Subject terms: Cancer metabolism, Colorectal cancer  相似文献   

15.
DNA‐binding protein A (dbpA) is reported to be upregulated in many cancers and associated with tumor progress. The present study aimed to investigate the role of dbpA in 5‐fluorouracil (5‐FU)‐resistant and oxaliplatin (L‐OHP)‐resistant colorectal cancer (CRC) cells. We found that 5‐FU and L‐OPH treatment promoted the expression of dbpA. Enhanced dbpA promoted the drug resistance of SW620 cells to 5‐FU and L‐OHP. DbpA knockdown inhibited cell proliferation, induced cell apoptosis, and cell cycle arrested in SW620/5‐FU and SW620/L‐OHP cells. Besides, dbpA short hairpin RNA (shRNA) enhanced the cytotoxicity of 5‐FU and L‐OHP to SW620/5‐FU and SW620/L‐OHP cells. Meanwhile, dbpA shRNA inhibited the activation of the Wnt/β‐catenin pathway that induced by 5‐FU stimulation in SW620/5‐FU cells. Activation of the Wnt/β‐catenin pathway or overexpression of checkpoint kinase 1 (Chk1) abrogated the promoting effect of dbpA downregulation on 5‐FU sensitivity of CRC cells. Importantly, downregulation of dbpA suppressed tumor growth and promoted CRC cells sensitivity to 5‐FU in vivo. Our study indicated that the knockdown of dbpA enhanced the sensitivity of CRC cells to 5‐FU via Wnt/β‐catenin/Chk1 pathway, and DbpA may be a potential therapeutic target to sensitize drug resistance CRC to 5‐FU and L‐OHP.  相似文献   

16.
Due to chemotherapeutic drug resistance, tumor recurrence is common in patients with colorectal cancer (CRC) and chemo-resistant patients are often accompanied by defects in the mismatch repair system (MMR). Our previous study has shown that Candida tropicalis (C. tropicalis) is closely related to the occurrence and development of colorectal cancer, but whether this conditional pathogenic fungus is involved in chemotherapy needs further investigation. Here we found that C. tropicalis promoted chemotherapy resistance of colon cancer to oxaliplatin. Compared with oxaliplatin-treated group, the expression of functional MMR proteins in tumors were decreased in C.tropicalis/oxaliplatin -treated group, while the glycolysis level of tumors was up-regulated and the production of lactate was significantly increased in C.tropicalis/oxaliplatin -treated group. Inhibiting lactate production significantly alleviated the chemoresistance and rescued the decreased expression of MMR caused by C. tropicalis. Furthermore, we found that lactate down-regulated the expression of MLH1 through the GPR81-cAMP-PKA-CREB axis. This study clarified that C. tropicalis promoted chemoresistance of colon cancer via producing lactate and inhibiting the expression of MLH1, which may provide novel ideas for improving CRC chemotherapy effect.  相似文献   

17.
18.
3T3-L1 adipocytes develop insulin-resistant glucose transport upon preincubation with high (25 mM) glucose, provided that insulin (0.6 nM) is included, Akt activation is impaired, and high glucose and insulin act synergistically. Considerable evidence suggests that increased glucose flux via the hexosamine biosynthesis pathway enhances the O-GlcNAc modification (O-GlcNAcylation) of some critical protein(s) that may contribute to insulin resistance. However, whether enhanced protein O-GlcNAcylation is necessary for the development of insulin resistance is unknown. We used two strategies to test this hypothesis. The first strategy was the overexpression of O-GlcNAcase, which removes O-GlcNAc from Ser/Thr of proteins. Cells were infected with O-GlcNAcase-expressing adenovirus (or empty virus) 5 days before they were submitted to protocols that elicit (or not) insulin resistance. O-GlcNAcase was highly expressed and functional as assessed by Western blot, O-GlcNAcase assay, and marked reduction of O-GlcNAcylated proteins. The activity was mainly cytosolic. The second strategy was the expression of O-GlcNAc transferase (OGT) being markedly reduced by transfection of OGT siRNA, resulting in an approximately 90% decrease of nuclear and cytosolic OGT protein expression and similar reduction in O-GlcNAcylated proteins. Nontargeting siRNA had no effect. Preincubation in high glucose with low-dose insulin decreased the acute insulin response of glucose transport by at least 50% and impaired Akt activation. None of these parameters were affected by overexpression of O-GlcNAcase or by OGT knockout. Excess O-GlcNAcylation is one of many factors that can cause insulin resistance. It does not seem to be required for the development of glucose/insulin-induced insulin resistance of glucose transport and Akt activation in 3T3-L1 adipocytes.  相似文献   

19.
PARP inhibitors (PARPi) are currently used as first-line therapy for advanced and recurrent ovarian cancer, but the clinical efficacy is limited by drug resistance. We aimed to investigate the role of KIAA1529 in PARPi resistance in ovarian cancer. The expression of KIAA1529 was determined in ovarian cancer cells using qRT‒PCR and western blotting. Immunohistochemistry was used to examine the expression of KIAA1529 in primary ovarian cancer and recurrent ovarian cancer tissues. The effects of KIAA1529 on PARPi resistance were evaluated by knocking down KIAA1529 expression in ovarian cancer cells and assessing cell viability by CCK8 assays, apoptosis by flow cytometry, and homologous recombination (HR) repair by immunofluorescence analysis. The interaction between KIAA1529 and RAD51 was examined by western blotting. KIAA1529 was confirmed to be expressed in all ovarian cancer cell lines, and high expression of KIAA1529 was observed in recurrent ovarian cancer tissues. Inhibiting KIAA1529 expression increased the sensitivity of ovarian cancer cells to PARPi treatment. Furthermore, KIAA1529 increased the expression of the downstream effector RAD51 via Aurora-A, and HR was restored in ovarian cancer cells. This study demonstrates that KIAA1529 regulates RAD51 expression through Aurora-A to restore HR, which confers resistance to PARPi in ovarian cancer cells. These findings could provide a novel therapeutic target to overcome PARPi resistance in ovarian cancer.  相似文献   

20.
We report a novel protein domain-G8-which contains five repeated beta-strand pairs and is present in some disease-related proteins such as PKHD1, KIAA1199, TMEM2 as well as other uncharacterized proteins. Most G8-containing proteins are predicted to be membrane-integral or secreted. The G8 domain may be involved in extracellular ligand binding and catalysis. It has been reported that mis-sense mutations in the two G8 domains of human PKHD1 protein resulted in a less stable protein and are associated with autosomal-recessive polycystic kidney disease, indicating the importance of the domain structure. G8 is also present in the N-terminus of some non-syndromic hearing loss disease-related proteins such as KIAA1109 and TMEM2. Discovery of G8 domain will be important for the research of the structure/function of related proteins and beneficial for the development of novel therapeutics. Contact: liangsp@hunnu.edu.cn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号