首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

MAGE-A3 is a potential target for immunotherapy due to its tumor-specific nature and expression in several tumor types. Clinical data on MAGE-A3 immunotherapy have raised many questions that can only be addressed by using animal models. In the present study, different aspects of the murine anti-tumor immune responses induced by a recombinant MAGE-A3 protein (recMAGE-A3) in combination with different immunostimulants (AS01, AS02, CpG7909 or AS15) were investigated.

Experimental Design and Results

Based on cytokine profile analyses and protection against challenge with MAGE-A3-expressing tumor, the combination recMAGE-A3+AS15 was selected for further experimental work, in particular to study the mechanisms of anti-tumor responses. By using MHC class I-, MHC class II-, perforin-, B-cell- and IFN-γ- knock-out mice and CD4+ T cell-, CD8+ T cell- and NK cell- depleted mice, we demonstrated that CD4+ T cells and NK cells are the main anti-tumor effectors, and that IFN-γ is a major effector molecule. This mouse tumor model also established the need to repeat recMAGE-A3+AS15 injections to sustain efficient anti-tumor responses. Furthermore, our results indicated that the efficacy of tumor rejection by the elicited anti-MAGE-A3 responses depends on the proportion of tumor cells expressing MAGE-A3.

Conclusions

The recMAGE-A3+AS15 cancer immunotherapy efficiently induced an antigen-specific, functional and long-lasting immune response able to recognize and eliminate MAGE-A3-expressing tumor cells up to several months after the last immunization in mice. The data highlighted the importance of the immunostimulant to induce a Th1-type immune response, as well as the key role played by IFN-γ, CD4+ T cells and NK cells in the anti-tumoral effect.  相似文献   

2.
Naïve CD4+ T helper (Th) cells differentiate into distinct subsets of effector cells (Th1, Th2, Th17, and induced regulatory T cells (iTreg)) expressing different sets of cytokines upon encounter with presented foreign antigens. It has been well established that Th1/Th2 balance is critical for the nature of the following immune responses. Previous reports have demonstrated important roles of c-Jun N-terminal kinase (JNK) in Th1/Th2 balance, whereas the regulatory mechanisms of JNK activity in Th cells have not been elucidated. Here, we show that dual specificity phosphatase 16 (DUSP16, also referred to as MKP-M or MKP-7), which preferentially inactivates JNK, is selectively expressed in Th2 cells. In the in vitro differentiation assay of naïve CD4+ cells, DUSP16 expression is up-regulated during Th2 differentiation and down-regulated during Th1 differentiation. Chromatin immunoprecipitation revealed the increased acetylation of histone H3/H4 at the dusp16 gene promoter in CD4+ T cells under the Th2 condition. Adenoviral transduction of naïve CD4+ T cells with DUSP16 resulted in increased mRNA expression of IL-4 and GATA-3 in Th2 and decreased expression of IFNγ and T-bet in Th1 differentiation. In contrast, transduction of a dominant negative form of DUSP16 had the reverse effects. Furthermore, upon immunization, T cell-specific dusp16 transgenic mice produced antigen-specific IgG2a at lower amounts, whereas DN dusp16 transgenic mice produced higher amounts of antigen-specific IgG2a accompanied by decreased amounts of antigen-specific IgG1 and IgE than those of control mice. Together, these data suggest the functional role of DUSP16 in Th1/Th2 balance.  相似文献   

3.

Background

Childhood hospitalization related to asthma remains at historically high levels, and its incidence is on the rise world-wide. Previously, we have demonstrated that aldose reductase (AR), a regulatory enzyme of polyol pathway, is a major mediator of allergen-induced asthma pathogenesis in mouse models. Here, using AR null (AR-/-) mice we have investigated the effect of AR deficiency on the pathogenesis of ragweed pollen extract (RWE)-induced allergic asthma in mice and also examined the efficacy of enteral administration of highly specific AR inhibitor, fidarestat.

Methods

The wild type (WT) and AR-/- mice were sensitized and challenged with RWE to induce allergic asthma. AR inhibitor, fidarestat was administered orally. Airway hyper-responsiveness was measured in unrestrained animals using whole body plethysmography. Mucin levels and Th2 cytokine in broncho-alveolar lavage (BAL) were determined using mouse anti-Muc5A/C ELISA kit and multiplex cytokine array, respectively. Eosinophils infiltration and goblet cells were assessed by H&E and periodic acid Schiff (PAS)-staining of formalin-fixed, paraffin-embedded lung sections. T regulatory cells were assessed in spleen derived CD4+CD25+ T cells population.

Results

Deficiency of AR in mice led to significantly decreased PENH, a marker of airway hyper-responsiveness, metaplasia of airway epithelial cells and mucus hyper-secretion following RWE-challenge. This was accompanied by a dramatic decrease in infiltration of eosinophils into sub-epithelium of lung as well as in BAL and release of Th2 cytokines in response to RWE-challenge of AR-/- mice. Further, enteral administration of fidarestat significantly prevented eosinophils infiltration, airway hyper-responsiveness and also markedly increased population of T regulatory (CD4+CD25+FoxP3+) cells as compared to RWE-sensitized and challenged mice not treated with fidarestat.

Conclusion

Our results using AR-/- mice strongly suggest the role of AR in allergic asthma pathogenesis and effectiveness of oral administration of AR inhibitor in RWE-induced asthma in mice supports the use of AR inhibitors in the treatment of allergic asthma.  相似文献   

4.

Background

Airway hyperresponsiveness (AHR) is one of the most prominent features of asthma, however, precise mechanisms for its induction have not been fully elucidated. We previously reported that systemic antigen sensitization alone directly induces AHR before development of eosinophilic airway inflammation in a mouse model of allergic airway inflammation, which suggests a critical role of antigen-specific systemic immune response itself in the induction of AHR. In the present study, we examined this possibility by cell transfer experiment, and then analyzed which cell source was essential for this process.

Methods

BALB/c mice were immunized with ovalbumin (OVA) twice. Spleen cells were obtained from the mice and were transferred in naive mice. Four days later, AHR was assessed. We carried out bronchoalveolar lavage (BAL) to analyze inflammation and cytokine production in the lung. Fluorescence and immunohistochemical studies were performed to identify T cells recruiting and proliferating in the lung or in the gut of the recipient. To determine the essential phenotype, spleen cells were column purified by antibody-coated microbeads with negative or positive selection, and transferred. Then, AHR was assessed.

Results

Transfer of spleen cells obtained from OVA-sensitized mice induced a moderate, but significant, AHR without airway antigen challenge in naive mice without airway eosinophilia. Immunization with T helper (Th) 1 elicited antigen (OVA with complete Freund''s adjuvant) did not induce the AHR. Transferred cells distributed among organs, and the cells proliferated in an antigen free setting for at least three days in the lung. This transfer-induced AHR persisted for one week. Interleukin-4 and 5 in the BAL fluid increased in the transferred mice. Immunoglobulin E was not involved in this transfer-induced AHR. Transfer of in vitro polarized CD4+ Th2 cells, but not Th1 cells, induced AHR. We finally clarified that CD4+CD62Llow memory/effector T cells recruited in the lung and proliferated, thus induced AHR.

Conclusion

These results suggest that antigen-sensitized memory/effector Th2 cells themselves play an important role for induction of basal AHR in an antigen free, eosinophil-independent setting. Therefore, regulation of CD4+ T cell-mediated immune response itself could be a critical therapeutic target for allergic asthma.  相似文献   

5.
Cholera toxin (CT) is a mucosal adjuvant capable of inducing strong immune responses to co-administered antigens following oral or intranasal immunization of mice. To date, the direct effect of CT on antigen-specific CD4+ T cell migration and proliferation profiles in vivo is not well characterized. In this study, the effect of CT on the migration pattern and proliferative responses of adoptively transferred, CD4+ TCR transgenic T cells in orally or intranasally vaccinated mice, was analyzed by flow cytometry. GFP-expressing or CFSE-labeled OT-II lymphocytes were adoptively transferred to naïve C57BL/6 mice, and mice were subsequently vaccinated with OVA with or without CT via the oral or intranasal route. CT did not alter the migration pattern of antigen-specific T cells, regardless of the route of immunization, but increased the number of transgenic CD4+ T cells in draining lymphoid tissue. This increase in the number of transgenic CD4+ T cells was not due to cells undergoing more rounds of cellular division in vivo, suggesting that CT may exert an indirect adjuvant effect on CD4+ T cells. The findings reported here suggest that CT functions as a mucosal adjuvant by increasing the number of antigen specific CD4+ T cells independent of their migration pattern or kinetics of cellular division.  相似文献   

6.
Th17 cells, which produce IL-17 and IL-22, promote autoimmunity in mice and have been implicated in the pathogenesis of autoimmune/inflammatory diseases in humans. However, the Th17 immune response in the aging process is still not clear. In the present study, we found that the induction of IL-17-produing CD4+ T cells was significantly increased in aged individuals compared with young healthy ones. The mRNA expression of IL-17, IL-17F, IL-22, and RORC2 was also significantly increased in aged people. Similar to humans, Th17 cells as well as mRNAs encoding IL-17, IL-22 and RORγt were dramatically elevated in naïve T cells from aged mouse compared to young ones. In addition, CD44 positive IL-17-producing CD4+ T cells were significantly higher in aged mice, suggesting that memory T cells are an important source of IL-17 production. Furthermore, the percentage of IL-17-produing CD4+ T cells generated in co-culture with dendritic cells from either aged or young mice did not show significant differences, suggesting that dendritic cells do not play a primary role in the elevation of Th17 cytokines in aged mouse cells. Importantly, transfer of CD4+CD45Rbhi cells from aged mice induced more severe colitis in RAG−/− mice compared to cells from young mice, Taken together, these results suggest that Th17 immune responses are elevated in aging humans and mice and may contribute to the increased development of inflammatory disorders in the elderly.  相似文献   

7.

Background

Nitrogen dioxide (NO2) is an air pollutant associated with poor respiratory health, asthma exacerbation, and an increased likelihood of inhalational allergies. NO2 is also produced endogenously in the lung during acute inflammatory responses. NO2 can function as an adjuvant, allowing for allergic sensitization to an innocuous inhaled antigen and the generation of an antigen-specific Th2 immune response manifesting in an allergic asthma phenotype. As CD11c+ antigen presenting cells are considered critical for naïve T cell activation, we investigated the role of CD11c+ cells in NO2-promoted allergic sensitization.

Methods

We systemically depleted CD11c+ cells from transgenic mice expressing a simian diphtheria toxin (DT) receptor under of control of the CD11c promoter by administration of DT. Mice were then exposed to 15 ppm NO2 followed by aerosolized ovalbumin to promote allergic sensitization to ovalbumin and were studied after subsequent inhaled ovalbumin challenges for manifestation of allergic airway disease. In addition, pulmonary CD11c+ cells from wildtype mice were studied after exposure to NO2 and ovalbumin for cellular phenotype by flow cytometry and in vitro cytokine production.

Results

Transient depletion of CD11c+ cells during sensitization attenuated airway eosinophilia during allergen challenge and reduced Th2 and Th17 cytokine production. Lung CD11c+ cells from wildtype mice exhibited a significant increase in MHCII, CD40, and OX40L expression 2 hours following NO2 exposure. By 48 hours, CD11c+MHCII+ DCs within the mediastinal lymph node (MLN) expressed maturation markers, including CD80, CD86, and OX40L. CD11c+CD11b- and CD11c+CD11b+ pulmonary cells exposed to NO2 in vivo increased uptake of antigen 2 hours post exposure, with increased ova-Alexa 647+ CD11c+MHCII+ DCs present in MLN from NO2-exposed mice by 48 hours. Co-cultures of ova-specific CD4+ T cells from naïve mice and CD11c+ pulmonary cells from NO2-exposed mice produced IL-1, IL-12p70, and IL-6 in vitro and augmented antigen-induced IL-5 production.

Conclusions

CD11c+ cells are critical for NO2-promoted allergic sensitization. NO2 exposure causes pulmonary CD11c+ cells to acquire a phenotype capable of increased antigen uptake, migration to the draining lymph node, expression of MHCII and co-stimulatory molecules required to activate naïve T cells, and secretion of polarizing cytokines to shape a Th2/Th17 response.  相似文献   

8.
C3H mice infected with Leishmania amazonensis develop persistent, localized lesions with high parasite loads. During infection, memory/effector CD44hiCD4+ T cells proliferate and produce IL-2, but do not polarize to a known effector phenotype. Previous studies have demonstrated IL-12 is insufficient to skew these antigen-responsive T cells to a functional Th1 response. To determine the mechanism of this IL-12 unresponsiveness, we used an in vitro assay of repeated antigen activation. Memory/effector CD44hiCD4+ T cells did not increase proliferation in response to either IL-2 or IL-12, although these cytokines upregulated CD25 expression. Neutralization of IL-2 enhanced CD4+ T cell proliferation in response to IL-12. This cross-regulation of IL-12 responsiveness by IL-2 was confirmed in vivo by treatment with anti-IL-2 antibodies and IL-12 during antigen challenge of previously infected mice. These results suggest that during chronic infection with L. amazonensis, IL-2 plays a dominant, immunosuppressive role independent of identifiable conventional Treg cells.  相似文献   

9.
The invention of peptide-MHC-tetramer technology to label antigen-specific T cells has led to an enhanced understanding of T lymphocyte biology. Here we describe the development of an in situ pMHC-II tetramer staining method to visualize antigen-specific CD4+ T cells in tissues. This method complements other methods developed that similarly use MHC class II reagents to stain antigen-specific CD4+ T cells in situ. In this study, we used group A streptococcus (GAS) expressing a surrogate peptide (2W) to inoculate C57BL/6 mice, and used fresh nasal-associated lymphoid tissues (NALT) in optimizing the in situ staining of 2W:I-Ab specific CD4+ T cells. The results showed 2W:I-Ab tetramer-binding CD4+ T cells in GAS-2W but not GAS infected mice. This method holds promise to be broadly applicable to study the localization, abundance, and phenotype of antigen-specific CD4+ T cells in undisrupted tissues.  相似文献   

10.
Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB.  相似文献   

11.
The long-term exposure of mice to superantigen SEA using a mini-osmotic pump (SEA pump) induced a long-lasting expansion of Vβ3+CD4+ T cells with T helper (Th) 2 cell-type properties. Removal of the SEA pump 10 days after pump implantation did not significantly alter the level of Vβ3+CD4+ T cell expansion/maintenance. Furthermore, CFSE-labeled CD4+ T cells failed to divide when transferred to post-implantation day 15 mice. Thus, CD4+ T cells appeared to survive for at least 30 days in the absence of a sufficient amount of antigen to trigger cell division. STAT6 deficient mice, in which Th2 cell development is largely impaired, also exhibited a protracted cell expansion, similar to that observed in normal mice, suggesting that the Th2 cell property is dispensable for the maintenance of Vβ3+CD4+ T cell expansion. The expanded CD4+ T cells on post-implantation day 26 were arrested in the G0/G1 phase of the cell cycle and showed a lower level of cell division upon restimulation. The Cdk inhibitor p27Kip1 was highly expressed, and Cdk2 was downregulated. Moreover, the CD4+ T cells were resistant to in vitro apoptosis induction in parallel with their level of Bcl-2 expression. Collectively, the Vβ3+CD4+ T cells appeared to develop into long-lived memory T cells with cell cycle arrest upon long-term exposure to SEA.  相似文献   

12.
While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer''s immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation.  相似文献   

13.
Mucus alterations are a feature of ulcerative colitis (UC) and can drive inflammation by compromising the mucosal barrier to luminal bacteria. The exact pathogenesis of UC remains unclear, but CD4+ T cells reacting to commensal antigens appear to contribute to pathology. Given the unique capacity of dendritic cells (DCs) to activate naive T cells, colon DCs may activate pathogenic T cells and contribute to disease. Using Muc2-/- mice, which lack a functional mucus barrier and develop spontaneous colitis, we show that colitic animals have reduced colon CD103+CD11b- DCs and increased CD103-CD11b+ phagocytes. Moreover, changes in colonic DC subsets and distinct cytokine patterns distinguish mice with distally localized colitis from mice with colitis spread proximally. Specifically, mice with proximally spread, but not distally contained, colitis have increased IL-1β, IL-6, IL-17, TNFα, and IFNγ combined with decreased IL-10 in the distal colon. These individuals also have increased numbers of CD103+CD11b+ DCs in the distal colon. CD103+CD11b+ DCs isolated from colitic but not noncolitic mice induced robust differentiation of Th17 cells but not Th1 cells ex vivo. In contrast, CD103-CD11b+ DCs from colitic Muc2-/- mice induced Th17 as well as Th1 differentiation. Thus, the local environment influences the capacity of intestinal DC subsets to induce T cell proliferation and differentiation, with CD103+CD11b+ DCs inducing IL-17-producing T cells being a key feature of extensively spread colitis.  相似文献   

14.
CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.  相似文献   

15.
Activation of complement is one of the earliest immune responses to exogenous threats, resulting in various cleavage products including anaphylatoxin C3a. In addition to its contribution to host defense, C3a has been shown to mediate Th2 responses in animal models of asthma. However, the role of C3a on pulmonary Th17 responses during allergic inflammation remains unclear. Here, we show that mice deficient in C3a receptor (C3aR) exhibited (i) higher percentages of endogenous IL-17-producing CD4+ T cells in the lungs, (ii) higher amounts of IL-17 in the bronchoalveolar lavage fluid, and (iii) more neutrophils in the lungs than wild-type mice when challenged with intranasal allergens. Moreover, adoptive transfer experiments showed that the frequencies of antigen-specific IL-17-producing CD4+ T cells were significantly higher in the lungs and bronchial lymph nodes of C3aR-deficient recipients than those of wild-types recipients. Bone-marrow reconstitution study indicated that C3aR-deficiency on hematopoietic cells was required for the increased Th17 responses. Furthermore, C3aR-deficient mice exhibited increased percentages of Foxp3+ regulatory T cells; however, depletion of these cells minimally affected the induction of antigen-specific Th17 cell population in the lungs. Neutralization of IL-17 significantly reduced the number of neutrophils in bronchoalveolar lavage fluid of C3aR-deficient mice. Our findings demonstrate that C3a signals negatively regulate antigen-specific Th17 responses during allergic lung inflammation and the size of Foxp3+ regulatory T cell population in the periphery.  相似文献   

16.
Th17 plays important roles in the pathogenesis of various inflammatory and autoimmune diseases. Although the importance of Th17 in tumor immunity has also been suggested, precise roles of tumor-associated antigen-specific Th17 still remain poorly understood, especially in humans. We previously identified WT1332, a 16-mer helper epitope derived from tumor-associated antigen Wilms’ tumor gene 1 (WT1) product, and WT1332-specific Th1 clones were established. In the present study, WT1-specific Th17 clones were established by the stimulation of peripheral blood mononuclear cells with the WT1332 helper peptide under human Th17-polarizing conditions. The WT1-specific Th17 clone exhibited the helper function for proliferation of conventional CD4+ T cells in the antigenic stimulation-specific manner. This is the first report of establishment of functional Th17 clones with both antigen (WT1332) specificity and antigen-specific helper activity. Th17 clones established here and the method to establish antigen-specific Th17 clones should be a useful tool to further analyze the roles of human Th17 in tumor immunity.  相似文献   

17.
Regulatory T cells play a crucial role in the homeostasis of the immune response. In addition to CD4+Foxp3+ regulatory T cells, several subsets of Foxp3- regulatory T cells, such as T helper 3 (Th3) cells and type 1 regulatory T (Tr1) cells, have been described in mice and human. Accumulating evidence shows that naïve B cells contribute to tolerance and are able to promote regulatory T cell differentiation. Naïve B cells can convert CD4+CD25- T cells into CD25+Foxp3- regulatory T cells, named Treg-of-B cells by our group. Treg-of-B cells express LAG3, ICOS, GITR, OX40, PD1, and CTLA4 and secrete IL-10. Intriguingly, B-T cell-cell contact but not IL-10 is essential for Treg-of-B cells induction. Moreover, Treg-of-B cells possess both IL-10-dependent and IL-10-independent inhibitory functions. Treg-of-B cells exert suppressive activities in antigen-specific and non-antigen-specific manners in vitro and in vivo. Here, we review the phenotype and function of Foxp3+ regulatory T cells, Th3 cells, Tr1 cells, and Treg-of-B cells.  相似文献   

18.
WH1fungin, a surfactin cyclopeptide from Bacillus amyloliquefaciens WH1, is firstly reported as a novel immunoadjuvant, which can markedly enhance the immune response when given in mixture with antigens. After intramuscular or subcutaneous immunization, WH1fungin can help to induce both of durable humoral and cellular immune response, even as strong as Freund's adjuvant. Both IgG1 and IgG2a antigen-specific antibodies were elicited from the immunizations indicating a mixed Th1/Th2 response. Splenocytes from mice intramuscularly immunized with OVA plus WH1fungin responded to OVA CTL peptide stimulation resulting in an increase in CD8+TNF-α+ and CD8+IFN-γ+ T cell populations, and also an increase in CD4+TNF-α+ T cells and CD4+IFN-γ+ T cell populations was found from mice subcutaneously immunized with OVA plus WH1fungin when responded to OVA Th peptide stimulation. These results further suggest that WH1fungin helps to elicit humoral and cellular responses to OVA. The potential mechanism of WH1fungin as an immunoadjuvant was investigated. In vitro assays showed that WH1fungin could enter into RAW 264.7 cells, induce ROS accumulation, and increase the expression of cell surface markers and cytokines in cells. Further investigation suggested that WH1fungin might exert its adjuvant activity by ligating with TLR-2 in antigen present cells such as RAW 264.7. Taken together, WH1fungin is very potent as a novel adjuvant for development of vaccines in the future.  相似文献   

19.
20.
Involvement of CD4+ helper T (Th) cells is crucial for CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity. However, CD4+ Th’s signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4+ Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4+ T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA)-pulsed dendritic cell (DCova). CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2Kb/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I) complex signaling, CD4+ Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4+ Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2) and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7) molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4+ Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号