首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
There are numerous ways by which cyclic dimeric GMP (c-di-GMP) inhibits motility. Kuchma et al. (S. L. Kuchma, N. J. Delalez, L. M. Filkins, E. A. Snavely, J. P. Armitage, and G. A. O''Toole, J. Bacteriol. 197:420–430, 2015, http://dx.doi.org/10.1128/JB.02130-14) offer a new, previously unseen way of swarming motility inhibition in Pseudomonas aeruginosa PA14. This bacterium possesses a single flagellum with one rotor and two sets of stators, only one of which can provide torque for swarming. The researchers discovered that elevated levels of c-di-GMP inhibit swarming by skewing stator selection in favor of the nonfunctional, “bad” stators.  相似文献   

2.
3.
4.
Abstract

Pt-bis-netropsin is a synthetic sequence-specific DNA-binding ligand comprizing two netropsin-like fragments which are linked in a tail-to-tail manner via a cis-diammineplat-inum (II) residue. The CD studies and thermodynamic characterization of the DNA-binding properties exhibited by this compound reveal that it forms two types of complexes with poly[d(AT)]?poly[d(AT)] and DNA oligomers containing nucleotide sequences 5′-CC (TA)nCC-3′, with n = 4, 5 and 6. The first type corresponds to the binding of Pt-bis-netropsin in the extended conformation and is characterized by the saturating ratio of one bound Pt-bis-netropsin molecule per 9 AT-base pairs. The second type of the complex corresponds to the binding of Pt-bis-netropsin to DNA in the folded hairpin form. The binding approaches saturation level when one Pt-bis-netropsin molecule is bound per four or five AT-base pairs. The hairpin form of Pt-bis-netropsin complex is built on the basis of parallel side-by-side peptide motif which is inserted in the minor DNA groove. The CD spectral profiles reflecting the binding of Pt-bis-netropsin in the hairpin form are different from those observed for binding of another bis-netropsin with the sequence Lys-Gly-Py-Py-Gly-Gly-Gly-Py-Py-Dp, where Py is a N-propylpyrrole amino acid residue and Dp is a dimethylaminopropylamino residue. The hairpin form of this bis-netropsin is formed on the basis of antiparallel side- by-side peptide motif. The CD spectra obtained for complexes of this polyamide in the hairpin form with poly[dAT)]?poly[d(AT)] exhibit positive CD band with a peak at 325 nm, whereas the CD spectral profiles for the second complex of Pt-bis-Nt with poly[d(AT)] ?poly[d(AT)] and short DNA oligomers have two intense positive CD bands near 290 nm and 328 nm. This reflects the fact that two bis-netropsins use different structural motifs on binding to DNA in the hairpin form.  相似文献   

5.
6.
7.
8.
Successful antibody development requires both functional binding and desirable biophysical characteristics. In the current study, we analyze the causes of one hurdle to clinical development, off-target reactivity, or nonspecificity. We used a high-throughput nonspecificity assay to isolate panels of nonspecific antibodies from two synthetic single-chain variable fragment libraries expressed on the surface of yeast, identifying both individual amino acids and motifs within the complementarity-determining regions which contribute to the phenotype. We find enrichment of glycine, valine, and arginine as both individual amino acids and as a part of motifs, and additionally enrichment of motifs containing tryptophan. Insertion of any of these motifs into the complementarity-determining region H3 of a “clean” antibody increased its nonspecificity, with greatest increases in antibodies containing Trp or Val motifs. We next applied these rules to the creation of a synthetic diversity library based on natural frameworks with significantly decreased incorporation of such motifs and demonstrated its ability to isolate binders to a wide panel of antigens. This work both provides a greater understanding of the drivers of nonspecificity and provides design rules to increase efficiency in the isolation of antibodies with drug-like properties.  相似文献   

9.
10.
In recent years, Escherichia coli has served as one of a few model bacterial species for studying cyclic di-GMP (c-di-GMP) signaling. The widely used E. coli K-12 laboratory strains possess 29 genes encoding proteins with GGDEF and/or EAL domains, which include 12 diguanylate cyclases (DGC), 13 c-di-GMP-specific phosphodiesterases (PDE), and 4 “degenerate” enzymatically inactive proteins. In addition, six new GGDEF and EAL (GGDEF/EAL) domain-encoding genes, which encode two DGCs and four PDEs, have recently been found in genomic analyses of commensal and pathogenic E. coli strains. As a group of researchers who have been studying the molecular mechanisms and the genomic basis of c-di-GMP signaling in E. coli, we now propose a general and systematic dgc and pde nomenclature for the enzymatically active GGDEF/EAL domain-encoding genes of this model species. This nomenclature is intuitive and easy to memorize, and it can also be applied to additional genes and proteins that might be discovered in various strains of E. coli in future studies.  相似文献   

11.
The Gram-positive obligate anaerobe Clostridium difficile causes potentially fatal intestinal diseases. How this organism regulates virulence gene expression is poorly understood. In many bacterial species, the second messenger cyclic di-GMP (c-di-GMP) negatively regulates flagellar motility and, in some cases, virulence. c-di-GMP was previously shown to repress motility of C. difficile. Recent evidence indicates that flagellar gene expression is tightly linked with expression of the genes encoding the two C. difficile toxins TcdA and TcdB, which are key virulence factors for this pathogen. Here, the effect of c-di-GMP on expression of the toxin genes tcdA and tcdB was determined, and the mechanism connecting flagellar and toxin gene expressions was examined. In C. difficile, increasing c-di-GMP levels reduced the expression levels of tcdA and tcdB, as well as that of tcdR, which encodes an alternative sigma factor that activates tcdA and tcdB expression. We hypothesized that the C. difficile orthologue of the flagellar alternative sigma factor SigD (FliA; σ28) mediates regulation of toxin gene expression in response to c-di-GMP. Indeed, ectopic expression of sigD in C. difficile resulted in increased expression levels of tcdR, tcdA, and tcdB. Furthermore, sigD expression enhanced toxin production and increased the cytopathic effect of C. difficile on cultured fibroblasts. Finally, evidence is provided that SigD directly activates tcdR expression and that SigD cannot activate tcdA or tcdB expression independent of TcdR. Taken together, these data suggest that SigD positively regulates toxin genes in C. difficile and that c-di-GMP can inhibit both motility and toxin production via SigD, making this signaling molecule a key virulence gene regulator in C. difficile.  相似文献   

12.
目的对从噬菌体展示随机肽库筛选获得的内毒素结合肽模拟肽进行体外拈抗内毒素活性鉴定。方法采用FMOC固相合成法化学合成内毒素结合肽模拟肽P11,并进行拮抗内毒素活性和细胞毒性测定。结果亲和ELISA检测显示P11与LPS有较高的亲和力,通过生长曲线和流式细胞学分析细胞周期显示P11对人U937细胞生长无明显影响。流式细胞检测显示P11呈剂量依赖性抑制FITC—LPS与人外周血单核细胞(PBMC)结合。细胞因子生成抑制实验显示10μg/mlP11可显著抑制LPS诱导PBMC和U937细胞TNF—αmRNA转录和蛋白表达。结论体外活性鉴定结果表明化学合成的模拟肽P11可抑制LPS诱导的炎性反应。  相似文献   

13.
Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library''s fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library''s coverage, have long been in use as measures of a library''s quality. Here, we present a graphical framework of these measures together with a library''s relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries.  相似文献   

14.
RNA and its associated RNA binding proteins (RBPs) mitigate a diverse array of cellular functions and phenotypes. The interactions between RNA and RBPs are implicated in many roles of biochemical processing by the cell such as localization, protein translation, and RNA stability. Recent discoveries of novel mechanisms that are of significant evolutionary advantage between RBPs and RNA include the interaction of the RBP with the 3’ and 5’ untranslated region (UTR) of target mRNA. These mechanisms are shown to function through interaction of a trans-factor (RBP) and a cis-regulatory element (3’ or 5’ UTR) by the binding of a RBP to a regulatory-consensus nucleic acid motif region that is conserved throughout evolution. Through signal transduction, regulatory RBPs are able to temporarily dissociate from their target sites on mRNAs and induce translation, typically through a post-translational modification (PTM). These small, regulatory motifs located in the UTR of mRNAs are subject to a loss-of-function due to single polymorphisms or other mutations that disrupt the motif and inhibit the ability to associate into the complex with RBPs. The identification of a consensus motif for a given RBP is difficult, time consuming, and requires a significant degree of experimentation to identify each motif-containing gene on a genomic scale. We have developed a computational algorithm to analyze high-throughput genomic arrays that contain differential binding induced by a PTM for a RBP of interest–RBP-PTM Target Scan (RPTS). We demonstrate the ability of this application to accurately predict a PTM-specific binding motif to an RBP that has no antibody capable of distinguishing the PTM of interest, negating the use of in-vitro exonuclease digestion techniques.  相似文献   

15.
Antibodies are of importance for the field of proteomics, both as reagents for imaging cells, tissues, and organs and as capturing agents for affinity enrichment in mass-spectrometry-based techniques. It is important to gain basic insights regarding the binding sites (epitopes) of antibodies and potential cross-reactivity to nontarget proteins. Knowledge about an antibody''s linear epitopes is also useful in, for instance, developing assays involving the capture of peptides obtained from trypsin cleavage of samples prior to mass spectrometry analysis. Here, we describe, for the first time, the design and use of peptide arrays covering all human proteins for the analysis of antibody specificity, based on parallel in situ photolithic synthesis of a total of 2.1 million overlapping peptides. This has allowed analysis of on- and off-target binding of both monoclonal and polyclonal antibodies, complemented with precise mapping of epitopes based on full amino acid substitution scans. The analysis suggests that linear epitopes are relatively short, confined to five to seven residues, resulting in apparent off-target binding to peptides corresponding to a large number of unrelated human proteins. However, subsequent analysis using recombinant proteins suggests that these linear epitopes have a strict conformational component, thus giving us new insights regarding how antibodies bind to their antigens.Antibodies are used in proteomics both as imaging reagents for the analysis of tissue specificity (1) and subcellular localization (2) and as capturing agents for targeted proteomics (3), in particular for the enrichment of peptides for immunoaffinity methods such as Stable Isotope Standards and Capture by Anti-peptide Antibodies (4). In fact, the Human Proteome Project (5) has announced that one of the three pillars of the project will be antibody-based, with one of the aims being to generate antibodies to at least one representative protein from all protein-coding genes. Knowledge about the binding site (epitope) of an antibody toward a target protein is thus important for gaining basic insights into antibody specificity and sensitivity and facilitating the identification and design of antigens to be used for reagents in proteomics, as well as for the generation of therapeutic antibodies and vaccines (1, 6). With over 20 monoclonal-antibody-based drugs now on the market and over 100 in clinical trials, the field of antibody therapeutics has become a central component of the pharmaceutical industry (7). One of the key parameters for antibodies includes the nature of the binding recognition toward the target, involving either linear epitopes formed by consecutive amino acid residues or conformational epitopes consisting of amino acids brought together by the fold of the target protein (8).A large number of methods have therefore been developed to determine the epitopes of antibodies, including mass spectrometry (9), solid phase libraries (10, 11), and different display systems (1214) such as bacterial display (15) and phage display (16). The most common method for epitope mapping involves the use of soluble and immobilized (tethered) peptide libraries, often in an array format, exemplified by the “Geysen Pepscan” method (11) in which overlapping “tiled” peptides are synthesized and used for binding analysis. The tiled peptide approach can also be combined with alanine scans (17) in which alanine substitutions are introduced into the synthetic peptides and the direct contribution of each amino acid can be investigated. Maier et al. (18) described a high-throughput epitope-mapping screen of a recombinant peptide library consisting of a total of 2304 overlapping peptides of the vitamin D receptor, and recently Buus et al. (19) used in situ synthesis on microarrays to design and generate 70,000 peptides for epitope mapping of antibodies using a range of peptides with sizes from 4-mer to 20-mer.So far it has not been possible to investigate on- and off-target binding in a proteome-wide manner, but the emergence of new methods for in situ synthesis of peptides on ultra-dense arrays has made this achievable. Here, we describe the design and use of peptide arrays generated with parallel in situ photolithic synthesis (20) of a total of 2.1 million overlapping peptides covering all human proteins with overlapping peptides. Miniaturization of the peptide arrays (21) has led to improved density of the synthesized peptides and consequently has improved the resolution and coverage of the epitope mapping. This has allowed us to study the specificity and cross-reactivity of both monoclonal and polyclonal antibodies across the whole “epitome” with the use of both proteome-wide arrays and focused-content peptide arrays covering selected antigen sequences to precisely map the contribution of each amino acid of the target protein for binding recognition of the corresponding antibodies. The results show the usefulness of proteome-wide epitope mapping, showing a path forward for high-throughput analysis of antibody interactions.  相似文献   

16.
17.
《Cell metabolism》2014,19(3):445-457
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   

18.
19.
20.
The nucleotide messenger cyclic di-GMP (c-di-GMP) plays a central role in the regulation of motility, virulence, and biofilm formation in many pathogenic bacteria. EAL domain-containing phosphodiesterases are the major signaling proteins responsible for the degradation of c-di-GMP and maintenance of its cellular level. We determined the crystal structure of a single mutant (R286W) of the response regulator RocR from Pseudomonas aeruginosa to show that RocR exhibits a highly unusual tetrameric structure arranged around a single dyad, with the four subunits adopting two distinctly different conformations. Subunits A and B adopt a conformation with the REC domain located above the c-di-GMP binding pocket, whereas subunits C and D adopt an open conformation with the REC domain swung to the side of the EAL domain. Remarkably, the access to the substrate-binding pockets of the EAL domains of the open subunits C and D are blocked in trans by the REC domains of subunits A and B, indicating that only two of the four active sites are engaged in the degradation of c-di-GMP. In conjunction with biochemical and biophysical data, we propose that the structural changes within the REC domains triggered by the phosphorylation are transmitted to the EAL domain active sites through a pathway that traverses the dimerization interfaces composed of a conserved regulatory loop and the neighboring motifs. This exquisite mechanism reinforces the crucial role of the regulatory loop and suggests that similar regulatory mechanisms may be operational in many EAL domain proteins, considering the preservation of the dimerization interface and the spatial arrangement of the regulatory domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号