首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microbial spoilage of beef was monitored during storage at 5°C under three different conditions of modified-atmosphere packaging (MAP): (i) air (MAP1), (ii) 60% O2 and 40% CO2 (MAP2), and (iii) 20% O2 and 40% CO2 (MAP3). Pseudomonas, Enterobacteriaceae, Brochothrix thermosphacta, and lactic acid bacteria were monitored by viable counts and PCR-denaturing gradient gel electrophoresis (DGGE) analysis during 14 days of storage. Moreover, headspace gas composition, weight loss, and beef color change were also determined at each sampling time. Overall, MAP2 was shown to have the best protective effect, keeping the microbial loads and color change to acceptable levels in the first 7 days of refrigerated storage. The microbial colonies from the plate counts of each microbial group were identified by PCR-DGGE of the variable V6-V8 region of the 16S rRNA gene. Thirteen different genera and at least 17 different species were identified after sequencing of DGGE fragments that showed a wide diversity of spoilage-related bacteria taking turns during beef storage in the function of the packaging conditions. The countable species for each spoilage-related microbial group were different according to packaging conditions and times of storage. In fact, the DGGE profiles displayed significant changes during time and depending on the initial atmosphere used. The spoilage occurred between 7 and 14 days of storage, and the microbial species found in the spoiled meat varied according to the packaging conditions. Rahnella aquatilis, Rahnella spp., Pseudomonas spp., and Carnobacterium divergens were identified as acting during beef storage in air (MAP1). Pseudomonas spp. and Lactobacillus sakei were found in beef stored under MAP conditions with high oxygen content (MAP2), while Rahnella spp. and L. sakei were the main species found during storage using MAP3. The identification of the spoilage-related microbiota by molecular methods can help in the effective establishment of storage conditions for fresh meat.  相似文献   

2.
3.
4.
The handling and treatment of biological samples is critical when characterizing the composition of the intestinal microbiota between different ecological niches or diseases. Specifically, exposure of fecal samples to room temperature or long term storage in deep freezing conditions may alter the composition of the microbiota. Thus, we stored fecal samples at room temperature and monitored the stability of the microbiota over twenty four hours. We also investigated the stability of the microbiota in fecal samples during a six month storage period at −80°C. As the stability of the fecal microbiota may be affected by intestinal disease, we analyzed two healthy controls and two patients with irritable bowel syndrome (IBS). We used high-throughput pyrosequencing of the 16S rRNA gene to characterize the microbiota in fecal samples stored at room temperature or −80°C at six and seven time points, respectively. The composition of microbial communities in IBS patients and healthy controls were determined and compared using the Quantitative Insights Into Microbial Ecology (QIIME) pipeline. The composition of the microbiota in fecal samples stored for different lengths of time at room temperature or −80°C clustered strongly based on the host each sample originated from. Our data demonstrates that fecal samples exposed to room or deep freezing temperatures for up to twenty four hours and six months, respectively, exhibit a microbial composition and diversity that shares more identity with its host of origin than any other sample.  相似文献   

5.
The existence of the ocular microbiota has been reported but functional analyses to evaluate its significance in regulating ocular immunity are currently lacking. We compared the relative contribution of eye and gut commensals in regulating the ocular susceptibility to Pseudomonas aeruginosa–induced keratitis. We find that in health, the presence of microbiota strengthened the ocular innate immune barrier by significantly increasing the concentrations of immune effectors in the tear film, including secretory IgA and complement proteins. Consistent with this view, Swiss Webster (SW) mice that are typically resistant to P. aeruginosa–induced keratitis become susceptible due to the lack of microbiota. This was exemplified by increased corneal bacterial burden and elevated pathology of the germ free (GF) mice when compared to the conventionally maintained SW mice. The protective immunity was found to be dependent on both eye and gut microbiota with the eye microbiota having a moderate, but significant impact on the resistance to infection. These events were IL-1ß–dependent as corneal IL-1ß levels were decreased in the infected GF and antibiotic-treated mice when compared to the SPF controls, and neutralization of IL-1ß increased the ocular bacterial burden in the SPF mice. Monocolonizing GF mice with Coagulase Negative Staphylococcus sp. isolated from the conjunctival swabs was sufficient to restore resistance to infection. Cumulatively, these data underline a previously unappreciated role for microbiota in regulating susceptibility to ocular keratitis. We predict that these results will have significant implications for contact lens wearers, where alterations in the ocular commensal communities may render the ocular surface vulnerable to infections.  相似文献   

6.
7.
8.
9.

Objectives

Feed efficiency and its digestive component, digestive efficiency, are key factors in the environmental impact and economic output of poultry production. The interaction between the host and intestinal microbiota has a crucial role in the determination of the ability of the bird to digest its food and to the birds’ feed efficiency. We therefore investigated the phenotypic and genetic relationships between birds’ efficiency and the composition of the cecal microbiota in a F2 cross between broiler lines divergently selected for their high or low digestive efficiency.

Methods

Analyses were performed on 144 birds with extreme feed efficiency values at 3 weeks, with feed conversion values of 1.41±0.05 and 2.02±0.04 in the efficient and non-efficient groups, respectively. The total numbers of Lactobacillus, L. salivarius, L. crispatus, C. coccoides, C. leptum and E. coli per gram of cecal content were measured.

Results

The two groups mainly differed in larger counts of Lactobacillus, L. salivarius and E. coli in less efficient birds. The equilibrium between bacterial groups was also affected, efficient birds showing higher C. leptum, C. coccoides and L. salivarius to E. coli ratios. The heritability of the composition of microbiota was also estimated and L. crispatus, C. leptum, and C. coccoides to E. coli ratios were moderately but significantly heritable (0.16 to 0.24). The coefficient of fecal digestive use of dry matter was genetically and positively correlated with L. crispatus, C. leptum, C. coccoides (0.50 to 0.76) and negatively with E. coli (-0.66). Lipid digestibility was negatively correlated with E. coli (-0.64), and AMEn positively correlated with C. coccoides and with the C. coccoides to Lactobacillus ratio (0.48 to 0.64). We also detected 14 Quantitative Trait Loci (QTL) for microbiota on the host genome, mostly on C. leptum and Lactobacillus. The QTL for C. leptum on GGA6 was close to genome-wide significance. This region mainly includes genes involved in anti-inflammatory responses and in the motility of the gastrointestinal tract.  相似文献   

10.
11.
Helicobacter pylori colonization is highly prevalent among humans and causes significant gastric disease in a subset of those infected. When present, this bacterium dominates the gastric microbiota of humans and induces antimicrobial responses in the host. Since the microbial context of H. pylori colonization influences the disease outcome in a mouse model, we sought to assess the impact of H. pylori challenge upon the pre-existing gastric microbial community members in the rhesus macaque model. Deep sequencing of the bacterial 16S rRNA gene identified a community profile of 221 phylotypes that was distinct from that of the rhesus macaque distal gut and mouth, although there were taxa in common. High proportions of both H. pylori and H. suis were observed in the post-challenge libraries, but at a given time, only one Helicobacter species was dominant. However, the relative abundance of non-Helicobacter taxa was not significantly different before and after challenge with H. pylori. These results suggest that while different gastric species may show competitive exclusion in the gastric niche, the rhesus gastric microbial community is largely stable despite immune and physiological changes due to H. pylori infection.  相似文献   

12.
Large-scale cohort studies are currently being designed to investigate the human microbiome in health and disease. Adequate sampling strategies are required to limit bias due to shifts in microbial communities during sampling and storage. Therefore, we examined the impact of different sampling and storage conditions on the stability of fecal microbial communities in healthy and diseased subjects. Fecal samples from 10 healthy controls, 10 irritable bowel syndrome and 8 inflammatory bowel disease patients were collected on site, aliquoted immediately after defecation and stored at -80°C, -20°C for 1 week, at +4°C or room temperature for 24 hours. Fecal transport swabs (FecalSwab, Copan) were collected and stored for 48-72 hours at room temperature. We used pyrosequencing of the 16S gene to investigate the stability of microbial communities. Alpha diversity did not differ between all storage methods and -80°C, except for the fecal swabs. UPGMA clustering and principal coordinate analysis showed significant clustering by test subject (p<0.001) but not by storage method. Bray-Curtis dissimilarity and (un)weighted UniFrac showed a significant higher distance between fecal swabs and -80°C versus the other methods and -80°C samples (p<0.009). The relative abundance of Ruminococcus and Enterobacteriaceae did not differ between the storage methods versus -80°C, but was higher in fecal swabs (p<0.05). Storage up to 24 hours (at +4°C or room temperature) or freezing at -20°C did not significantly alter the fecal microbial community structure compared to direct freezing of samples from healthy subjects and patients with gastrointestinal disorders.  相似文献   

13.
肠道微生物是人体中最为庞大和复杂的微生物群落,其对机体的健康,尤其是中枢神经退行性病变具有重要调节作用。其中,"肠道微生物-肠道-脑轴"机制是肠道微生物干预中枢神经退行性病变的重要途径。该机制主要通过以下三种方式来调节大脑功能:一是肠道微生物直接产生神经递质通过肠神经细胞上行至中枢神经系统;二是肠道微生物代谢产物刺激肠内分泌细胞产生神经肽类和胃肠激素类物质,影响大脑功能;三是肠道微生物或其代谢产物直接刺激肠道免疫系统,产生干扰素类物质干扰大脑免疫反应。本文对"肠道微生物-肠道-脑轴"机制的概念及研究进展进行了详细的介绍,同时总结了有关肠道微生物与阿尔兹海默症、帕金森症和多发性硬化症等神经退行性疾病相互作用的相关文献。依据"肠道微生物-肠道-脑轴"机制,利用肠道微生物预防和治疗神经退行性病变,或将成为解决中枢神经系统疾病的新措施。  相似文献   

14.
Although pelvic irradiation is effective for the treatment of various cancer types, many patients who receive radiotherapy experience serious complications. Gut microbial dysbiosis was hypothesized to be related to the occurrence of radiation-induced complications in cancer patients. Given the lack of clinical or experimental data on the impact of radiation on gut microbiota, a prospective observational study of gut microbiota was performed in gynecological cancer patients receiving pelvic radiotherapy. In the current study, the overall composition and alteration of gut microbiota in cancer patients receiving radiation were investigated by 454 pyrosequencing. Gut microbial composition showed significant differences (P < 0.001) between cancer patients and healthy individuals. The numbers of species-level taxa were severely reduced after radiotherapy (P < 0.045), and the abundance of each community largely changed. In particular, the phyla Firmicutes and Fusobacterium were significantly decreased by 10% and increased by 3% after radiation therapy, respectively. In addition, overall gut microbial composition was gradually remolded after the full treatment course of pelvic radiotherapy. In this set of cancer patients, dysbiosis of the gut microbiota was linked to health status, and the gut microbiota was influenced by pelvic radiotherapy. Although further studies are needed to elucidate the relationship between dysbiosis and complications induced by pelvic radiotherapy, the current study may offer insights into the treatment of cancer patients suffering from complications after radiation therapy.  相似文献   

15.
The microbial community in a soil stripped and stored during opencast coal mining was analyzed. There were significant effects of soil disturbance on the microbial community: in particular, there were large decreases in the total microbial biomass, as determined by ATP analysis, and numbers of fungal propagules as a result of the store construction process, but there was no significant effect on the numbers of bacteria. During the subsequent months of storage there was a flush in the numbers of bacteria, with gram-negative bacteria showing an increase of nearly 700% in comparison to the control. During this time there was a steady accumulation in the amount of ammonium in the deepest part of the soil store, indicating the onset of anaerobiosis. These changes may be interpreted in terms of lifestyle strategy theory (Grime 1979). The bacteria exhibit behavior typical of R-strategists, or ruderal species, taking advantage of the nutrients made available by the death of fungal biomass during store construction. Fungi respond as C-strategists, or competitors, and they are severely affected by store construction-and unable to persist deep in the anaerobic part of the store. In contrast, anaerobes, S-strategists or stresstolerators, are able to survive under the same conditions. These changes have serious implications for the restoration of systems using stored topsoil as a resource. The microbial population has been altered in terms of its size and composition. Many of the fungi required for adequate breakdown and incorporation of organic matter will be absent, and the soils will be generally poor in microbial biomass. This will lead to inadequate nutrient cycling and poor soil structural stability, two factors essential for the restoration of a self-sustaining ecosystem.  相似文献   

16.
The animal gut is perpetually exposed to microorganisms, and this microbiota affects development, nutrient allocation, and immune homeostasis. A major challenge is to understand the contribution of individual microbial species and interactions among species in shaping these microbe-dependent traits. Using the Drosophila melanogaster gut microbiota, we tested whether microbe-dependent performance and nutritional traits of Drosophila are functionally modular, i.e., whether the impact of each microbial taxon on host traits is independent of the presence of other microbial taxa. Gnotobiotic flies were constructed with one or a set of five of the Acetobacter and Lactobacillus species which dominate the gut microbiota of conventional flies (Drosophila with untreated microbiota). Axenic (microbiota-free) flies exhibited prolonged development time and elevated glucose and triglyceride contents. The low glucose content of conventional flies was recapitulated in gnotobiotic Drosophila flies colonized with any of the 5 bacterial taxa tested. In contrast, the development rates and triglyceride levels in monocolonized flies varied depending on the taxon present: Acetobacter species supported the largest reductions, while most Lactobacillus species had no effect. Only flies with both Acetobacter and Lactobacillus had triglyceride contents restored to the level in conventional flies. This could be attributed to two processes: Lactobacillus-mediated promotion of Acetobacter abundance in the fly and a significant negative correlation between fly triglyceride content and Acetobacter abundance. We conclude that the microbial basis of host traits varies in both specificity and modularity; microbe-mediated reduction in glucose is relatively nonspecific and modular, while triglyceride content is influenced by interactions among microbes.  相似文献   

17.

Background

Pulmonary exacerbations (PEx), frequently associated with airway infection and inflammation, are the leading cause of morbidity in cystic fibrosis (CF). Molecular microbiologic approaches detect complex microbiota from CF airway samples taken during PEx. The relationship between airway microbiota, inflammation, and lung function during CF PEx is not well understood.

Objective

To determine the relationships between airway microbiota, inflammation, and lung function in CF subjects treated for PEx.

Methods

Expectorated sputum and blood were collected and lung function testing performed in CF subjects during early (0–3d.) and late treatment (>7d.) for PEx. Sputum was analyzed by culture, pyrosequencing of 16S rRNA amplicons, and quantitative PCR for total and specific bacteria. Sputum IL-8 and neutrophil elastase (NE); and circulating C-reactive protein (CRP) were measured.

Results

Thirty-seven sputum samples were collected from 21 CF subjects. At early treatment, lower diversity was associated with high relative abundance (RA) of Pseudomonas (r = −0.67, p<0.001), decreased FEV1% predicted (r = 0.49, p = 0.03) and increased CRP (r = −0.58, p = 0.01). In contrast to Pseudomonas, obligate and facultative anaerobic genera were associated with less inflammation and higher FEV1. With treatment, Pseudomonas RA and P. aeruginosa by qPCR decreased while anaerobic genera showed marked variability in response. Change in RA of Prevotella was associated with more variability in FEV1 response to treatment than Pseudomonas or Staphylococcus.

Conclusions

Anaerobes identified from sputum by sequencing are associated with less inflammation and higher lung function compared to Pseudomonas at early exacerbation. CF PEx treatment results in variable changes of anaerobic genera suggesting the need for larger studies particularly of patients without traditional CF pathogens.  相似文献   

18.
Dietary management of the human gut microbiota towards a more beneficial composition is one approach that may improve host health. To date, a large number of human intervention studies have demonstrated that dietary consumption of certain food products can result in significant changes in the composition of the gut microbiota i.e. the prebiotic concept. Thus the prebiotic effect is now established as a dietary approach to increase beneficial gut bacteria and it has been associated with modulation of health biomarkers and modulation of the immune system. Promitor™ Soluble Corn Fibre (SCF) is a well-known maize-derived source of dietary fibre with potential selective fermentation properties. Our aim was to determine the optimum prebiotic dose of tolerance, desired changes to microbiota and fermentation of SCF in healthy adult subjects. A double-blind, randomised, parallel study was completed where volunteers (n = 8/treatment group) consumed 8, 14 or 21 g from SCF (6, 12 and 18 g/fibre delivered respectively) over 14-d. Over the range of doses studied, SCF was well tolerated Numbers of bifidobacteria were significantly higher for the 6 g/fibre/day compared to 12g and 18g/fibre delivered/day (mean 9.25 and 9.73 Log10 cells/g fresh faeces in the pre-treatment and treatment periods respectively). Such a numerical change of 0.5 Log10 bifidobacteria/g fresh faeces is consistent with those changes observed for inulin-type fructans, which are recognised prebiotics. A possible prebiotic effect of SCF was therefore demonstrated by its stimulation of bifidobacteria numbers in the overall gut microbiota during a short-term intervention.  相似文献   

19.
The colonization and development of gut microbiota immediately after birth is highly variable and depends on several factors, such as delivery mode and modality of feeding during the first months of life. A cohort of 31 mother and neonate pairs, including 25 at-term caesarean (CS) and 6 vaginally (V) delivered neonates (DNs), were included in this study and 121 meconium/faecal samples were collected at days 1 through 30 following birth. Operational taxonomic units (OTUs) were assessed in 69 stool samples by phylogenetic microarray HITChip and inter- and intra-individual distributions were established by inter-OTUs correlation matrices and OTUs co-occurrence or co-exclusion networks. 1H-NMR metabolites were determined in 70 stool samples, PCA analysis was performed on 55 CS DNs samples, and metabolome/OTUs co-correlations were assessed in 45 CS samples, providing an integrated map of the early microbiota OTUs-metabolome. A microbiota “core” of OTUs was identified that was independent of delivery mode and lactation stage, suggesting highly specialized communities that act as seminal colonizers of microbial networks. Correlations among OTUs, metabolites, and OTUs-metabolites revealed metabolic profiles associated with early microbial ecological dynamics, maturation of milk components, and host physiology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号