首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular prion protein (PrPC), a protein most noted for its link to prion diseases, has been found to play a protective role in ischemic brain injury. To investigate the role of PrPC in the kidney, an organ highly prone to ischemia/reperfusion (IR) injury, we examined wild-type (WT) and PrPC knockout (KO) mice that were subjected to 30-min of renal ischemia followed by 1, 2, or 3 days of reperfusion. Renal dysfunction and structural damage was more severe in KO than in WT mice. While PrP was undetectable in KO kidneys, Western blotting revealed an increase in PrP in IR-injured WT kidneys compared to sham-treated kidneys. Compared to WT, KO kidneys exhibited increases in oxidative stress markers heme oxygenase-1, nitrotyrosine, and Nε-(carboxymethyl)lysine, and decreases in mitochondrial complexes I and III. Notably, phosphorylated extracellular signal-regulated kinase (pERK) staining was predominantly observed in tubular cells from KO mice following 2 days of reperfusion, a time at which significant differences in renal dysfunction, histological changes, oxidative stress, and mitochondrial complexes between WT and KO mice were observed. Our study provides the first evidence that PrPC may play a protective role in renal IR injury, likely through its effects on mitochondria and ERK signaling pathways.  相似文献   

2.
3.
目的:观察eritoran对大鼠肾脏缺血再灌注损伤模型的.方法:建立SD大鼠缺血再灌注模型,给予eritoran治疗而对照组给予生理盐水治疗,观察各组的肾功能情况、肾组织光镜病理,并采用核糖核酸酶保护测定检测肾组织炎症因子/趋化因子的表达.结果:与模型组相比,eritoran预处理可显著改善大鼠的肾功能,减轻缺血再灌注引起的肾小管损伤,减轻肾组织病变,减少肾组织单核细胞浸润并下调多种炎症因子的表达(TNF-α,IL-6,IL-1β和MCP-1).结论:本研究证实通过eritoran抑制Toll样受体4,可减轻大鼠肾脏缺血再灌注损伤中的炎症反应,减轻肾脏缺血再灌注损伤,eritoran可望成为肾脏I/R损伤的新治疗手段.  相似文献   

4.
Oxidative stress is a major contributor to kidney injury following ischemia reperfusion. Ferritin, a highly conserved iron-binding protein, is a key protein in the maintenance of cellular iron homeostasis and protection from oxidative stress. Ferritin mitigates oxidant stress by sequestering iron and preventing its participation in reactions that generate reactive oxygen species. Ferritin is composed of two subunit types, ferritin H and ferritin L. Using an in vivo model that enables conditional tissue-specific doxycycline-inducible expression of ferritin H in the mouse kidney, we tested the hypothesis that an increased level of H-rich ferritin is renoprotective in ischemic acute renal failure. Prior to induction of ischemia, doxycycline increased ferritin H in the kidneys of the transgenic mice nearly 6.5-fold. Following reperfusion for 24 hours, induction of neutrophil gelatinous-associated lipocalin (NGAL, a urine marker of renal dysfunction) was reduced in the ferritin H overexpressers compared to controls. Histopathologic examination following ischemia reperfusion revealed that ferritin H overexpression increased intact nuclei in renal tubules, reduced the frequency of tubular profiles with luminal cast materials, and reduced activated caspase-3 in the kidney. In addition, generation of 4-hydroxy 2-nonenal protein adducts, a measurement of oxidant stress, was decreased in ischemia-reperfused kidneys of ferritin H overexpressers. These studies demonstrate that ferritin H can inhibit apoptotic cell death, enhance tubular epithelial viability, and preserve renal function by limiting oxidative stress following ischemia reperfusion injury.  相似文献   

5.
Zhu  Jiangtao  Wu  Di  Zhao  Chenyu  Luo  Man  Hamdy  Ronald C.  Chua  Balvin H. L.  Xu  Xingshun  Miao  Zhigang 《Neurochemical research》2017,42(10):2949-2957
Neurochemical Research - Previous studies have demonstrated that plasma resistin levels were increased in patients with acute ischemic stroke. However, the role of resistin after ischemic brain...  相似文献   

6.
Ischemia reperfusion injury is a common cause of acute kidney injury and is characterized by tubular damage. Mitochondrial DNA is released upon severe tissue injury and can act as a damage-associated molecular pattern via the innate immune receptor TLR9. Here, we investigated the role of TLR9 in the context of moderate or severe renal ischemia reperfusion injury using wild-type C57BL/6 mice or TLR9KO mice. Moderate renal ischemia induced renal dysfunction but did not decrease animal well-being and was not regulated by TLR9. In contrast, severe renal ischemia decreased animal well-being and survival in wild-type mice after respectively one or five days of reperfusion. TLR9 deficiency improved animal well-being and survival. TLR9 deficiency did not reduce renal inflammation or tubular necrosis. Rather, severe renal ischemia induced hepatic injury as seen by increased plasma ALAT and ASAT levels and focal hepatic necrosis which was prevented by TLR9 deficiency and correlated with reduced circulating mitochondrial DNA levels and plasma LDH. We conclude that TLR9 does not mediate renal dysfunction following either moderate or severe renal ischemia. In contrast, our data indicates that TLR9 is an important mediator of hepatic injury secondary to ischemic acute kidney injury.  相似文献   

7.
目的:通过研究homer1a基因敲除小鼠脑缺血再灌注损伤及海马区星形胶质细胞活化、数目形态变化,探讨homer1a基因在脑缺血损伤中的作用及机制。方法:取雄性homer1a基因敲除(Knock Out,KO)小鼠及同窝野生型(Wild Type,WT)小鼠各15只,分为基因敲除假手术组(Sham Knock Out,SKO,n=3)、基因敲除型缺血2 h再灌注24 h组(Model Knock Out,MKO,n=12)、野生型假手术组(Sham Wild Type,SWT,n=3)及野生型缺血2 h再灌24h组(Model Wild Type,MWT,n=12)。线栓法闭塞小鼠大脑中动脉制作脑缺血再灌注损伤模型(middle cerebral artery occlusion and reperfusion,MCAO/R),在缺血再灌注损伤前(0 h)及缺血再灌注后3 h、6 h、12 h、24 h后进行改良版神经损伤严重性评分(modified Neurological severity scores,m NSS)、2,3,5—氯化三苯基四氮唑(2,3,5triphenyltetrazolium chloride,TTC)染色、苏木素—伊红染色(Hematoxylin-eosin staining,HE)、原位末端转移酶标记技术(terminal deoxynucleotidyl transferase(Td T)-mediated deoxyuridine triphosphate(d UTP)nick end labeling,TUNEL)检测及免疫荧光染色观察海马区星形胶质细胞神经纤维酸性蛋白(Glial Fibrillary Acidic Protein,GFAP)改变。结果:SKO组、SWT组行为学m NSS评分均为0分,TTC染色未见梗死灶。TUNLE及GFAP染色阳性细胞数很少且未见统计学差异(P0.05)。脑缺血再灌注24 h后,MKO组m NSS评分较MWT组高;TTC染色MKO组较MWT组梗死百分比高;MKO组较MWT组TUNEL凋亡率高;GFAP免疫荧光染色阳性数MKO组少于MWT组,且均有统计学差异(P0.05)。结论:homer1a基因敲除加重了小鼠脑缺血再灌注损伤,星形胶质细胞可能参与并发挥复杂作用。  相似文献   

8.
K Ban  RA Kozar 《PloS one》2012,7(7):e41584
The mTOR signaling pathway plays a crucial role in the regulation of cell growth, proliferation, survival and in directing immune responses. As the intestinal epithelium displays rapid cell growth and differentiation and is an important immune regulatory organ, we hypothesized that mTOR may play an important role in the protection against intestinal ischemia reperfusion (I/R)-induced injury. To better understand the molecular mechanisms by which the mTOR pathway is altered by intestinal I/R, p70S6K, the major effector of the mTOR pathway, was investigated along with the effects of rapamycin, a specific inhibitor of mTOR and an immunosuppressant agent used clinically in transplant patients. In vitro experiments using an intestinal epithelial cell line and hypoxia/reoxygenation demonstrated that overexpression of p70S6K promoted cell growth and migration, and decreased cell apoptosis. Inhibition of p70S6K by rapamycin reversed these protective effects. In a mouse model of gut I/R, an increase of p70S6K activity was found by 5 min and remained elevated after 6 h of reperfusion. Inhibition of p70S6K by rapamycin worsened gut injury, promoted inflammation, and enhanced intestinal permeability. Importantly, rapamycin treated animals had a significantly increased mortality. These novel results demonstrate a key role of p70S6K in protection against I/R injury in the intestine and suggest a potential danger in using mTOR inhibitors in patients at risk for gut hypoperfusion.  相似文献   

9.
The purpose of this research was to evaluate the protective effects of apocynin on renal ischemia/reperfusion (I/R) injury (RI/RI) in rats. Rats preconditioned with apocynin were subjected to renal I/R. Zinc levels in serum and renal tissues, blood urea nitrogen (BUN), and serum creatinine (Scr) were detected. We further measured the activity of superoxide dismutase (SOD); the content of malondialdehyde (MDA), IL-4, IL-6, IL-10, and TNF-α; and the expression of metallothionein (MT) in the renal tissues. Results indicated that the levels of MDA, IL-4, IL-6, IL-10, TNF-α, and MT in the kidney tissue and serum BUN and Scr levels in RI/RI group were significantly higher than those in sham-operated group, while the levels of serum Zn and kidney Zn and SOD were reduced in RI/RI group. Apocynin treatment further decreased the levels of MDA, IL-6, TNF-α, and serum BUN and Scr, whereas it significantly increased the levels of Zn, SOD, IL-4, IL-10, and MT in the kidney tissue and serum Zn. These findings suggest that apocynin might play a protective role against RI/RI in rats through regulating zinc level and MT expression involving in oxidative stress.  相似文献   

10.
Preoperative fasting and dietary restriction offer robust protection against renal ischemia/reperfusion injury (I/RI) in mice. We recently showed that Mannan-binding lectin (MBL), the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on these findings, we investigated the effect of short-term DR (30% reduction of total food intake) or three days of water only fasting on MBL in 10–12 weeks old male C57/Bl6 mice. Both dietary regimens significantly reduce the circulating levels of MBL as well as its mRNA expression in liver, the sole production site of MBL. Reconstitution of MBL abolished the protection afforded by dietary restriction, whereas in the fasting group the protection persisted. These data show that modulation of MBL is involved in the protection against renal I/RI induced by dietary restriction, and suggest that the mechanisms of protection induced by dietary restriction and fasting may be different.  相似文献   

11.
《Free radical research》2013,47(1):737-743
The objective of this study was to test the hypothesis that the extracellular oxidation of glutathione (GSH) may represent an important mechanism to limit hepatic ischemia/reperfusion injury in male Fischer rats in vivo. Basal plasma levels of glutatione disulfide (GSSG: 1.5 ± 0.2μM GSH-equivalents), glutathione (GSH: 6.2 ± 0.4 μM) and alanine aminotransferase activities (ALT 12 ± 2U/I) were significantly increased during the l h reperfusion period following l h of partial hepatic no-flow ischemia (GSSG: 19.7 ± 2.2μM; GSH 36.9 ± 7.4μM; ALT: 2260 ± 355 U/l). Pretreatment with 1,3-bis-(2-chloroethyl)-I-nitrosourea (40mg BCNU/kg), which inhibited glutathione reductase activity in the liver by 60%. did not affect any of these parameters. Biliary GSSG and GSH efflux rates were reduced and the GSSG-to-GSH ratio was not altered in controls and BCNU-treated rats at any time during ischemia and reperfusion. A 90% depletion of the hepatic glutathione content by phorone treatment (300 mg/kg) reduced the increase of plasma GSSG levels by 54%, totally suppressed the rise of plasma GSH concentrations and increased plasma ALT to 4290 ± 755 U/I during reperfusion. The data suggest that hepatic glutathione serves to limit ischemialreperfusion injury as a source of extracellular glutathione, not as a cofactor for the intracellular enzymatic detoxification of reactive oxygen species.  相似文献   

12.
血红素加氧酶-1在缺血/再灌注损伤中的保护作用   总被引:7,自引:0,他引:7  
血红素加氧酶-1(Heme Oxygenase-1,HO-1)是催化血红素分解的关键酶。近年来,人们对血红素降解产物的抗氧化、抗炎症等功能的认识推动了对HO酶系的研究。缺血/再灌注损伤(IRI)是一个重要的临床问题,而临床上对IRI的防治尚缺乏有效的方法。目前发现HO-1过表达具有抗IRI的作用,其保护作用的可能机制有:抗氧化作用、调节微循环、调节细胞周期和抗炎症作用。  相似文献   

13.
14.
目的:探讨Toll样受体7(TLR7)介导的My D88/NF-κB信号通路在1型糖尿病大鼠肾缺血再灌注损伤中的作用。方法:雄性SD大鼠随机分为3组(n=6),糖尿病假手术组(DS),糖尿病缺血再灌注组(DIR),糖尿病缺血再灌注+氯喹预处理组(DIR+CQ)。采用腹腔注射链尿佐菌素65 mg/kg建立糖尿病模型,TLR7抑制剂氯喹预处理于糖尿病模型成功后第3周0.5%氯喹40 mg/kg进行腹腔注射,连续给药7天。于第四周采用双侧肾蒂夹闭25 min,再灌注48 h建立肾缺血再灌注损伤模型。取大鼠肾脏HE染色观察大鼠病理学结果,血标本测定血尿素氮(BUN)和血肌酐(Scr)水平,ELISA法检测白细胞介素6(IL-6)和肿瘤坏死因子-α(TNF-α),TUNEL法检测细胞凋亡,Western blot检测TLR7,My D88和NF-κB蛋白表达。结果:与DS组相比,DIR组肾小管肿胀,间质水肿,刷状缘丢失,空泡变性坏死,Paller评分升高(P0.01)。与DIR组相比,氯喹预处理可以改善肾损伤(P=0.017);与DS组相比,DIR组BUN,Scr,IL-6,TNF-α,细胞调亡指数(Apoptosis%),TLR7,My D88,NF-κB增高(P0.05);与DIR组相比,DIR+CQ组BUN,Scr,IL-6,TNF-α,Apoptosis%,TLR7,My D88,NF-κB降低(P0.05)。结论:TLR7介导的My D88/NF-κB信号通路参与糖尿病肾缺血再灌注损伤,氯喹通过抑制TLR7表达,阻断My D88/NF-κB信号通路,降低炎症反应,从而减轻1型糖尿病大鼠肾缺血再灌注损伤。  相似文献   

15.
目的:探讨缺血再灌注损伤早期肾脏皮质内大电导钙依赖性钾通道(BK)通道的表达及意义。方法:建立成年SD大鼠肾脏急性缺血再灌注损伤模型,快速收集24小时缺血大鼠与对照大鼠血和损伤侧肾脏皮质标本,使用ELISA方法检测血肌酐和尿素氮含量,实时荧光定量RT-PCR和蛋白免疫印迹方法检测肾脏组织中BK通道α亚基的m RNA表达水平和蛋白表达水平。结果:(1)急性缺血再灌注大鼠损伤侧肾脏皮质BK通道α亚基m RNA水平较对照大鼠同侧肾脏皮质的表达明显降低(P0.01)。(2)急性缺血再灌注大鼠损伤侧肾脏皮质BK通道α亚基蛋白水平较对照大鼠同侧肾脏皮质的表达也明显降低(P0.05)。(3)NS1619预处理缺血再灌注大鼠血尿素氮和血肌酐含量显著降低(P0.05)。结论:BK通道表达和功能的改变是参与大鼠肾脏缺血再灌注损伤的重要机制。  相似文献   

16.
International Journal of Peptide Research and Therapeutics - Renal ischemia–reperfusion (IR) is a common cause of acute renal failure and result in remote organ injury. Oxidative stress and...  相似文献   

17.
Exercise training offers cardioprotection against ischemia and reperfusion (I/R) injury. However, few essential signals have been identified to underscore the protection from injury. In the present study, we hypothesized that exercise-induced acceleration of myocardial tissue oxygenation recovery contributes to this protection. C57BL/6 mice (4 weeks old) were trained on treadmills for 45 min/day at a treading rate of 15 m/min for 8 weeks. At the end of 8-week exercise training, mice underwent 30-min left anterior descending coronary artery occlusion followed by 60-min or 24-h reperfusion. Electron paramagnetic resonance oximetry was performed to measure myocardial tissue oxygenation. Western immunoblotting analyses, gene transfection, and myography were examined. The oximetry study demonstrated that exercise markedly shortened myocardial tissue oxygenation recovery time following reperfusion. Exercise training up-regulated Kir6.1 protein expression (a subunit of ATP-sensitive K+ channel on vascular smooth muscle cells, VSMC sarc-KATP) and protected the heart from I/R injury. In vivo gene transfer of dominant negative Kir6.1AAA prolonged the recovery time and enlarged infarct size. In addition, transfection of Kir6.1AAA increased the stiffness and reduced the relaxation capacity in the vasculature. Together, our study demonstrated that exercise training up-regulated Kir6.1, improved tissue oxygenation recovery, and protected the heart against I/R injury. This exercise-induced cardioprotective mechanism may provide a potential therapeutic intervention targeting VSMC sarc-KATP channels and reperfusion recovery.  相似文献   

18.
19.
20.
Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R) injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2), the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号